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Abstract: Piezoelectric thin films have been used to visualize back surface flaws in plates. If the plate 
with a surface flaw is deformed, the strain distribution appears on the other surface reflecting the 
location and the shape of the flaw. Such surface strain distribution can be transformed into the electric 
potential distribution on the piezoelectric film mounted on the plate surface. This paper deals with a 
NDE technique to estimate the depth of a back-surface flaw from the electric potential distribution on a 
laminated piezoelectric thin film. It is experimentally verified that the flaw depth can be exactly 
estimated by the peak height of the electric potential distribution. Copyright © 2009 IFSA. 
 
Keywords: piezoelectricity, polyvinylidene fluoride (PVDF), NDE, flaw detection, sizing technique 
 
 
 
1. Introduction 
 
Conventional nondestructive evaluation (NDE) techniques for flaw detection utilize instruments which 
transmit/receive some kinds of energies into/from the objects. In order to inspect a region of the object, 
we should scan the probe or the direction of the energy emission by an additional mechanism. In order to 
estimate the shape or the size of a flaw, some kind of signal processing of receiving data is required. On 
the other hand, flaw inspection technique using mounted piezoelectric thin film enables us to inspect a 
region of the object without emitting energies into the object. Piezoelectric material induces the electric 
voltage when it is deformed. When a material with a flaw is subjected to the stress, the strain distribution 
occurs around the flaw. If we attach a piezoelectric thin film onto the surface of a plate, the strain 
distribution generated by the flaw can be measured from the potential distribution on the film even in the 
case of a back-surface flaw. Egashira et al [1] measured the local strains in notched plates in tension 
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from the potential distribution of mounted polyvinylidene fluoride (PVDF) film. Matsumoto et al [2] 
have shown that the location and the apertural shape of a back surface flaw can be identified by PVDF 
film attached onto the plate. Chishiki et al [3] achieved the isotropic sensitivity and inspection ability of 
the film by laminating two PVDF films. 
 
For effective maintenance of the structural safety, lifetime prognostic is important as well as diagnosis of 
the structural health. Exact prognostic requires the sizing of flaws more than their detection. Among 
nondestructive sizing techniques proposed up to now, ultrasonic techniques have been most widely used 
because of their reliability and practicality [4]. On the other hand, other NDE techniques are also 
expected to be applied to the sizing of flaws which cover shortcomings of the ultrasonic techniques  
[5, 6]. 
 
From the above back ground, this paper considers the sizing of the flaws by NDE techniques using 
PVDF film. That is, we try to estimate the depth of a back-surface flaw from the electric potential 
distribution on laminated PVDF film. We prepare a thicker film for high sensitivity and laminate two 
films for isotropic sensitivity. In order to obtain the reference data for the depth estimation, we 
numerically calculate the potential distributions on the laminated film for various depths of flaws. The 
potential distribution on the film along a line takes a peak at the back position of a flaw, which can be 
approximated by an elementally function. From the simulated result, we shall present an evaluation 
formula to estimate the flaw depth from a parameter of the approximated potential distribution. It is 
verified that the estimated depths of artificial flaws are in good agreement with the actual ones. 
 
 
2. Relation of Electric Potential and Strain of PVDF Film 
 
Throughout the paper we assume that the deformation of the specimen and the piezoelectricity of the 
PVDF film are not large within the ranges of linear responses. According to [7] and [8], the linear 
constitutive equations of piezoelectric materials are given by 
 
 

EecST
EeSD
T−=

+= ε
, (1)

 
where D is the electric displacement, E the electric field, S the strain tensor, T the stress tensor, ε the 
electric permeability tensor at fixed S, c the elastic coefficient tensor at fixed E, and e the piezoelectric 
coefficient tensor of third order. Henceforth symmetric tensors of the second order such as S and T are 
expressed in Voigt notation, i.e., the independent components of a symmetric tensor are expressed as a 
vector of the six-dimensional space by replacing indices as (11)→(1), (22)→(2), (33)→(3), (23)→(4), 
(31)→(5) and (12)→(6).  
 
Let coordinates x1 and x2 lie on the film surface and x1 axis coincide with the rolling direction of the film. 
One surface of the film is covered by an electrode layer and no true charge exists in the film. When the 
film is deformed, from the Maxwell equations and the above conditions we have D3=0, E1=E2=0. Since 
the film is sufficiently thin (30 or 40 µm), we can assume that the out-of-plane stress in the film 
vanishes; T3= T4 =T5=0. Substituting the above conditions into the constitutive equations (1), we obtain 
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Eliminating S3 in the above equations and rearranging the result by use of the electromechanical 
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coupling constant kt , we have, 
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Equation (3) can be solved for E3 as 
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Here we have put 
 
 ( ) ( )2,13333333 =−=′ keccee kkk  . (5)
 
Let d denote the thickness of the film and suppose that the electrode surface of the film is grounded. 
Then from (4) the voltage on the film surface can be expressed in terms of the plane strain components at 
each point of the film [9]. 
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electrode
: polarization

θ

y axis

x axis

x3

PVDF film

structure surface

x1

x2

 
 

Fig. 1. Coordinate systems in PVDF film and structure. 
 
 
We next consider that the PVDF film is attached to the plane surface of a structural material by insulate 
adhesive. Since the film is thin and the rigidity of PVDF film is very small compared with the structural 
material, the plane strain components at each point of the film coincide with the surface strain 
components at the same point of the object. Let alternate coordinate axes x and y be set on the object 
surface and θ denote the angle between x1 and x axes of two coordinate systems, respectively, in the film 
and the object. Then the strain components S1 and S2 in the coordinate axes x1 and x2 are expressed in 
terms of the strain components Sx, Sy and Sxy in the coordinate axes x and y as 
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Substituting the above equations into (6), we have 
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In general, the right hand side of the above equation depends on the angle θ. In special cases θ=0° and 
θ=90°, the contribution of the shear strain vanishes in (8) to yield 
 
 yx SpSpV 21)0( +=°  (9)
 
 yx SpSpV 12)90( +=°  . (10)
 
Here coefficients p1 and p2 are given by 
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refer to [9]. Thus, in these special cases the shear stress component does not influence to the induced 
voltage of the film. We next consider a laminated film and derive the relation between the induced 
voltage on the film and the strain components. We attach a single layer film on the object surface in a 
similar manner to the previous discussion and laminate another film without electrode layer onto the 
original film. The voltage on the top surface of the laminated film is given by the sum of the voltages of 
two films at each point. If the polarization directions of both films are the same and the rolling directions 
of both films make angle 90°, the voltage on the top surface of the laminated film is given by replacing  
θ with θ+90° in (8) and add the result to (8): 
 
 ( ) ( ) ( ) ( )( )yx SSppVVV ++=++= 2190 oθθθ  , (12)
 
which implies that the induced voltage of the above laminated film does not depend on the angle θ. In 
other words, the distribution of the electric potential on the film surface does not depend on the mounting 
direction of the film. This prediction was experimentally verified by Hashimura et al [10]. It is also seen 
from (12) that the induced voltage is proportional to the sum of the principal plane strain components. 
Note that the induced voltage on the surface of a single or a laminated film depends on the local strain at 
each point of the object, so that the potential distribution on the film surface corresponds to the surface 
strain distribution of the object. 
 
 
3. Determination of Coefficients in Strain-Voltage Relation 
 
Coefficients p1 and p2 in (11) can be determined by the uniaxial tension test for a specimen mounted on 
PVDF film. That is, we attach a film onto an acrylic specimen and apply the uniaxial stress parallel or 
perpendicular to the rolling direction. We have used PVDF films with 30 µm thickness in the previous 
studies, but the sensitivity of PVDF film should be improved for precise qualitative estimation of flaw 
size. Thus in this paper we use another commercial PVDF films with 40 µm thickness. In view of (11), 
coefficients p1 and p2 are proportional to the film thickness if the material properties are the same. 
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However the effects of rolling and poling during processing to the film properties may be different for  
30 µm and 40 µm thicknesses, so that we measure the above coefficients for PVDF films with both 
thicknesses by tension test along x1 and x2 axes of the coordinates system in the film. 
 
We also verify that the coefficients p1 and p2, that is, the sensitivity of PVDF film does not depend on the 
characteristic of the object material mounted on PVDF film. In experimental verification of NDE 
technique by PVDF film, high polymer material acrylic has been used as the object material from the 
following reason. The strain inversely depends on the elastic coefficients of the object material for the 
same geometrical condition and the same applied stress. In fact, acrylic has low rigidity compared with 
metals and hence large strain distribution or large potential distribution is caused by flaws, which is 
convenient for experimental verification. The NDE technique by PVDF film utilizes the localized 
deformation of the object around flaws under the stress, whose estimated result does not depend on other 
material properties except the mechanical ones. However if the conductor is used as the object material 
in place of the insulator, influence of the electric condition by the conductor to the PVDF film should be 
considered. So we measure coefficients p1 and p2 for PVDF films with 40µm thickness attached to 
aluminum strip as well as those for acrylic strip. 
 
 
3.1. Measurement Method 
 
We attached two PVDF films onto an acrylic and aluminum strips such that x1 axis of the film is parallel 
or perpendicular to the tension direction. Here the Young’s modulus and the Poison’s ratio of acrylic are 
3.4GPa and 0.39, and those of aluminium are 70.3GPa and 0.345, respectively. Similarly to the precious 
section, the contact side of the film to the specimen has a grounded electrode layer and we apply a 
uniaxial tension to the specimen with three different strain rates. The strain of the strip is measured by 
the strain gauge and the induced voltage on the film surface is measured by the electrostatic voltmeter. 
Substituting the measured strain Sx and the voltage into (9) and (10), we obtain simultaneous equations 
for coefficients p1 and p2. 
 
 
3.2. Determination of Coefficients 
 
Fig. 2 and Fig. 3 show the induced voltage on PVDF films onto an aluminum strip at each strain when 
the uniaxial stress is applied along x1 and x2 axes, respectively. From the figures we see that the induced 
voltages linearly depend on the strain but not on the strain rates. We also see that the induced voltages of 
the thicker film are larger than those of the thinner film. We obtain the slopes of the voltage-strain curves 
in Fig. 2 and Fig. 3 by the least square method, which equal to the coefficients of Sx in (9) and (10). The 
corresponding transverse strain Sy is given by –νSx for the uniaxial stress. Substituting the obtained 
strains into (9) and (10) and solving the equations for p1 and p2, we have coefficients p1 and p2 given by 
Table 1. As expected, PVDF film with 40 µm thickness has larger coefficients p1 and p2, but they are not 
exactly proportional to the thickness. This may come from the difference in film processing. In fact, the 
piezoelectric constants provided by the film producer are different for two types of films. In general, 
coefficient p1 is larger than p2 from the effect of the anisotropy induced by rolling process of the film, 
whose ratio drastically changes with the rolling ratio [11]. In order to improve the sensitivity of the film 
we shall employ the film with 40 µm thickness in what follows. 
 
Fig. 4 and Fig. 5 show the induced voltage on PVDF films with 40 µm thickness onto an acrylic strip at 
each strain when the uniaxial stress is applied along x1 and x2 axes, respectively. From the figures we see 
that the induced voltages linearly depend on the strain but not on the strain rates as well as Fig. 2 and  
Fig. 3 Similarly to the case of aluminum strip, we obtain coefficients p1 and p2 as shown in Table 2 for 
the film with 40 µm thickness. It is found that both coefficients of the PVDF films with 40 µm thickness 
onto an acrylic and an aluminum strips are approximately equal. 
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Table. 1 Measured coefficients. 

 
PVDF thickness p1[V] p2[V] 

30 µm 1.90×104 9.81×103 
40 µm 3.19×104 1.63×104 
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Fig. 2. Relation between voltage and strain (x1 axis). 
(Aluminum). 

 
Fig. 3. Relation between voltage and strain (x2 axis). 

(Aluminum). 
 
 

Table. 2 Measured coefficients. 
 

Specimen p1[V] p2[V] 
Aluminum 3.07×104 1.68×104 

Acrylic 3.19×104 1.63×104 
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Fig. 4. Relation between voltage and strain (x1 axis). 
(Acrylic). 

 
Fig. 5. Relation between voltage and strain (x2 axis). 

(Acrylic). 
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4. Estimation of Back-Surface Flaw Depth by Laminated PVDF Film 
 
4.1. Simulation for Deriving Estimation Formula of Flaw Depth 
 
In order to drive the estimation formula of flaw depth, we analyze the relation of the flaw depth and the 
electrical potential distribution on the laminated PVDF film by means of numerical simulation. In 
simulation, we use high polymer material acrylic as the object material. The size of the acrylic specimen 
is 70 mm length, 50 mm width and 10mm thickness. For each calculation, an artificial slit-like flaw with 
12 mm length is installed in the center of the specimen surface, see Fig. 6. The depths of installed flaws 
are from 1 mm to 9 mm with 1mm increment, and the widths from 1 mm to 3 mm with 1mm increment. 
From the geometrical symmetry, a quarter region of the specimen is divided by tetra meshes. 
Compressive stress is applied in the direction as shown in Fig. 6 such that −0.1 % strain is induced in the 
smooth region far from the flaw. The deformation of the specimen under the above conditions is 
analyzed by FEM software ANSYS. The electric potential distribution on the surface of PVDF film is 
obtained by substituting the calculated surface strain into (12). 
 

LoadLoad

y axis

x axis

PVDF Film

 
 

Fig. 6. Simulation Model. 
 
 

4.2. Characteristic Parameters of Potential Distribution Induced by Back-Surface Flaw 
 
As an example of the simulated results discussed in the previous subsection, Fig. 7 shows the planar 
potential distribution on the laminated PVDF film in case of the flaw with 12 mm length and 5 mm 
depth. In view of Fig. 7, the maximum voltage appears at the center of the flaw area on the film, and the 
aperture shape of the flaw can be inferred by the pattern of the potential distribution. On the other hand, 
the voltage at distant points from the flaw is around −30 V, which is caused by the bias −0.1% strain and 
the pyroelectricity of PVDF film. In Fig. 7 the minimum voltage appears both sides of the flaw and a 
steep peak of the potential appears at the center of the flaw. Fig. 8 shows the distribution of the electric 
potential at line y=0. The heap shape of the electric potential may reflect the cross section of the flaw at 
y=0. Fig. 9 shows the relation of the flaw depth and the peak height of the potential, which implies that 
the peak height linearly depends on the flaw depth in the range smaller than 7mm (70 % of the specimen 
thickness). The linear dependence becomes the same line for the flaw widths between 1mm and 3mm. In 
a practical life estimation of structural materials based on NDE, it is important to estimate smaller flaw 
depths compared with the structure thickness. Thus, we shall derive an estimation formula for flaw depth 
smaller than 7mm. Differently from the simulated data, experimentally obtained electric potential 
distribution may not be smooth from the measurement errors like Fig. 8. In order to extract characteristic 
parameters from such experimental distributions, we approximate the distribution of the electric 
potential at y=0 in the form 
 
 ( ){ } CDxBAV +−−= 2exp . (13)
 
Here V denotes the voltage, A the height of the potential peak, B the sharpness of the peak, C the bias 
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potential induced by the applied compressive strain and the pyroelectric effect of PVDF, and D the 
location of the flaw on the line y=0. In Fig. 10 we show the approximated potential distribution at line 
y=0 on the laminated PVDF film obtained from the simulated distributions. 
 
In the next subsection we present an evaluation formula for the flaw depth by use of parameter A. 
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Fig. 7. Planar distribution of electric potential on PVDF film. 
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Fig. 8. Distribution of electric potential on PVDF film. 

 
Fig. 9. Dependence of potential peak on flaw depth. 

 
 

4.3. Evaluation Formula for Flaw Depth 
 
From Fig. 10, we obtain the relation of the flaw depth and the parameter A in the range of the flaw depth 
smaller than 7mm as shown in Fig. 11. Fig. 11 shows that parameter A linearly depends on the flaw depth 
for each width as well as Fig. 9. By the least square method the linear dependence can be expressed as  
 
 AFd 173.0=   for  −0.1%  strain . (14)
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Here Fd is the estimated flaw depth. Since the relation between the flaw depth and the potential height 
may depend on the bias strain, we also obtain the linear curves for bias strains −0.05% and −0.2%, see 
Fig. 12 and Fig. 13.  
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Fig. 10. Approximated distribution of electric potential. 

(1 mm flaw width). 

 
Fig. 11. Dependence of parameter A on flaw depth. 

(0.1 % strain). 
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Fig. 12. Dependence of parameter A on flaw depth. 
(0.05 % strain). 

 
Fig. 13. Dependence of parameter A on flaw depth. 

(0.2 % strain). 
 
 
 AFd 346.0=  for  −0.05 %  strain, (15)
 
 AFd 087.0=  for  −0.2 %  strain . (16)
 
We see that all the plots in Fig. 11, Fig. 12 and Fig. 13 locate on a similar linear curve, if we neglect the 
difference in the ranges of the horizontal axes. Since the mechanical deformation of the object and the 
piezoelectric behavior of PVDF can be regarded as small enough for linear response, the induced voltage 
and hence the potential height A may be proportional to the bias strain for each flaw size. In fact, three 
linear curves (14)-(16) can be expressed in a single linear curve if we normalize the height of the induced 
potential peak A by the bias strain S as 
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S
AFd

41073.1 −×=  . (17)

 
It should be noted that the formula (17) can be applied to flaws whose depths are smaller than 7 mm and 
widths are between 1 mm and 3 mm. In the next subsection, we shall attempt to estimate unknown depth 
of flaws by the formula (17).  
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Fig. 14. Relation between flaw depth and parameter A / strain. 
 
 

4.4. Estimation of Unknown Flaw Depth. 
 
Fig. 15 shows the experimental setup for estimation of flaw depths in acrylic specimens by the proposed 
method.  
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Fig. 15. Experimental setup. 
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We prepare three specimens I, П and Ш with flaws, whose lengths are 12 mm and cross sectional sizes 
are given in Table 3. We attach a laminated PVDF film with 40×2 µm thickness on the center of the 
specimen surface by epoxy resin adhesive such that the electrode layer contacts with the specimen 
surface. We apply 0.05 % and 0.1 % compressions to specimens І and П in a similar way to the 
simulation and 0.1 % and 0.2 % compressions to specimen Ш. We measure the electric potential along 
line y=0 on the PVDF film by 1.0 mm intervals. We start to measure the potential several minutes after 
applying the stress, by taking into account the creep deformation of the high polymer material. We also 
measure the electric potential before applying the stress, and take the difference of the potentials at each 
point of PVDF film to cancel the effect of the pyroelectricity. Furthermore, the potential distribution on 
PVDF film is relaxed in some extent during several hours. Thus we finish the measurement of the 
potential distribution in the shortest possible time such that the time variation of the potential 
distribution can be neglected. 
 
From Fig. 16 to Fig. 21 we show the measured potential distributions at line y=0, approximated potential 
distributions by (13), and the simulated distributions. According to the discussions in the previous 
subsection, we determine parameter A as Table 4 to Table 6. Then from parameter A and each bias strain, 
we can estimate the flaw depth by use of (17) as Table 7 to Table 9, which implies that the unknown flaw 
depths can be estimated precisely by the proposed formula. In these tables, parameter D indicates the 
position of each flaw center at line y=0, which are around less than ±1 mm. Since we have set the origin 
of the coordinate axis at each flaw center, the proposed method can estimate the location of each flaw 
within 1mm error. In these tables, we can see the differences in the parameters for the simulated and the 
experimental potential distributions. The differences may come from the effects of the pyroelectricity, 
the relaxation of the piezoelectricity, the deformation of acrylic specimens, etc. Evaluation of such 
influences is left for future subject. In spite of the differences in other parameters, parameter A is not 
influenced so much by these effects, and the relative accuracy of estimation of flaw depth increases as 
the bias strain or the flaw depth increases. 
 
 

Table 3. Flaw sizes of prepared specimens. 
 

 width [mm] depth [mm] 
Specimen I 1.0 1.0 
SpecimenП 2.5 3.5 

Specimen Ш 3.0 7.0 
 
 

Table 4. Parameters for specimen І. 
 

Specimen І Simulation Experiment 
Parameter A (0.05 %) 1.61 2.50  
Parameter B (0.05 %) 0.055 0.034 
Parameter C (0.05 %) -14.77 -15.06 
Parameter D (0.05 %) 0 1.15 
Parameter A (0.１ %) 3.21 4.36 
Parameter B (0.１ %) 0.055 0.044 
Parameter C (0.１ %) -29.53 -28.85 
Parameter D (0.１ %) 0 -0.03 
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Table 5. Parameters for specimen П. 

 
Specimen П Simulation Experiment 

Parameter A (0.05 %) 10.97 10.76 
Parameter B (0.05 %) 0.056 0.047 
Parameter C (0.05 %) -15.15 -16.15 
Parameter D (0.05 %) 0 0.38 
Parameter A (0.１ %) 21.94 20.05 
Parameter B (0.１ %) 0.056 0.039 
Parameter C (0.１ %) -30.29 -31.28 
Parameter D (0.１ %) 0 0.35 

 
 

Table 6. Parameters for specimen Ш. 
 

Specimen Ш Simulation Experiment 
Parameter A (0.1 %) 37.08 40.5 
Parameter B (0.1 %) 0.21 0.11 
Parameter C (0.1 %) -31.09 -36.35 
Parameter D (0.1 %) 0 0.024 
Parameter A (0.2 %) 74.16 80.87 
Parameter B (0.2 %) 0.21 0.10  
Parameter C (0.2 %) -62.19 -73.86 
Parameter D (0.2 %) 0 -0.33 

 
 

Table 7. Exact and estimated flaw depths for specimen І. 
 

SpecimenⅠ Flaw depth [mm] Estimated depth [mm] 
0.05 % Strain 1.0  0.86  
0.1 % Strain 1.0  0.76  

 
 

Table 8. Exact and estimated flaw depths for specimen П. 
 

SpecimenⅡ Flaw depth [mm] Estimated depth [mm] 
0.05 % Strain 3.5 3.72  
0.1 % Strain 3.5 3.47  

 
 

Table 9. Exact and estimated flaw depths for specimen Ш. 
 

SpecimenⅢ Flaw depth [mm] Estimated depth [mm] 
0.1 % Strain 7.0  7.01 
0.2 % Strain 7.0  7 
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Fig. 16. Distribution of electric potential for 0.05 % 
strain. (Specimen І). 

 
Fig. 17. Distribution of electric potential for 0.1 % 

strain. (Specimen І). 
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Fig. 18. Distribution of electric potential for 0.05 % 

strain. (Specimen П). 

 
Fig. 19. Distribution of electric potential for 0.1 % 

strain. (Specimen П). 
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Fig. 20. Distribution of electric potential for 0.1 % 
strain. (Specimen Ш). 

 
Fig. 21. Distribution of electric potential for 0.2 % 

strain. (Specimen Ш). 
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5. Conclusions 
 
This paper attempts to evaluate the size of flaw depth by the laminated piezoelectric high polymer 
(PVDF) film. The obtained results are as follows. 
 
1. The sensitivity of PVDF film is improved by making the film thicker and laminating two films. 
2. From numerical simulation, obtained are the correlation with the flaw depth and the parameter 

characterizing the height of the potential distribution on a laminated PVDF film. When the flaw depth 
is smaller than 70 % of the specimen thickness, the relation of the flaw depth and the height of the 
potential peak becomes linear curve without depending on the flaw width for each bias strain. 

3. We have derived the estimation formula of the flaw depth which follows for any bias strain by 
normalizing the induced electric potential. 

4. The proposed sizing technique for flaw depth is verified by the experiment. It is found that the flaw 
depth can be precisely estimated by measuring the electric potential distribution along a line crossing 
the flaw center. 
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