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Abstract: In order to provide precision and objective image quality measures (IQMs) for the low dose CT 
(Computed Tomography) images, various general IQMs need to be validated and analyzed. The IQM based on 
Markov Random Field (MRF) has not been check and validated by a comprehensive distorted database. First 
choose a standard distorted image database of LIVE (Laboratory for Image & Video Engineering) to validate 
and analyze the performance of various IQMs. Then assess various low dose phantom CT images by the IQMs. 
Experimental results show that the mutual information based on MRF is more obvious and precision than other 
measures to reflect the quality changes of the LIVE database and low dose CT phantom images. It can provide 
effective reference for quality assessment of low dose CT images. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction  
 

The CT (Computed Tomography) plays an 
important role in disease prevention and clinical 
diagnosis [1]. Compared with other imaging 
modalities, CT has the advantages of higher 
resolution and faster imaging. However, CT 
examination of the high-dose X-ray radiation may 
induce cancer, leukemia or other genetic diseases [2]. 
To mitigate this hazard, it is an efficient way to lower 
the dose level of the X-ray exposure. On the same 
time, the CT imaging quality degrades with the 
decrease of the X-ray exposure. How to maintain the 
diagnosis quality in the low dose CT images is the 
key point in the medical CT researching. The 
performance analysis of the image quality 

assessments can be used to validate and optimize the 
algorithms of image quality improvement on low 
dose CT images. 

The image evaluation methods can be categorized 
into two groups. One is subjective human evaluation, 
the other is objective measures [3, 4]. In the 
subjective human evaluation, the radiologists need to 
evaluate the images repeatedly. That is a costly, time-
consuming job. The evaluated result is vulnerable to 
the background knowledge, motivation and clinical 
experience for different radiologists. The observation 
may be affected by the observation distance, light 
conditions, effects of fatigue and other objective 
factors [5]. 

With respect to the subjective methods, objective 
quality assessment algorithms are simple, low cost, 
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easy to parse. In this paper, the objective assessment 
methods are discussed and analyzed only.  
The objective quality assessment algorithms  
are represented by many image quality measures 
(IQMs). The IQMs can be divided into two major 
groups: those based on the human visual system 
(HVS) and those based on arbitrary signal fidelity 
criteria [6]. 

The methods based on HVS are modeled by 
simulating its low-level structures in a bottom-up 
way. These researches are focused on how to  
enhance the consistency between objective  
evaluation of quality and the subjective one. Wei 
Xuehui [7] constructed respond functions  
based on the extracted perceived intensity, frequency 
and edges. He integrated these functions into an 
equation and established an image quality assessment 
mode1. 

However, HVS is an extremely complex system. 
Simulating the composition and structure of the HVS 
usually causes the high complexity and large amount 
of computation for the algorithms [8]. The  
HVS based algorithms did not outperform the widely 
used Mean Square Error (MSE), Peak Signal to Noise 
Ratio (PSNR) [9] and other error standard based 
metrics in the aspect of the overall performance.  

Among the objective image quality evaluation 
methods, MSE, PSNR, structural similarity  
(SSIM) [10], etc. are widely used. The methods such 
as MSE, PSNR are mainly based on the difference of 
gray-scale images between the distorted image and 
the original one. They only consider the images to be 
comprised of different isolated pixels. The spatial 
correlations between pixels are not taken into account 
in these methods. The relationship between the 
human visual characteristics and the pixels are 
ignored also. That leads to the poor consistency 
between subjective perception results and objective 
evaluated ones. Wang et al. [10] proposed SSIM after 
analyzing the limitations of HVS based methods. 
SSIM assess the image quality in three comparisons: 
luminance, contrast and structure. However, it fails to 
measure the blurred images with a lot of flat  
regions [11]. 

Espen Volden [12] proposed a clique-vector 
model by combining the mutual information theory 
and the Markov Random Field (MRF) to evaluate the 
image quality. He applied this metric to assess the 
redundancy between two images and achieve 
inspiring results. However, this index has not been 
tested and verified by a comprehensive  
image database yet. In this paper, the image  
database of the second edition established  
by the laboratory of image and video engineering 
(LIVE) provided by the University of Texas [13] is 
applied to test and validate the IQMs' performance. 
Espen's IQM is compared and analyzed with MSE, 
PSNR and SSIM. In order to analyze and evaluate the 
low dose CT images, all the IQMs in this paper are 
applied to assess the low dose phantom CT  
images, further. 

2. The Algorithms of Image Quality 
Assessment 
 

2.1. MSE 
 

The MSE can be expressed as:  
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where M, N are the height and the width of an image, 
respectively. f (x, y) and f' (x, y) are the intensity of 
coordinates (x, y) both in the reference and the test 
images, respectively.  

 
 

2.2. PSNR 
 

The PSNR can be expressed as: 
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where L is the maximum gray level of images. It is 
255 for eight bits images.  
 
 
2.3. SSIM 
 

The SSIM can be expressed as 
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where f, f' denote the reference image and the test 
image. l (f, f') represents the luminance comparison 
factor. c (f, f') denotes the contrast comparison factor, 
s (f, f') is the structure comparison factor. This model 
can be adjusted by the parameters α, β and γ, 
respectively. 

 
 

2.4. The Mutual Information I 
 

The mutual information I can be expressed as  
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(4) 

 

where f, f' represent the reference and the test images, 
also. The pixels can take value g from the set Λ. For 
images with eight bits, Λ = {0, 1, 2, 3,..., 254, 255}. 
hf (•) is the normalized histogram of the image f.  
hff' (•) is the normalized joint histogram between 
images f and f'. P (•) denotes the probability. H (f) 
represents the entropy of the image f. H (f|f') is the 
conditional entropy between f and f'. 
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2.5.  The MRF Based Mutual Information 
IMRF 

 
Since the pixels of an image are not isolated, they 

correlate with each other in a neighborhood. The 
MRF can be used to analyze the correlation between 
physical phenomena in space or time. Therefore, 
MRF was applied to analyze the correlation in the 
pixels neighborhood.  

IMRF can be depicted as  
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(5) 
 
where f, and f' are the reference and the test images, 
respectively. Vs is the neighborhood of the s pixel, 

denoted by a vector 1( ,..., )vg g g=


. The other symbols 
are similar to Eq. (4). The nearest four neighbors of s 
are considered in this paper. 
 
 
3. Experimental Results and Discussions  
 

Without loss of generality, the LIVE standard 
database of images in the second version provided by 
University of Texas is applied to analyze the 
performance of IQMs in this paper. In the image 
database, images from different scenes are shown in 
original and the corresponding distorted ways. For 
each of the image, a subjective difference score 
DMOS (Difference Mean Opinion Scores) was 
provided. Researchers can check the IQMs' 
performance by comparing their values and the 
corresponding DMOS. The white noise, fast fading 
and Gaussian blur images in LIVE database are 
applied in this paper. One of the original and the 
corresponding distorted images in the database are 
shown in Fig. 1. 

Generally speaking, it is acceptable for IQMs to 
stably predict subjective quality with a nonlinear 
mapping [14]. In fact, this nonlinear mapping is 
allowed in the testing and validating experiments of 
Video Quality Experts Group (VQEG) [15, 16]. The 
logarithm mapping is applied in this paper. 

According to the standard of VQEG, four 
objective performance metrics are applied to evaluate 
the performance of IQMs. They are correlation 
coefficient (CC), mean absolute error (MAE), root 
mean square error (RMSE) and outlier ration (OR). 
The larger of the CC value, the higher correlation 
between the nonlinear mapped IQM and the DMOS. 
The values of MAE and RMSE represent the residual 
error between the nonlinear mapped IQMs and 
DMOS. The smaller of MAE and RMSE, the higher 

performance of the IQM. The OR value denotes the 
consistency between the mapped IQMs and DMOS. 
The smaller of OR, the better of the IQM. In order to 
show the relationship between the mapped IQMs and 
DMOS in detail, scatter maps are drawn in this paper, 
also. 

 
 

 
(a) Original reference image 

 

 
(b) Distorted by white noise 

 

 
(c) Distorted by fast fading 

 

 
(d) Distorted by Gaussian 

noise 
 

Fig. 1. Certain images of original reference  
and distorted images. 

 
 
3.1.  Experiments for the Distorted Images  

by White Noise 
 
There are 145 images in the database of white 

noise. Their experimental results are shown  
in Table 1. The parameters of SSIM are the same to 
Ye's settings [17]. In Table 1, the CC value between 
mutual information I and the DMOS is 0.9659. It is 
larger than all the value of MSE, PSNR and SSIM. 
For the values of MAE, RMSE and OR, the I values 
are less than MSE, PSNR and SSIM. That means the 
evaluated results of I are closer to the subjective 
results DMOS. This indicates that it is effective to 
evaluate the image quality from the information 
theory aspect. After introducing the clique-vector 
model to the I, the correlations among the 
neighborhood influence the value of the mutual 
information obviously, i.e. IMRF. It leads to that the 
CC value of IMRF is biggest and it is closest to the 
DMOS. This validates that it is more accurate to use 
the IMRF to assess the image quality in the distorted 
database by the white noise. 

 
 
Table 1. CC, MAE, RMSE and OR values between 

nonlinear mapped IQMs and DMOS for the distorted 
database by white noise. 

 
Model CC MAE RMSE OR 

MSE 0.8528 6.7814 8.3373 0.0601 

PSNR 0.8778 6.2497 7.6486 0.0547 

SSIM 0.8747 6.5101 7.7392 0.0488 

I 0.9659 3.5100 4.1357 0.0395 

IMRF 0.9752 2.8434 3.5372 0.0332 
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3.2.  Experiments for the Distorted Images  
of Fast Fading 

 
There are 145 images in the distorted database of 

fast fading, also. The CC, MAE, RMSE and OR 
values between the mapped IQMs and DMOS are 
shown in Table 2. In Table 2, the CC value of IMRF is 
larger than the rest of the CC values of other IQMs. 
The MAE, RMSE and OR values of IMRF are 6.9105, 
8.4250 and 0.0414, respectively, which are the lowest 
ones after comparing to the rest of the IQMs. All the 
CC, MAE, RMSE and OR values of IMRF show that 
the evaluated results of IMRF are closest to the 
subjective human evaluation in the distorted database 
of fast fading, also. 

 
 
Table 2. CC, MAE, RMSE and OR values between 

nonlinear mapped IQMs and DMOS for the distorted 
database by fast fading. 

 
Model CC MAE RMSE OR 
MSE 0.8119 7.4571 9.6026 0.0598 
PSNR 0.8290 7.0825 9.1995 0.0554 
SSIM 0.8360 7.0533 9.0872 0.0476 

I 0.8241 7.4442 9.3181 0.0498 
IMRF 0.8589 6.9105 8.4250 0.0414 

 
 

3.3.  Experiments for the Distorted Images  
of Gaussian Blur 

 
The calculated results of the five IQMs based on 

the distorted database of Gaussian blur are shown in 
Table 3. According to Table 3, similar results that the 
IMRF outperforms the other four IQMs can be 
achieved for the distorted database of Gaussian blur. 

 
 
Table 3. CC, MAE, RMSE and OR values between 

nonlinear mapped IQMs and DMOS for the distorted 
database by Gaussian blur. 

 
Model CC MAE RMSE OR 
MSE 0.7197 8.9574 10.9167 0.0493 
PSNR 0.7291 8.7886 10.7631 0.0465 
SSIM 0.6446 9.9057 12.0204 0.0523 

I 0.6634 9.6715 11.7654 0.0514 
IMRF 0.7565 8.4070 10.7631 0.407 

 
 

3.4.  Discussions for all Databases and all 
IQMs 

 

The scatter plots of the results for all 3 databases 
and all 5 IQMs are shown in Fig. 2. In Fig. 2, the 
black curve represents the nonlinear mapping of the 
IQMs' values base on white noise dataset. The purple 
circles, red stars and blue pluses are the IQMs' values 
based on the white noise, Gaussian blur and fast 
fading datasets, respectively. 

In Fig. 2(a) and Fig. 2(b), the values of MSE and 
PSNR increase or decrease when the subjective 
scores of DMOS increase. However, the points 

appear a little divergent. That shows the MSE and 
PNSR care reflect the image quality variation 
basically. 

In Fig. 2(c), the SSIM values decrease when the 
subjective scores of DMOS increase. The SSIM 
values distribute in the region near to the fitted black 
curve, especially for the distorted database of white 
noise. However, the SSIM values fail to follow the 
changing trends of the subjective score DMOS for 
the database of Gaussian blue and fast fading.  That 
agrees with Yang's [11] results: SSIM failed to 
measure the blurred images with a lot of flat regions. 

Among these five scatter plots, the varying of 
IMRF shows more consistent to the changing of 
DMOS. That means the calculated results of IMRF are 
more consistent with the subjective human 
evaluation. It indicates that it is effective and accurate 
to evaluate the image quality by introducing the MRF 
to the mutual information.  

 
 

4. Experiments on Low Dose CT Images  
 

In order to validate the performance of the IQMs 
on medical low dose CT images, the low dose CT 
phantom images are tested in this paper, further. The 
CT phantom images were created by a 64-row dual-
source computed tomography system (Somatom 
Definition 2008G; SIEMENS). The helical scanning 
was under the following conditions: tube voltage of 
120 kV, tube current of 420 mA, image slice 
thickness of 1 mm, and the field of view of 374 mm 
with a reconstruction function of B30f. The CT 
phantom Images with five X-ray dose levels were 
created under the X-ray exposure: 350, 280, 210, 140 
and 70 mAs. They are corresponding to the 100, 80, 
60, 40 and 20 % dose level. In Fig. 3, images in the 
same slice from different dose level datasets are 
shown. In the low dose phantom image, there are five 
circles varies from 30 mm to 60 mm in diameter. The 
contents inside each circle corresponds to the air, 
bone, calcified material, parenchyma and fat 
materials in a clockwise manner. 

The MSE, PSNR, SSIM, I and IMRF are applied to 
evaluate the low dose phantom CT images. The 
calculated results are shown in Table 4. In Table 4, 
the PSNR value increases from 60.0 to 70.5 when the 
X-ray dose level increases from 20 % to 80 %. The 
variation of PSNR value reflects the change of image 
quality in the isolated pixels aspect.  

 
 

Table 4. Calculated results of IQMs based on low dose  
CT phantom images. 

 

Model 
Dose  
20 % 

Dose  
40 % 

Dose  
60 % 

Dose 
80 % 

MSE 1074.4 614.9 467.1 385.3 
PSNR 66.0 68.4 69.6 70.5 

SSIM 0.99963 0.99982 0.99987 0.9999 

I 1.9889 2.1105 2.1793 2.2230 

IMRF 2.1502 2.3004 2.3687 2.5103 
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(a) MSE versus DMOS 
 

 

(b) PSNR versus DMOS 
 

 

(c) SSIM versus DMOS 
 

 

(d) I versus DMOS 
 

 

(3) IMRF versus DMOS 
 

Fig. 2. Scatter plots of the five IQMs for the different 
distorted databases. 

The mutual information I increase from 1.9889 to 
2.2230. It reflects the changes of image quality in the 
information theory aspect. The value of IMRF 
increases from 2.1502 to 2.5103 when the clique-
vector model of MRF is introduced. The changing 
interval is enlarged from 0.2341 of I to 0.3601 of 
IMRF. The value of SSIM remains almost unchanged 
when the X-ray dose level changes from 20 %  
to 80 %. In this sense, the IMRF outperforms I and 
SSIM when evaluating the image quality of low dose 
CT dataset by introducing the local correlation. 

 
 

 

(a) Dose 100 % 

 

(b) Dose 20 % 

 

(c) Dose 40 % 

 

(d) Dose 60 % 

 

(e) Dose 80 % 

Fig. 3. The phantom CT images imaged  
in different dose levels. 

 
 

5. Conclusions  
 
In this paper, the LIVE databases and the 

phantom CT images created in different X-ray dose 
levels are applied to analyze and validate different 
IQMs: MSE, PSNR, SSIM, I and IMRF. The 
experimental results show that MSE, PSNR, SSIM 
and I can reflect the variations of the common 
images. However, they did not consider the local 
correlations of images. Therefore, their values of CC, 
MAE, RMSE and OR between them and DMOS are 
poorer than that of IMRF. In the experiments based on 
low dose phantom CT images, the changes of IMRF 
can reflect the variation of image quality more 
accurately along with the changes of the X-ray dose 
level. It can evaluate the low dose CT images as an 
effective reference. 
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