Contents

Volume 95
Issue 8
August 2008

www.sensorsportal.com
ISSN 1726-5479

<table>
<thead>
<tr>
<th>Research Articles</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Uncertainties in the Experimental Field</td>
<td>1</td>
</tr>
<tr>
<td>M. T. Restivo and C. Sousa</td>
<td></td>
</tr>
<tr>
<td>Potential Applications of Optical Fiber Based Distributed Sensor in Different Environment</td>
<td>13</td>
</tr>
<tr>
<td>Deepika Yadav and A. K. Nadir</td>
<td></td>
</tr>
<tr>
<td>Acoustic Wave Parameter Extraction with Application to Delay Line Modelling Using Finite Element Analysis</td>
<td>26</td>
</tr>
<tr>
<td>Ajay Tikka, Said Al-Sarawi and Derek Abbott</td>
<td></td>
</tr>
<tr>
<td>Optical Tomography Imaging in Pneumatic Conveyor</td>
<td>40</td>
</tr>
<tr>
<td>Ruzairi Abdul Rahim and Chan Kok San</td>
<td></td>
</tr>
<tr>
<td>Ultrasonic Obstruction Detection and Distance Measurement Using AVR Micro Controller</td>
<td>49</td>
</tr>
<tr>
<td>Satish Pandey, Dharmendra Mishra, Anchal Srivastava, Atul Srivastava, R. K. Shukla</td>
<td></td>
</tr>
<tr>
<td>A Low-cost, PC Interfaced Multipurpose Temperature Controlling System</td>
<td>58</td>
</tr>
<tr>
<td>Tanmoy Maity, Amritesh Chatterjee, Sujay Chandra</td>
<td></td>
</tr>
<tr>
<td>Comparative Performance of Two Fiber Optic Ammonia Sensors Employing Different Sensing Materials</td>
<td>65</td>
</tr>
<tr>
<td>Jinesh Mathew, V. V. Mahesh and P. Radhakrishnan</td>
<td></td>
</tr>
<tr>
<td>Poly (vinyl chloride) Based Ion Selective Electrode for Determination of Zr (IV) Ions Based on 2, 6-Dibenzyldienecyclohexanone</td>
<td>72</td>
</tr>
<tr>
<td>Syed A. Nabi, Aabid H. Shalla</td>
<td></td>
</tr>
<tr>
<td>Resistive Ammonia Gas Sensor Based on Non-stoichiometric Copper Sulfide Thin Films</td>
<td>81</td>
</tr>
<tr>
<td>Abhay A. Sagade and Ramphal Sharma, Rajaram S. Mane and Sung-Hwan Han</td>
<td></td>
</tr>
<tr>
<td>PVC Based Membrane of Ti(IV) Iodovanadate for Pb(II) Determination</td>
<td>86</td>
</tr>
<tr>
<td>Mu. Naushad</td>
<td></td>
</tr>
<tr>
<td>Electrochemical DNA Biosensor for Detection of Aqueous Toxicants</td>
<td>97</td>
</tr>
<tr>
<td>B. Kuswandi and F. Sevilla III</td>
<td></td>
</tr>
<tr>
<td>Development of Portable Phonocardiographic Fetal Heart Rate Monitor</td>
<td>108</td>
</tr>
<tr>
<td>Jianfeng Chen, Koksoon Phua, Ying Song</td>
<td></td>
</tr>
<tr>
<td>Model Based Tuning of Controller for an Aerobic System</td>
<td>128</td>
</tr>
<tr>
<td>J. Sumathi, S. Sundaram</td>
<td></td>
</tr>
<tr>
<td>Photogrammetric Resection Approach Using Straight Line Features for Estimation of Cartosat-1 Platform Parameters</td>
<td>134</td>
</tr>
<tr>
<td>Nita H. Shah, B. Islam And B. Gopala Krishna</td>
<td></td>
</tr>
</tbody>
</table>

Authors are encouraged to submit article in MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com
Please visit journal’s webpage with preparation instructions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm

International Frequency Sensor Association (IFSA).
Poly (vinyl chloride) Based Ion Selective Electrode for Determination of Zr (IV) Ions Based on 2, 6-Dibenzylidenecyclohexanone

*Syed A. Nabi, Aabid H. Shalla
Department of chemistry, Aligarh Muslim University, Aligarh, U.P., India
E-mail: sheenf@gmail.com

Received: 14 June 2008 /Accepted: 15 August 2008 /Published: 25 August 2008

Abstract: A selective poly (vinyl chloride)-based membrane sensor using 2,6-Dibenzylidenecyclohexanone as an ionophore have been prepared and explored as Zr (IV) selective electrode. The sensitivity, working range and response time shows a significant dependence on the concentration of ionophore. The electrode prepared with 100 mg of PVC, 10 mg of ionophore and 5 ml of dibutylthylate shows the best performance. The electrode works well in the concentration range of $1 \times 10^{-1}-5 \times 10^{-5}$ with a nernstian slope 55 ± 2 eV and response time of 18 seconds. The sensor works well over the pH range 3-6. The sensor can be used for the period of over 1 month with out deviation in response characteristics. The selectivity of the electrode was studied and it was found that the electrode exhibited good selectivity for zirconium (IV) over some alkaline earth metal ions. The electrode was also used as indicator electrode for potentiometric titration of Zr (IV) ions against EDTA solution. Copyright © 2008 IFSA.

Keywords: Ion selective electrode, Zirconium (IV), Poly (vinyl chloride)

1. Introduction

Detection of the metal ions has been the always of interest in analytical chemistry and different methods have been employed for detection such as atomic absorption, spectrophotometry, ICPMS and others but, the use of ion selective electrode has attracted much attention for the detection of the particular metal ion in presence of other metal ions. It is considered as versatile analytical tool and recommended widely for quick, easy to use, non-destructive and allow accurate determination of chemical species at relatively low level. The rapid growth in use of ion selective electrode has led to a
search for suitable materials that can be used for preparation of sensitive and selective ion-sensors, chemical sensors or more commonly ion-selective electrodes (ISEs). There is continuous research work going for the synthesis of ions selective membrane electrodes for determination of heavy metal ions such as Cu(II), Pb(II), Th(IV), Hg(II), Cd(II) and Ni(II) [1-6]. Significant number of ionophores including crown ethers, cryptands, aza-crowns and thiocompounds and ion exchangers have been exploited for fabrication of poly(vinyl chloride) (PVC) membrane electrodes for series of alkali, alkaline earth, transition and heavy metal ions [7-12].

The present work reports the synthesis of poly (vinyl chloride) based ion selective electrode using 2, 6-Dibenzylidenecyclohexanone as an electro-active material for determination of Zr(IV) ions. Zirconium is used in alloys such as zircaloy, which is used in nuclear applications and in catalytic converters, percussion caps and furnace bricks. Though zirconium is not noted for toxicity yet it is important to monitor the concentration of Zr (IV) ions. The zirconium dust can ignite in air and should be regarded as a major fire and explosion hazard.

2. Experimental

2.1. Reagents and Instruments

Poly(vinyl chloride), dioctylthylate, all other reagents used were of analytical grade. Elico L 610 pH meter was used for pH measurements and digital Potentiometer EI 118 for potential measurements.

2.2. Synthesis of the Ionophore

The compound 2, 6-Dibenzylidenecyclohexanone was synthesized as described elsewhere [13]. In a 125 mL Erlenmeyer flask are placed the ketone (1 mL), the aldehyde (4 mL), 95 % Ethanol (20 mL), and 2 N aqueous sodium hydroxide (15 mL). The flask is stirred at room temperature until no more precipitate is observed. The product was heated on steam bath for 15 min and then allowed to cool at room temperature. The flask is then cooled in ice and the product is collected by suction filtration. The crude product is washed consecutively with 10 mL portions of (1) 95 % ethanol, (2) 4 % acetic acid in 95 % of ethanol and (3) 95 % ethanol. The product is dried and used as such for further studies.

2.3. Preparation of Master Membrane

The ionophore was mixed thoroughly with PVC (1.0g) dissolved in 15 ml of THF and 5 ml of dibutylthylate was also added to it. The mixing ration of the ion-exchanger was varied with the fixed quantity of the PVC. The resulting solutions were carefully poured on the glass plate and left for overnight evaporation. In this way master membrane of different thicknesses were obtained which were then cut into small discs for fabrication of electrode.

2.4. Preparation of Ion-selective Electrode

A 12 mm disc was cut from the master membrane (M-1) and glued to one end of the Pyrex glass tube. The glass tube was filled with 0.1 M ZroCl₂ solution used as internal solution. The membrane was equilibrated for 3 days in a 0.1 M ZrOCl₂ solution and for one hour at least before use for the potential measurements. Test solutions were prepared by gradual dilution of the stock solution. Potential measurements were performed at 25±2 °C using the digital potentiometer (EI) 118. The electrochemical representation of the cell is given as
The detection limit, slope response curve, response time and working pH range of the electrode were evaluated to study the characteristics of the electrode.

3. Characteristics of the Membrane

3.1. Water Content

The conditioned membrane was put in the dimineralized water to elute out the diffusible salts dried with whattman paper remove excess of the moisture on the surface of membrane. The membrane was then dried in the oven at 50±2 °C for 24 hours. The water content was calculated as

\[\% \text{ Total wet weight} = \frac{W_w - W_d}{W_w} \times 100 \]

where \(W_w \) – weight of the wet membrane, \(W_d \) – weight of dry membrane.

3.2. Response Time

The response time of the electrode was measured by recording the potential at different intervals of time (after every 4 seconds) till the potential attains the constant value. Initial potential was measured at zero seconds, just immediately after dipping the electrode in the solution of 10-fold higher concentration.

3.3. Thickness of the Membrane

Thickness of the membrane was measured as average thickness of the membrane measured with screw gauge.

3.4. Effect of pH

The value of electrode potential was measured at different pH (1-8) for the constant ion concentration of \(1 \times 10^{-2} \) M ZroCl\(_2\).

3.5. Selectivity Coefficients

One of the most important characteristics of the ion-selective electrode is its response to foreign ions discussed in terms of selectivity coefficient \(K_{ij} \). Different methods are employed but for the present sensor we used the Matched Potential Method for determination of selectivity coefficient. The method is independent of the Nicolsky-Eisemann equation hence the limitations suffer in terms of values for unequal charges are prevented. In this method we measure the potential of primary ion on addition of it to reference solution and the in separate experiment we measure the potential of interfering ion on successively addition of it to reference solution until the potential matched the one obtained before, by adding of primary ion.
3. Results and Discussion

Ion selective electrodes had attracted much attention during the recent times and have been employed for the determination of trace amount of elements. Here in this paper we report the zirconium selective electrode. The compound 2, 6-dibenzylidenecyclohexanone used as ionophore was synthesized as described earlier the scheme for the synthesis is given in Fig. 1. Three different membranes were prepared by varying the amount of ionophore in ionophore-PVC mixture. It was observed that increasing the amount of ionophore a slight increase in the thickness of the membrane accompanied with increase in response time (Table 1). The concentration range over which the electrode shows linear range is also effected by the concentration of ionophore in mixture. On the basis of quick response time and linear concentration range membrane M-1 was selected for further studies. The potential response of the electrodes was measured over the concentration range of 1×10^{-1}-1×10^{-8} M of Pb^{2+} ion. The Fig. 2 reveals that the concentration range as well as detection limit varies with change in composition of the membrane. The best result was obtained for the membrane M-1. Fig. 3 gives the calibration graph for the membrane 1. The limit of detection determined by intersection of two extrapolated segments of calibration graph was 5.0×10^{-5} M. The electrode shows quick response time of 18 seconds on changing the concentration from 10^{-1}-10^{-2} M after which the potential becomes constant (Fig. 4). The sensor was tested over the period of 1 month to investigate its stability, during which calibration graph was plotted from time to time. No change was observed in working concentration range, slope and response time. However it is necessary to keep the membrane dipped in 0.1 M ZroCl₂ when not in use. The effect of pH on electrode response was studied in the range of 1-8 using 1×10^{-2} M ZroCl₂ solutions, adjustment of pH were done with dilute hydrochloric acid or ammonia. The response of the sensor was significantly affected by pH as sharp changes in electrode potential below pH 3 as well as above pH 6 were observed (Fig. 5). The reason for this behavior may be due to formation of hydroxides at high pH, which decreases the response, and at low pH the electrode responded to H^+ ions results in higher potential. Hence the most suitable pH range for the sensor is between pH 3 and pH 6. The thickness of the membrane was measured with micrometer and all the three membranes were approximately of same thickness. The thickness of the membrane (M-1) was found to be 0.28 mm and the % water content of the wet membrane (M-1) was found 0.032.

![Fig. 1. Synthesis of 2, 6-Dibenzylidenecyclohexanone.](image)

<table>
<thead>
<tr>
<th>Membrane sample</th>
<th>Composition of membrane</th>
<th>Thickness (mm)</th>
<th>Concentration range</th>
<th>Response time (sec)</th>
<th>Slope (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>10</td>
<td>0.28</td>
<td>1×10^{-1} - 5×10^{-5}</td>
<td>18</td>
<td>55</td>
</tr>
<tr>
<td>M-2</td>
<td>20</td>
<td>0.30</td>
<td>1×10^{-1} - 1×10^{-4}</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>M-3</td>
<td>30</td>
<td>0.33</td>
<td>1×10^{-1} - 1×10^{-4}</td>
<td>25</td>
<td>45</td>
</tr>
</tbody>
</table>
Fig. 2. Calibration curve for the membrane electrode.

Fig. 3. Variation of membrane potentials with different amount of ionophore.
Fig. 4. Response of the electrode at different time intervals.

Fig. 5. Effect of pH on electrode response.

The most important feature of the sensor is its selectivity towards primary ion against the foreign ions. The selectivity coefficients for different divalent metal ions towards the Zr$^{4+}$ sensor were determined. It is apparent from the Table 2 that the values determined in range of 10^{-3}, less than unity hence the sensor prepared is selective towards Zr$^{4+}$ ions in presence of other interfering ions listed in Table 2. Response of the electrode towards various divalent metal ions shows (Fig. 6) that the electrode is selective towards zirconium (IV) ions as compared to other divalent ions. The practical utility was
explored by carrying the potentiometric titrations of the 0.01M ZrOCl₂ against 0.01 M EDTA solution as titrant using the sensor as indicator electrode. The potential was recorded after addition of every 0.5 mL of EDTA solution to 5 mL of 0.01M ZrOCl₂ diluted to 20 mL with demineralized water. The addition of EDTA decreases the potential as a result of decrease in free Zr⁴⁺ ions due to formation of complex with EDTA. The amount of Zr⁴⁺ ions can be accurately determined by titration curve (Fig. 7) providing sharp endpoint.

<table>
<thead>
<tr>
<th>Interfering ions</th>
<th>Selectivity coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg²⁺</td>
<td>1.2× 10⁻⁴</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>2.1× 10⁻³</td>
</tr>
<tr>
<td>Sr²⁺</td>
<td>1.6× 10⁻³</td>
</tr>
<tr>
<td>Ba²⁺</td>
<td>2.2× 10⁻²</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>3.2× 10⁻⁵</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>1.2× 10⁻²</td>
</tr>
<tr>
<td>Cd²⁺</td>
<td>1.1× 10⁻⁴</td>
</tr>
<tr>
<td>Hg²⁺</td>
<td>2.5× 10⁻³</td>
</tr>
</tbody>
</table>

Table 2. Selectivity coefficients for Zr⁴⁺ selective electrode for various interfering ions.

![Fig. 6. Potential responses of ion-selective electrode based on 2,6-Dibenzylidenecyclohexanone for various metal ions.](image-url)
Fig. 7. Precipitation titration of Zr$^{4+}$ against EDTA solution.

References

2008 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved. (http://www.sensorsportal.com)
Aims and Scope

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and application specific papers, short notes, letters to Editor and sensors related books reviews as well as academic, practical and commercial information of interest to its readership. Because it is an open access, peer review international journal, papers rapidly published in Sensors & Transducers Journal will receive a very high publicity. The journal is published monthly as twelve issues per annual by International Frequency Association (IFSA). In additional, some special sponsored and conference issues published annually.

Topics Covered

Contributions are invited on all aspects of research, development and application of the science and technology of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- Sensors interfaces, buses and networks;
- Signal processing;
- Frequency (period, duty-cycle)-to-digital converters, ADC;
- Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Submission of papers

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 6-14 pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word (doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript are available from the journal’s webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors must follow the instructions strictly when submitting their manuscripts.

Advertising Information

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit: http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2008.pdf
General Information
This course is suitable for engineers who design different digital and intelligent
sensors, data acquisition, and measurement systems. It is also useful for researchers,
graduate and post graduate students. Course will be taught in English.

Course Description
An advanced engineering course describes modern developments and trends in
the field of smart sensor systems and digital sensors design.

After a general overview of data acquisition methods, modern smart, digital and
quasi-digital sensors, smart systems details are discussed. A systematic approach
towards the design of low-cost high-performance smart sensors systems with
self-adaptation and self-identification possibilities is presented.

Contact Person
Susana Escriche
Fundació UPC, Edifici Vèrtex
Plaça Eusebi Güell, 6, 08034 Barcelona
Tel.: +34 93 401 08 94
E-mail: susana.escriche@fundacio.upc.edu

Course Instructor
Prof. Sergey Y. Yurish,
Centre de Disseny d’Equips Industrials (CDEI),
Universitat Politècnica de Catalunya (UPC-Barcelona)
Tel.: +34 93 401 74 37, fax: +34 93 401 19 89
E-mail: syurish@sensorsportal.com

Online Registration:
Deadline for Registration:
31 October, 2008

www.sensorsportal.com