bullet Sensors & Transducers Journal

    (ISSN 1726- 5479)

205.767

2008 e-Impact Factor

25 Top Downloaded Articles

Journal Subscription 2010

Editorial Calendar 2010

Submit an Article

Editorial Board

Current Issue

Sensors & Transducers journal's cover

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents

 

Best Articles 2008

 

 

 

Vol. 113, Issue 2, February 2010, pp. 71-81

 

Bullet

 

The Use of Calixarene Thin Films in the Sensor Array for VOCs Detection and Olfactory Navigation

 

Alan F. Holloway, Alexei Nabok, *Abbass A. Hashim, Jacques Penders

Sheffield Hallam University, Materials and Engineering Research Institute,

Sheffield, S1 1WB, UK

Tel.: 441142253682, fax: 441142253433

E-mail: a.hashim@shu.ac.uk

 

 

Received: 19 January 2010   /Accepted: 19 February 2010   /Published: 26 February 2010

 

Abstract: This work is dedicated to the development of a sensor array for detection of volatile organic chemicals (VOCs) in pre-explosive concentrations as well as for olfactory robotic navigation in the frame of two EU projects. A QCM (quartz crystal microbalance) sensor array was built utilising quartz crystals spun-coated with thin films of different amphiphilic calixarene molecules to provide a base for pattern recognition of different volatile organic chemicals (VOCs). Commercial Metal-oxide semiconductor (MOS) sensors were also used in the same array for the benefit of comparison. The sensor array was tested with a range of organic vapours, such as hydrocarbons, alcohols, ketones, aromatics, etc, in concentrations below LEL and up to UEL (standing for lower and upper explosion limit, respectively); the sensor array proved to be capable of identification and concentration evaluation of a range of VOCs. Comparison of QCM and MOS sensors responses to VOCs in the LEL-UEL range showed the advantage of the former. In addition, the sensor array was tested on the vapours of camphor from cinnamon oil in order to prove the concept of using the "scent marks" for robotic navigation. The results showed that the response signature of QCM coated with calixarenes to camphor is very much different from those of any other VOCs used. Adsorption and de-sorption rates of camphor are also much slower comparing to VOCs due to a high viscosity of the compound. Our experiments demonstrated the suitability of calixarene sensor array for the task and justified the use of camphor as a "scent mark" for olfactory navigation.

 

Keywords: QCM & MOS sensors, VOCs, Pattern recognition, ANN, Olfactory navigation

 

Acrobat reader logo Click <here> or title of paper to download the full pages article (1.27 Mb)

 

 

 

 


1999 - 2010 Copyright , International Frequency Sensor Association (IFSA). All Rights Reserved.


Home - News - Links - Archives - Tools - Standardization - Patents - Marketplace - Projects - Wish List - Subscribe - Search - Membership - Submit Press Release

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Sensor Jobs - e-Shop - Site Map