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Abstract: In this paper a capacitive based high-g accelerometer with superior level of sensitivity is 
presented. It takes advantage of dual comb unit configuration and surface micromachining fabrication 
process. All aspects of mechanical design such as sensor structure, modal analysis, energy dissipations, 
dynamic response and stresses in moving structure as well as anchors are described. Electrical circuit 
based on CMOS technology and its output signal is presented. Fabrication process and packaging are 
also discussed. The proposed sensor can endure impact loads up to 120,000 g (g = 9.81 m.s-2) and 
achieves 16.75 µV.g-1 sensitivity with 5V bridge excitation voltage. Main resonant frequency of 
structure is found to be 42.4 kHz. Intended applications of suggested sensor include military and 
aerospace industries as well as field of impact engineering. Copyright © 2009 IFSA. 
 
Keywords: High-g accelerometer, MEMS, Capacitive sensor 
 
 
 
1. Introduction 
 
Micro-Electro-Mechanical-Systems technology, commonly known with the acronym MEMS, refers to 
the fabrication of devices with dimensions on the micrometer scale that contain both electrical and 
mechanical components. Accelerometers along with pressure sensors are the most commercially 
successful MEMS sensors with the largest market share [1]. They are mainly used in automotive 
industry for activation of safety systems (e.g. air bag) and control of vehicle stability. Further 
applications include measurement of mechanical shock, vibration and record of physical movements in 
medicine. They are also used in computers (protection of hard disk), robotics, seismology, cell phones 
(rotation of screen), navigation systems, medical devices, etc. [2-4]. 



Sensors & Transducers Journal, Vol. 103, Issue 4, April 2009, pp. 17-28 

 18

High-g accelerometers which can withstand impact loads up to thousands of g are desirable for many 
commercial applications. They are applicable in test and measurement, aerospace, military  
(e.g. operational test and evaluation and smart munition guidance) and transportation industries. They 
are also used in impact, structural and transient shock testing [5-7]. 
 
Many high-g accelerometers rely on either piezoresistive or piezoelectric effect as transduction 
mechanism for their operation, although the later method is used less frequently. They are method of 
choice due to their simplicity and low cost fabrication. Furthermore both bulk and surface 
micromachining techniques can be applied for fabrication [8-12]. Capacitive interfaces on the other 
hand, have several attractive features. In most micromachining technologies no or minimal additional 
processing is needed. Capacitors can operate both as sensors and actuators. They have excellent 
sensitivity and the transduction mechanism is intrinsically insensitive to temperature. This sensing 
mechanism is independent of the base material and relies on the variation of capacitance when the 
geometry of a capacitor is changing. 
 
In this paper, a surface micromachined capacitive sensor to measure high level of acceleration is 
presented. Proposed sensors showed very good level of sensitivity in comparison with its counterparts. 
Both finite element and analytical methods are used during the design process and evaluation of sensor 
performance. It is designed to be more reliable and sensitive than currently available sensors at 
relatively low cost in case of mass production. 
 
 
2. Design 
 
Dealing with high-g accelerations and demanding high sensitivity, led us to a structure much like a 
resonator in terms of geometrical shape as it contains two capacitive comb unit, flexure and truss 
beams, anchors and shuttle mass [13]. While resonators rely on electrostatic forces for their shuttle 
mass movement, in accelerometers this phenomenon is caused by external forces. Sensor layout and its 
components are shown in Fig. 1. Sensing mechanism is based on capacitance changes in two variable 
capacitors (comb units). When acceleration takes place, the shuttle mass moves and changes the 
capacitance of these two units oppositely. Change in capacitance is proportional to amount of 
acceleration and will be measured with integrated electrical circuit. Embedded etching holes reduce 
mass of structure as much as possible without sacrificing its robustness, beside their main role during 
fabrication process. 
 

 
 

Fig. 1. 3D model of sensor structure and its components. 

Anchor

Flexure Beam  

Shuttle Mass 

 Static Comb

Moving Comb 
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Important geometric dimensions of structure are listed in Table 1. Mechanical structure is designed to 
occupy minimal space as it measures 520 µm at its largest part. This leaves enough space for 
integrated electrical components on 1 mm2 sensing chip. In static status, capacitance of each comb unit 
is more than 0.1 pF so variations can be measured by integrated circuit. Anchors are big enough to not 
only withstand applied stresses during vibration but ensure failure free operation for upcoming years 
considering hysteresis stresses, fatigue phenomenon and safety factors. Each comb unit consists of  
41 fingers in moving comb and 42 fingers in static one. Structure flexibility allows displacements up to 
20 µm between moving and static combs. 
 
 

Table 1. Geometric Parameters. 
 

Quantity DIM (µm) Quantity DIM (µm) 
Total length 520 Flexure beams length  194 
Total width 434 Flexure beams width  5 
Fingers length 65 Truss beams length  154 
Fingers width 2 Truss beams width  14 
Structure thickness 10 Central anchors length 54 
Fingers side gap  2 Central anchors width 22 
Initial length of overlaid fingers 45 Distance from substrate 2 

 
 
3. Modeling 
 
3.1. Natural Frequency 
 
When acceleration acts on the mass of the structure, it produces a force on the flexure beams which 
deflects them causing mass displacement given by: 
 
  (1)
 
where D is the shuttle mass displacement, a is the applied acceleration, m and k are the effective mass 
and spring constant in desired direction (i.e. x, y, z). In addition to displacement, natural frequency of 
structure in x direction can be calculated as follows: 
 
 

x

x
x m

kf
π2
1

=
, 

(2)

 
where kx and mx are the effective stiffness and mass in x direction. For structures similar to our 
configuration, effective spring constant in x direction is given by [14]: 
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where E is the Young’s modulus for structure material, t is the structure thickness, Lb and Lt are the 
length of flexure and truss beams, wb and wt are the width of flexure and truss beams respectively, α is 
the dimensionless parameter and defines as (wt / wb )3. 
 
Effective mass in x direction contains three components as follows: 
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  effbefftshuttlex mmmm ,, ++=
,
  (4)

 
where mshuttle is the mass of shuttle, mt,eff and mb,eff are the effective mass of truss beams and flexure 
beams respectively. Two last parameters can be calculated by following equations [14]: 
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Effect of etching holes must be considered during calculation of truss and flexure beam masses. The 
natural frequency of structure in main direction (x axis) is found to be 40.06 kHz based on analytical 
analysis. This is approximately 5.6% lower than result obtained from FEA (finite element analysis) 
which discussed later. The difference can be justified with simplifications during formulation since the 
second approach offers more accurate results. 
 
 
3.2. Capacitance 
 
Basic operation of microsensor relies of comb fingers that form group of variable capacitors. For each 
capacitor formed of two parallel plates, capacitance is directly related to area of facing plates and 
inversely to distance between them. Some capacitive based sensors rely on horizontal movement 
between plates (i.e. change in distance) as their sensing mechanism. Our approach relies on vertical 
movement between static and moving comb fingers which changes area of facing plates. This method 
eliminates any chance of fingers deflection hence occurrence of short circuit as they encounter high 
level of accelerations. Capacitance model of each comb unit and parallel connection between 
capacitors are shown in Fig. 2. Each comb unit contains 41 fingers in moving comb and 42 fingers in 
static one. Total amount of capacitance for each comb unit and its components are listed in Table 2. 
 
 

 
 

Fig. 2. Capacitance model of each comb unit and connection between its components. 
 
 
3.3. Energy Dissipations 

 
Energy loss phenomena in microdevices can generally be grouped into two large categories: One 
group contains loss mechanisms that are generated through intrinsic (material) dissipation, which also 
referred to as mechanical noise mechanisms [15]. The other group includes losses that are produced by 
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fluid-structure interaction (i.e. slide film damping and squeeze film damping) [16]. Although material 
dissipations are subject of special importance in resonators, for structures that operate at much lower 
frequencies than their resonance (therefore have very low frequency ratio), these losses are so small 
and quite negligible [17]. Different types of energy losses by air viscosity that affect dynamic behavior 
of the structure are shown in Fig. 3. 
 
 

Table 2. Capacity of each comb unit in stationary status. 
 

Capacity (pF)- 
Simulation Capacity (pF)- Theory  Capacitor 

18.78e-6 17.70e-6 Ct = Cb 
21.12e-4 19.91e-4 CL = CR 
0.1747 0.1647 Ctotal = 41*(CR + CL + Ct) + 42*Cb 

 
 

 
 

Fig. 3. Energy loss mechanisms imposed by air viscosity. 
 
 

These losses include couette flow below the structure, Stokes flow above of it and flow of fluid 
between comb fingers. Analytical solution for calculation of fluid viscous damping in  direction is 
given by [18]: 
 
  ])11)(5.05.0[(

s
A

d
AAAc c

btsx ++++=
δ

µ
,
  (7)

 
where As, At, Ab, Ac are the area of shuttle mass, truss beams, flexure beams, side walls of comb fingers 
respectively. It has been suggested that for calculating the viscous damping force, small cross-section 
elements (e.g. comb fingers) should be weighted thrice as much as large plate masses to take into 
account edge and finite-size effects [18]. Other parameters are defined as follows: µ is fluid dynamic 
viscosity, d is distance between substrate and bottom of structure, δ is penetration depth of above fluid 
flow and s is side gap between comb fingers. 
 
Since moving fluid above the structure is modeled by Stokes flow, its amplitude decreases 
logarithmically as it moves from the upper surface of structure. Penetration depth of fluid flow (δ) 
defines as “distance in which amplitude of fluid decreases by e factor” and relates to kinematic 
viscosity of fluid (ν) and vibration frequency of structure (f). Plot of penetration depth for two fluids at 
1 atmosphere and 25ºC as a function of frequency is shown in Fig. 4. 
 
The mentioned parameter is given by following equation [18]: 
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Fig. 4. Penetration depth vs. Frequency. 
 
 

It can be concluded that effect of viscous damping becomes considerable only at high frequencies or in 
conjunction with relatively high viscous fluidics. For proposed sensor, calculated damping is  
5.32 µN.S/m when it vibrates at 40 kHz in air medium. Therefore, presence of air as a viscous fluid 
almost has no effect in reducing response amplitude of system in comparison with ideally vacuumed 
environment. 
 
 
4. Analysis 
 
4.1. Modal Analysis 
 
Analyze and simulation of structure is done using finite element analysis package. Its modal shapes 
and natural frequencies are extracted using modal analysis. Table 3 shows results of this analysis with 
total number of 8 modal shapes and their associated resonance frequencies within 0-200 kHz range. 
Natural frequency of structure is approximately 42.44 kHz in operating direction based on poly-silicon 
mechanical properties (E = 169 GPa, ρ = 2330 kg/m3, υ = 0.22). Fig. 5 shows simulation results for 
first four modal shapes. 
 
 

Table 3. Modal analysis results. 
 

Mode Order Resonant Frequency 
(kHz) Mode Order Resonant Frequency 

(kHz) 
1 36.81 5 163.33 
2 42.44 6 183.90 
3 73.67 7 187.39 
4 112.45 8 189.90 

 
 

4.2. Stress analysis 
 
Analysis of Von Mises and shear stresses in anchors are conducted to evaluate structure stability 
during operation. For this propose maximum displacement (20 µm) is applied to structure in its 
operating direction. Moving combs are removed during this process since their existence has no effect 
on final results and will only increase number of nodes/elements. Distribution of Von Misses stresses 
is shown in Fig. 6. Maximum amount being 590 MPa is roughly 0.35% of silicon Young's modulus. 
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Fig. 5. Modal shapes for first four resonance frequencies of structure. 
 
 

 
 

Fig. 6. Von Misses stresses in structure at max. displacement. 
 
 

As shuttle mass moves forth and back, deflection at the end of each flexure beam, imposes a force at 
distance. This can be converted to its equivalent force and torque at anchors, which leads to formation 
of two shear stresses at each one. Stress intensity module is considered to evaluate their effect 
simultaneously and its distribution at anchors is shown in Fig. 7. Maximum amount (50 MPa) is much 



Sensors & Transducers Journal, Vol. 103, Issue 4, April 2009, pp. 17-28 

 24

lower than anchors maximum stress threshold, because adhesion forces between poly silicon-silicon 
nitride-wafer layers are very strong. 

 
 

 
 

Fig. 7. Stress intensity in anchors attachment. 
 
 

5. Electrical Components 
 
Overall low capacitance of system requires integration of electronic capacitance measurement with 
signal conditioning circuit board on sensing chip. Integration of electronic components with 
mechanical parts is done with CMOS (Complementary Metal Oxide Semiconductor) technique. It 
offers many advantages over traditional discrete systems such as reduction in power consumption and 
space requirement, enhanced reliability and immunity to noise and distortion. Therefore 
microelectronics integration is subject of importance during development of modern sensors [19]. 
 
Fig. 8. shows a simplified view of accelerometer integrated electronic circuit for signal conditioning 
with I/O ports indicated with numbers. Input is first and second ports that are connected to two fixed 
comb anchors; third port is connected to anchors of moving comb and acts as output of sensor. The 
two capacitors are connected in series and form a capacitive divider. The two inputs into the device are 
driven differentially by a square wave generated by an oscillator with 2 MHz frequency. Bridge 
excitation voltage is 5V and amplitudes of the square waves on each capacitor are equal but with  
180º phase difference. 
 
In stationary status, the values of the capacitors are equal to each other and two signals cancel each 
other at the common summing node. Therefore output voltage to the amplifier which is mean value of 
square wave (DC voltage), equals to zero. During acceleration, capacitance of two comb units changes 
oppositely. This produces a signal at the summing node which is proportional to the amount of 
deflection. Ultimately, amount of acceleration is measured based on output signal. 
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Fig. 8. Schematic view of sensor CMOS circuit.  
 
 

6. Fabrication and Packaging 
 
Designated fabrication process is standard surface micromachining with 1 µm pitch. Surface 
micromachined capacitive sensors have DC response and are inexpensive. They take advantage of 
fully established IC form factors for manufacturing process. This enables fabrication electrical 
measurement circuit on sensing chip which leads to a fully integrated system. 
 
Major fabrication processes as shown in Fig. 9 include: Deposition of silicon oxide layer on Silicon 
wafer with 2 µm thickness then photolithography of deposited layer. This process is done with 
“Plasma Enhanced Chemical Vapor Deposition” (PEPCVD) technique. Wafer itself is coated with 
very thin layer of silicon nitride (a). Etching and structuring of silicon oxide layer and deposition of 
polysilicon layer with previous method (PECVD) and 10 µm thickness (b). Photolithography of 
deposited polysilicon and then etching and structuring of mentioned layer with “Deep Reactive Ion 
Etching” (DRIE) process. This process enables etching of silicon structures with very high aspect ratio 
and total 10 µm thickness of structure can be achieved with this method. Last step includes wet 
chemical etching of sacrificial layer (silicon oxide) with hydrofluoric acid (HF) which completes 
fabrication of structure. Embedded etching holes enhance removal process of silicon oxide layer 
during this process (d). 
 
Packaging of the system begins with covering above of structure with Pyrex glass which along with 
substrate at the bottom restricts its vertical movements. Then all components are encapsulated and 
protected with resin. Further packaging procedures depends on sensor specific application and its 
location of installation. While selection of robust materials that could withstand imposed 
environmental tensions is essential for sensor proper functionality, it is demonstrated that its output 
voltage decreases slowly as Young's modulus or density of encapsulation resin increases [20]. 
 
Whole system including sensing chip and packaging, can fit in very small volume (e.g. 3 mm × 3 mm 
× 1 mm) based on mentioned parameters. Accelerometers unlike many other types of sensors such as 
pressure, chemical, etc. do not re1y on direct contact with sensing environment for their operation. 
This enables packaging to isolate the sensor completely from surroundings which ultimately enhances 
overall system’s durability and reliability. 
 
 

1

2

3
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Fig. 9. Microstructure fabrication processes. 
 
 
7. Response and Sensitivity 
 
Sensor sensitivity along X-axis is modeled with coupling of electrical circuit equivalent to mechanical 
sensor with integrated electrical circuit. Corresponding values for shuttle mass displacement and two 
comb units (A, B) capacitance in correlation with acceleration, are listed in Table 4. 
 
 

Table 4. Geometry and capacitance changes in correlation with acceleration. 
 

Acceleration 
(×1000 g) 

Displacement of 
Shuttle Mass 

(µm) 

Unit A- (pf)
Theory 

Unit A- (pf) 
Simulation 

Unit B-(pf) 
Theory 

Unit B- (pf)
Simulation 

10 1.399 0.1691 0.1759 0.1588 0.1657 
20 2.838 0.1760 0.1827 0.1539 0.1610 
30 4.318 0.1816 0.1880 0.1483 0.1555 
40 5.842 0.1854 0.1915 0.1425 0.1498 
50 7.411 0.1912 0.1969 0.1369 0.1443 
60 9.027 0.1973 0.2027 0.1309 0.1383 
70 10.693 0.2036 0.2086 0.1249 0.1323 
80 12.410 0.2102 0.2148 0.1187 0.1261 
90 14.181 0.2172 0.2214 0.1122 0.1195 

100 16.009 0.2250 0.2287 0.1058 0.1130 
110 17.896 0.2349 0.2381 0.0987 0.1056 
120 19.846 0.3332 0.3369 0.0918 0.0985 

 
 
For calculation of capacitance, empty spaces at corner of two parallel plates are taken into account in 
simulation method; therefore their results show slightly higher values in comparison with theory. Plot 
of output voltage versus acceleration is shown in Fig. 10; comb units simulation values are considered 
to obtain final results (output voltages). 
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Fig. 10. Output voltage vs. Acceleration. 
 
 

The results showed good linearity in 10-110 kilo-g range as shown in Fig. 10. Severe nonlinearity 
beyond 110 kilo-g, can be described by rapid growth of first unit’s capacitance (A) between  
110-120 kilo-g (41.8 % increase). Measured sensor sensitivity is found to be 16.75 µV.g-1 in  
10-110 kilo-g range. Comparison of proposed sensor with other five high-g accelerometers proves its 
very good performance among its counterparts; the results are shown in Table 5. 
 
 

Table 5. Comparison with other accelerometers. 
 

Sensor Measurement Range (kilo-g) Sensitivity (µV.g-1) 
Ref #8 2-200 1.43 
Ref #9 Up to 13.7 3 
Ref #10 Above 100  0.05-0.343 
Ref #11 Up to 10 32 
Ref #12 Up to 100 0.72 
Proposed 10-110 16.75 

 
 
8. Conclusion 
 
Capacitive-based sensors have been used to sense pressure, force, acceleration, and flow rate. They are 
attractive for High Tech applications because the device performance is largely dependent on 
geometry deformation rather than base material properties. A CMOS-MEMS accelerometer for 
measurements up 110,000 g with exceptional level of sensitivity is demonstrated. This feature realized 
with capacitive sensing mechanism based on two comb units with large flexibility. Linear behavior 
and sensitivity of 16.75 µV/g observed over 10-110 kilo-g shock range. Due to its small size, high 
sensitivity and resistivity against shock, presented sensor has variety of applications in extreme impact 
sensing. 
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