bullet Sensors & Transducers Journal

    (ISSN 1726- 5479)

205.767

2008 e-Impact Factor

25 Top Downloaded Articles

Best Selling Articles 2012

Journal Subscription 2013

Editorial Calendar 2013

Submit an Article

Editorial Board

Current Issue

Sensors & Transducers journal's cover

Sensors & Transducers Journal 2011

Sensors & Transducers Journal 2010

Sensors & Transducers Journal 2009

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents

 

Best Articles 2011

 

 

 

Vol. 146, No. 11, November 2012, pp. 48-58

 

Bullet

 

Multiwalled Carbon Nanotubes Reinforced Cement Composite Based Room Temperature Sensor for Smoke Detection
 

* Prashant Shukla, Vasuda Bhatia, Vikesh Gaur, Nitin BHARDWAJ, Vinod Kumar Jain

Amity Institute of Advanced Research and Studies-Materials & Devices

Amity University, Noida-201303 (U.P.), India

* Tel.: +91-120-4392189, +91-9910998802, fax: +91-120-4392289

E-mail: pshukla@amity.edu

 

 

Received: 21 September 2012   /Accepted: 23 November 2012   /Published: 30 November 2012

Digital Sensors and Sensor Sysstems

 

Abstract: In this paper, smoke sensing property of pellets, fabricated from multiwalled carbon nanotubes (MWCNTs) (w: w) reinforced with Portland cement has been demonstrated; so as to explore their feasibility as an embedded smoke sensor for civil structures. DC transient response depicted increase in their electrical conductivity when exposed to smoke. The increase in responsivity of the pellets under smoke was found in the range 26-46 % depending upon the MWCNTs content. Ac impedance spectroscopy performed at room temperature under ambient and smoky environments over a frequency range 100 Hz - 2 MHz has demonstrated a gradual increase in the ionic conductivity with frequency for all composites. This increase in ionic conduction was also found to be assisted with an increase in the percentage of MWCNTs. The sensing mechanism has been explained on the basis of electrical conduction due to a combination of flow of ions present and the conductive carbon fibers in series present in the porous matrix of the cement.

 

Keywords: Multiwalled carbon nanotubes, Portland cement, Composite, Sensor, Smoke detection

 

 

Buy this article online (it will be send to you in the pdf format by e-mail) or subscribe Sensors & Transducers journal

(12 issues per year plus special issues; 40 % discount for payment IFSA Members):

 

 

Sensors & Transducers journal subscription

450 $ US per year:

 

Buy this article for
14.95 $ US:

 

 
 

 

 
 

Alternatively we accept a money transfer to our bank account. Please contact for details: sales@sensorsportal.com

 

Download <here> the Library Journal Recommendation Form

 

 

 

Read more about Nanosensors and Temperature Sensors

 

 

 

 

 


1999 - 2012 Copyright , International Frequency Sensor Association (IFSA). All Rights Reserved.


Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn