bullet Sensors & Transducers Journal

    (ISSN: 2306-8515, e-ISSN 1726-5479)


2013 Global Impact Factor


2008 e-Impact Factor

25 Top Downloaded Articles

Best Selling Articles 2012

Journal Subscription

Editorial Calendar

Submit an Article

Editorial Board

Current Issue

S&T journal's cover

Sensors & Transducers Journal 2011

Sensors & Transducers Journal 2010

Sensors & Transducers Journal 2009

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents


Best Articles 2011




Vol. 187, Issue 4, April 2015, pp. 129-137




Preparation of Polyaniline Multi-wall Carbon Nanotubes Nanocomposites Films/Discs
and Characterization of their Electrical, Mechanical and Damping Properties

1 Weiwei LIN, 2 Xiangxing KONG, 1 Cesar LEVY

1 Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33162, USA
2 Center for Biosignatures Discovery Automation, The Biodesign Institute Arizona State University, Tempe, AZ 85287, USA
1 Tel.: +1-305-348-3643, fax: +1-305-348-1932

1 E-mail: levyez@fiu.edu


Received: 31 March 2015 /Accepted: 27 March 2015 /Published: 30 April 2015

Digital Sensors and Sensor Sysstems


Abstract: The purpose of this research was to create a sensor-actuator that could sense strain and also act similar to constrained viscoelastic material without corresponding weight addition. Frit compression method was first used to make controlled thickness of polyaniline/multi-wall carbon nanotube (PANI/MWCNT) nanocomposite films/discs. MWCNT was found to enhance both the electrical conductivity and the thermal stability properties of the nanocomposite films, and the PANI increased the Young’s modulus and hardness of the films/discs as evidenced by the nanoindentation test. Simultaneous DSC-TGA measurements showed that the PANI/22%MWCNT nanocomposites improved their thermal stability by about 50 °C compared with their pure components. Cantilever beam free vibration tests were adopted to characterize the sample damping properties. It was found that location of the sample vis-á-vis the location of the cantilever beam’s fixed support played a very important part in the damping ratio, as expected. Preliminary tests showed that the damping ratio of PANI/11%MWCNT was 0.00656 when the aluminum beam was clamped to the free, uncovered end. However, the damping ratio nearly tripled when the beam was clamped at the PANI/MWCNT covered end. By covering both sides of aluminum beam with the sample, the damping ratio reached a value of 0.072, which is 18.85 times higher than for the single sided coverage.


Keywords: PANI/MWCNT, Frit compression, Electrical properties, Mechanical properties, Damping properties.


Acrobat reader logo Click <here> or title of paper to download the full pages article in pdf format



Subscribe the full-page Sensors & Transducers journal in print (paper) or pdf formats

(shipping cost by standard mail for paper version is included)

(25 % discount for IFSA Members)




Alternatively we accept a money transfer to our bank account. Please contact for details: sales@sensorsportal.com



Download <here> the Library Journal Recommendation Form



Read more about Nanosensors






1999 - 2015 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S.L. All Rights Reserved.

Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn