bullet Sensors & Transducers Journal

    (ISSN: 2306-8515, e-ISSN 1726-5479)


2008 e-Impact Factor

25 Top Downloaded Articles

Best Selling Articles 2012

Journal Subscription 2014

Editorial Calendar

Submit an Article

Editorial Board

Current Issue

S&T journal's cover

Sensors & Transducers Journal 2011

Sensors & Transducers Journal 2010

Sensors & Transducers Journal 2009

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents


Best Articles 2011




Vol. 168, Issue 4, April 2014, pp. 108-112




Study of the Mechanical Behavior of a Hyperelastic Membrane

1 Bourbaba Houaria, 2 Benachaiba Chellali

1 Physics of Semiconductors Devices Laboratory, University of Bechar BP 417 Route Kenadza, 08000, Algeria
2 Engineering Department, University of Bechar BP 417 Route Kenadza, 08000, Algeria
1 Tel.: 213774181929

1 E-mail: belhouaria@yahoo.fr


Received: 2 January 2014 /Accepted: 7 March 2014 /Published: 30 April 2014

Digital Sensors and Sensor Sysstems


Abstract: The benefits in emloying plastics material in microfluidic devices manufactures are extremely attractive that include reduced cost and simplified manufacturing procedures, particularly when compared to silicon. An additional benefit is the wide range of available plastic materials which allow the manufacturer to choose materials' properties suitable for their specific application. The Polydimethylsiloxane is commonly used in a wide range of microfluidic applications due to its flexibility and low cost. In addition the properties of the Polymethyl methacrylate such as the low cost, high transparency, and good chemical properties are needed in microfluidics applications. In this paper, we have used Finit Elements method to simulate the mechanical behavior of Polydimethylsiloxane and Polymethylmethacrylate using hyper elastic and linear elastic model. Sevral parameters have been studied; such as, thickness and number of mesh in order to optimize the dimension of the membrane. Also, we have studied the impact of the mesh form on the membrane’s displacement.


Keywords: Finite Element, Microfluidic devices, Hyperelastic membrane.


Acrobat reader logo Click <here> or title of paper to download the full pages article in pdf format



Subscribe the full-page Sensors & Transducers journal in print (paper) or pdf formats

(shipping cost by standard mail for paper version is included)

(25 % discount for IFSA Members)




Alternatively we accept a money transfer to our bank account. Please contact for details: sales@sensorsportal.com



Download <here> the Library Journal Recommendation Form






1999 - 2014 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S.L. All Rights Reserved.

Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn