bullet Sensors & Transducers Journal

    (ISSN: 2306-8515, e-ISSN 1726-5479)


2008 e-Impact Factor

25 Top Downloaded Articles

Best Selling Articles 2012

Journal Subscription 2014

Editorial Calendar

Submit an Article

Editorial Board

Current Issue

S&T journal's cover

Sensors & Transducers Journal 2011

Sensors & Transducers Journal 2010

Sensors & Transducers Journal 2009

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents


Best Articles 2011




Vol. 162, Issue 1, January 2014, pp. 102-110




Stability Analysis of Wireless Measurement and Control System Based on Dynamic Matrix

1, 2 Yongxian SONG, 2 Kewei LI, 1 Yuan FENG, 1 Zijian DONG

1 School of Electronic Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu, 222000, China
2 School of Electronic and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China

E-mail: soyox@126.com


Received: 4 October 2013 /Accepted: 9 January 2014 /Published: 31 January 2014

Digital Sensors and Sensor Sysstems


Abstract: Focus on data packet loss and time delay problems in wireless greenhouse measurement and control system, and temperature and humidity were taken as the research objects, the model of temperature and humidity information transmission was set up by decoupling technology according to the characteristics of wireless greenhouse measurement and control system. According to related theory of exponential stability in network control system, the stability conditions judgment of temperature and humidity control model was established, the linear matrix inequality that time delay and packet loss should satisfy was obtained when wireless measurement and control system was stable operation. The feasibility analysis of linear matrix inequality (LMI) was implemented Using LMI toolbox in MATLAB, and the critical values of time delay and packet loss rate were obtained when the system was stable operation. The wireless sensor network control system simulation model with time delay and packet loss was set up using TrueTime toolbox. The simulation results have shown that the system was in a stable state when time delay and packet loss rate obtained were less than the critical values in wireless greenhouse sensor network measurement and control system; With the increase of time delay and packet loss rate, and stable performance drops; When time delay and packet loss rate obtained were more than the critical values, the measurement and control system would be in a state of flux, and when it was serious, even can lead to collapse of the whole system. As a result, the critical values determination of time delay and packet loss rate provided a theoretical basis for establishing stable greenhouse wireless sensor network (WSN) measurement and control system in practical application.


Keywords: Linear matrix inequality, Packet loss rate, Decouple, Stability, WSN.


Acrobat reader logo Click <here> or title of paper to download the full pages article in pdf format



Subscribe the full-page Sensors & Transducers journal in print (paper) or pdf formats

(shipping cost by standard mail for paper version is included)

(25 % discount for IFSA Members)




Alternatively we accept a money transfer to our bank account. Please contact for details: sales@sensorsportal.com



Download <here> the Library Journal Recommendation Form



Read more about Wireless Sensor Networks






1999 - 2014 Copyright , International Frequency Sensor Association (IFSA) Publishing, S.L. All Rights Reserved.

Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn