bullet Sensors & Transducers Journal

    (ISSN: 2306-8515, e-ISSN 1726-5479)

0.705

2013 Global Impact Factor

205.767

2008 e-Impact Factor

25 Top Downloaded Articles

Best Selling Articles 2012

Journal Subscription 2014

Editorial Calendar

Submit an Article

Editorial Board

Current Issue

S&T journal's cover

Sensors & Transducers Journal 2011

Sensors & Transducers Journal 2010

Sensors & Transducers Journal 2009

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents

 

Best Articles 2011

 

 

 

Vol. 170, Issue 5, May 2014, pp. 1-18

 

Bullet

 

Continuous Flow Pressure Driven Microfluidic Techniques for Point of Care Testing
 

1 Luck T. EREKU, 1 Ruth E. MACKAY, 2 Kolawole AJAYI, 1 Wamadeva BALACHANDRAN

1 School of Engineering and Design, Brunel University, Kingston Lane, Uxbridge, UK
2 University of Lagos, Akoka, Lagos, Nigeria
1 Tel.: +441895267378, fax: +441895258728

1 E-mail: luck.ereku@brunel.ac.uk

 

Received: 10 February 2014 /Accepted: 7 April 2014 /Published: 31 May 2014

Digital Sensors and Sensor Sysstems

 

Abstract: The recent advent of the miniaturization technology witnessed over the last decades has led to development and creation of several conventional microfluidic techniques. A microfluidic platform can be broken down into a set of fluidic unit operations which are miniaturized versions of orthodox large scale (bio-chemical) laboratory operations. These miniaturized operations are designed for easy integration and automation within a well-defined fabrication technology; which permits simple, easy, fast, and cost-efficient implementation of different application-specific bio-chemical processes for point care diagnostics. Processes that can be automated at this scale include nucleic acid extraction, amplification and detection. The improvement in technology within the previous decades has led to significant developments of techniques used in implementing several microfluidic processes. The auspicious developments that have greatly impacted areas in medical research, therapeutics and POCT applications are brought into focus by this research on a continuous flow configuration. Through these visualization platforms such as pressure driven flow, magneto-hydrodynamics dielectrophoresis, large-scale integration are analyzed under continuous flow characteristics. Finally this review also provides adequate examples whilst investigating the strengths and limitations of every technique.

 

Keywords: Continuous flow, Pressure driven, Microfluidics, Point of care testing, Lab-on-a-chip.

 

Acrobat reader logo Click <here> or title of paper to download the full pages article in pdf format

 

 

Subscribe the full-page Sensors & Transducers journal in print (paper) or pdf formats

(shipping cost by standard mail for paper version is included)

(25 % discount for IFSA Members)

 

 

 

Alternatively we accept a money transfer to our bank account. Please contact for details: sales@sensorsportal.com

 

 

Download <here> the Library Journal Recommendation Form

 

 

Read more about Flow Sensors

 

 

 

 

 


1999 - 2014 Copyright , International Frequency Sensor Association (IFSA) Publishing, S.L. All Rights Reserved.


Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn