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Abstract: Localization algorithm is an important and challenging topic in today’s wireless sensor networks
(WSNSs). In order to improve the localization accuracy, a weighted centroid localization algorithm based on least
square to predict the location of any sensor in WSNs is proposed in this paper. The proposed a gorithm proposes
a Least-Square-based weight model which can reasonably weigh the proportion of each anchor node in the
unknown node. In the weight model, we utilize least square method to compute the weight. Then, we increase
the weight of anchor nodes closer to the unknown node, introduce the parameter k into the proposed likelihood
model, and we determine the optimal value of the parameter k through our real experiments. Simulation and
experimental results show that the proposed weighted centroid algorithm is better than Weighted Centroid
Localization (WCL) and Anchor-optimized Modified Weighted Centroid Localization based on RSSI

(AMWCL-RSSI) in terms of the localization accuracy. Copyright © 2014 IFSA Publishing, S. L.
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1. Introduction

Recent advancements in the wireless
communications and hardware technology field have
facilitated the development of wireless sensor
networks (WSNs) for a wide variety of real-world
applications, including environmental monitoring,
disaster relief, site security, medical diagnostics,
battlefield surveillance, home automation, assisted
living, and so on [1-6].

A recent outdoor application for WSNs is the
localization of moving targets. This application is
motivated primarily by the low cost of this solution
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and the lack of effective positioning and tracking
systems working inside buildings. Indeed, the global
positioning system solves many localization
problems outdoor, where the devices can receive the
signals coming from satellites. Moreover, wireless
nodes show some advantages in terms of system
miniaturization, scalability, quick and easy network
development, cost, and lower energy consumption.
Most of the proposed localization algorithms rely
on received-signal-strength (RSS) measurements. In
fact, RSS can be used to estimate the distance
between an unknown node (called a target node) and
a number of anchor nodes with known coordinates.

http://www.sensorsportal.com/HTML/DIGEST/P_2275.htm


http://www.sensorsportal.com/

Sensors & Transducers, Vol. 176, Issue 8, August 2014, pp. 140-148

The location of the target node is then determined by
multilateration [7-9].

Unfortunately, due to the degrading effects of
reflections, shadowing, and fading of radio waves,
some studies have shown the large variability
of RSS [10-12]. As a result, localization methods
using RSS are affected by large errors and lack of
accuracy. However, RSS-based techniques remain an
appealing approach [13]. This is mainly due to the
fact that RSS measurements can be obtained with
minimal effort and do not require extra circuitry, with
remarkable savings in cost and energy consumption
of a sensor node. In fact, most of WSN transceiver
chips have a built-in RSS indicator (RSSI), which
provides RSS measurement without any extra cost.

There exist several algorithms that can be used to
determine the position of a target through RSS
measurements. Some of them are geometric methods,
such as lateration or a minimum—maximum method,
whereas some others are based on satistical
approaches, such as maximum likelihood.

Alippi et al. have tested an RSS-based outdoor
localization methodology exploiting a minimum least
square (LS) algorithm, after modeling a propagation
channel [14]. The deployment of anchors has a
density of one node over 25 m? on an area of 500 m?.
The average distance error obtained is about 3 m.

In [15], an extensive indoor RSS measurement
campaign is carried out in order to tune the
parameters of the assumed channel model. Then, the
collected RSS data have been used offline as inputs
for two localization methods, i.e., the min-max and
Bayesian filtering algorithms. A distance error
of the order of 5 and 2 m is achieved for the two
algorithms, respectively.

Centroid localization (CL) and weighted centroid
localization [16-22], have attracted a lot of interest
because of their ssimplicity and robustness to changes
in wireless propagation properties such as path loss.
This characteristic makes them suitable candidates
for systems requiring coarse grained, but reliable and
cost-effective techniques. Strictly speaking, weighted
centroid localization is not an entirely range-free
technique because it requires additional information
aside from simple connectivity.

Recently many proposed approaches on weighted
centroid localization focused more on error control
and management. Weighted centroid localization
(WCL) is firstly proposed in [23]. In order to avoid
the creation of RSS maps, complicate probability

models, or high-computational-effort algorithms,
Reichenbach and Timmermann proposes
approximated indoor localization based on a

weighted centroid approach combined with RSS
measurements in  an |EEE 802154 sensor
network [24]. The weights are defined as inversely
proportional to the RSS values measured between the
target and each anchor node. The solution is tested in
a square room with a side length of 3 m, using four
anchor nodes displaced at the corners and one target
node located in 13 different positions. The obtained
relative localization error varies between 7.8 % and

26%. In [25], Hongyu et al. proposes an
anchor_optimized modified weighted centroid
localization algorithm based on RSSI (AMWCL-
RSSI). Other schemes are to discuss inexact position
problems [26], or anayze the performance of
weighted centroid localization algorithm [27],
or enhance its performance for  specific
scenarios [28-29].

The am of this paper is to improve the
localization accuracy of weighted centroid
localization, and we propose a weighted centroid
localization algorithm based on least square for
WSNSs. We compare our proposed scheme with some
existing solutions via simulations and experiments.

The rest of this paper is organized as follows.
Section 2 presents proposed localization agorithm,
followed by Performance evaluation in Section 3. We
conclude the paper in Section 4.

2. Proposed L ocalization Algorithm
2.1. Overview of Localization System

The aim of the RSS-based localization isto seek a
mapping between the measurements to a physical
location. One of the most important mapping
functions is the probabilistic model finding the

weight p(i) [30, 31]. Then, the location can be
regarded as a regression problem [30] as

(%, y)=zn:(li -p(i)) , where n is the number of anchor
i=1

nodes, |i represents the coordinate of the ith anchor

node and (X, y) represents the estimated result. This
paper adopts a novel approach to compute the weight.

2.2. RSS Model

RSS model can be expressed as

R$= PLO—lOﬂ|OglO(d / do) + Na ’ (1)

where d is the real distance, PLO is the received
signal strength at reference distance dy (dy =1 m),

B isthe path loss exponent, and N, is a zero-mean
Gaussian noise with standard deviation « .

2.3. Weighted Centroid L ocalization
Algorithm Based on Least Square
(WCLLYS)

In this section, we will introduce the proposed
weighted centroid Localization Algorithm for

location estimation. Let d; denote the Euclidean
distance between the coordinator of anchor i and the
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coordinate (x,y) for a specific unknown node. We
assume that each unknown node can hear at least n

anchor nodes. The variables D=(d;,d,,ds,---,d,)
represent the set of measured distances to anchor
nodes 1,2,3,---,n from the unknown node. The
coordinate (x,y) is an estimated position of an

AN

unknown node. The coordinate (x,y) is the position
of each anchor node. According to [30] and [31], the
estimated position (x,y) can be expressed by

x0)=3(1;- p) , @
i=1

With (2) and (5), we can get

=L

=1

j=1

j=1
According to (3) and (6), we can get

[(0—%) % +(B—¥2) %1
04—%) % +(M—Y¥3) %

O
I

(q=%) % +(M—¥)wn
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where |; represents the i anchor node location,
and I; =%, %) .

;p(i)=l, i=12-,n ©)

With the geometric relationships, the measured

distances ai can be expressed by
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By using least square method, P(i) can be
expressed as:

p=(Q’Q) Q'S (®)

p(i) is as the weight of anchor node i
(i=22--,n), but p(i) can't fully reflect the binding
on the estimated position of the unknown node due to
the interference of externa environment. To this
problem, we propose a novel weight model. In the
novel weight model, we increase the weight of
anchor node closer to the unknown node. Because
the closer anchor node gets to the unknown node, the
greater weight anchor node has [23]. Meantime, we
introduce the parameter k into the weight model.
The reasonable parameter k can further weigh the
proportion of each anchor node in the unknown node.

p()- ()" is the improved weight model, and

N .
p(')'(E) PO'>p() (n is the number of anchor

nodes, k is a parameter, and O<k<n). Here, we
consider the impact of the number of anchor nodesto

localization accuracy in p(i)~(£) PO
After p(i)-(E) 0 normalization, the weight can

be expressed as:

w() = p)- PO 1Y (p(D-()P), 0<k<n  (g)
j=1

n
(% y) =D liw(i) (10)
i=1
2.4. The Optimal Value of the Parameter k

In this section, we obtain the optimal value of the
parameter k through the real experiment. A wireless

node is based on a MSP430 microprocessor and
equipped with an |EEE 802.15.4 compliant Chipcon
CC2500 radio module. The antenna is a 2.4 GHz
planar inverted-F antenna. In our experiments,
anchor nodes are randomly distributed in a50 m x 50
m region. The position of an unknown node is
randomly deployed in this region. Here, we choose
the number of anchor nodes Nn=4,5,6 respectively
for our experiment, and all nodes are able to
communicate with each other.

Fig. 1, Fig. 2 and Fig. 3 show the average
localization error when K chooses a different value.

From Fig. 1, when the number of anchor nodes
n=4 and the parameter k=4 , WCLLS has a
significant change in the localization accuracy.
Clearly, it can be seen that when the number of
anchor nodes n=4, K should be closer to 4, but not
equal to 4.

From Fig. 2, when the number of anchor nodes
N=5 and the parameter k=5, WCLLS has a
significant change in the localization accuracy.
Clearly, it can be seen that when the number of
anchor nodes n=5, k should be closer to 5, but not
equal to 5.

24

—A— k=2

22 ¢ —+— k=3 |4
k=3.5
20 —%— k=4 |4

Localization error (m )
=
i
-
.

Number of anchor nodes

Fig. 1. Localization error versus the number
of anchor nodes.
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Fig. 2. Localization error versus the number
of anchor nodes.

From Fig. 3, when the number of anchor nodes
n=6 and the parameter k=6 , WCLLS has a
significant change in the localization accuracy.
Clearly, it can be seen that when the number of

anchor nodes n=6, k should be closer to 6, but not
equal to 6.

From the analysis above, it can be seen that k
should be closer to n, but not equal to n,and k<n.
Hence, we assume k=n-b as the value of the
parameter k , where k<n , O<b<n . Next, we
determine the value of the parameter b through
MATLAB simulation.

—&— k=5.2
—+—k=5.5
k=5.8
200} k=g
= A4
T 150+ 4
=
@
c
2
< §
S 1007 —
o
o
3
50 R
0 I | R i T
4 5 6 7 8 9 10

Number of anchor nodes

Fig. 3. Localization error versus the number
of anchor nodes.

We assume that an unknown node and 8 anchor
nodes are randomly deployed in a 50m x 50m
region, and the unknown node is randomly placed in
10000 different positions. We set PLO=-60dB and
choose f=2,253354,45 , the zero-mean
Gaussian noise N, has a standard deviation of 3dB .
The simulation results are as shown in Table 1. From
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Table 1, we can choose n—0.1 as the optimal value
of the parameter Kk .

Table 1. The parameter b.

Path loss exponent b
2 0.09
25 0.11
3 0.12
35 0.098
4 0.10
45 0.085

Therefore, the weight model wW(i) in Eq. (9) can
be expressed as follows:

p() p(j)
wiy=pt)( o e ()
i 'x |

2.5. Process of L ocalization Algorithm

The algorithm process of
localization algorithm is as follows:

Step 1: Beacon nodes periodicaly transmit
information of themselves which include node ID
and position information of themselves;

Step 2: After unknown node receives signals, it
records RSS values which come from beacon nodes;

the proposed

Step 3: Compute the measured distance d; ;

Step4: Compute the weight p(i) and the
improved weight p(i)'(E) Pl .

Step 5: Compute the weight

L n P(i)/n _ N throudh
= b0 57| L et (5] ) throug
Eqg. (12);

Step6: Compute the estimated postion

n

()= Liwi) .

i=1

3. Performance Evaluation

In this section, we analyze the performance of the
studied localization schemes through simulations and
experiments. We compare the proposed weighted
centroid localization algorithm with WCL [23] and
AMWCL-RSSI [25]. We set the degree g=1 in
all experiments.

3.1. Localization Error Versusthe Number
of Anchor Nodes

In this experiment we evaluate the effect that the
number of anchors has on the location accuracy.
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Fig. 3 depicts the effect on localization error when
varying the number of anchors. All nodes are
deployed in an 100m x 100m area. Anchor nodes are
randomly deployed at the edge of the selected area,
1000 sensor nodes are randomly placed in the region.
We assume that PLO=-60dB and the zero-mean

Gaussian noise N, has a standard deviation of 3dB .

Weset f=2.

From Fig. 4, it can be observed that WCLLS
outperforms AMWCL-RSSI and WCL in
localization accuracy. The explanation is that
WCLLS increases the weights of anchors closer to
the unknown node. It is aso shown that the increase
of the number of anchor nodes can reduce the
localization error of WCLLS. When the number of
anchor nodes is 8, the average localization error of
WCLLS is approximately 0.6m which is
significantly lower than the average localization error
of AMWCL-RSSI| and WCL.

45

Y - 4'(/4—‘7 e 4'_\\\7
40F o |
35 —+— AMWCL-RSSI |

—&—wcCL
: A WCLLS ]
S ~— e
S 250 |
[} B | -
s 6 9 |
g 20+ |
N
E
§ 1) 7
10t |
S;\S\A\Q— |
0 ‘ | UA |
| | | 7 , : 10

Number of anchor nodes

Fig. 4. Localization Error versus the Number
of Anchor Nodes.

3.2. Localization Error Versusthe Path L oss
Exponent

In this experiment we evaluate the effect that the
pass loss exponent has on the location accuracy.
Fig. 5 depicts the effect on localization error when
varying the pass loss exponent. All nodes are
deployed in a 100m x 100m area. Four anchors are
respectively placed in four corners, 1000 sensor
nodes are randomly placed in the region. We assume
that PLO=-60dB and the zero-mean Gaussian noise

N, hasastandard deviation of 3dB .

From Fig. 5, it can be observed that as the pass
loss exponent increases, the error in location
estimation increases for WCLLS. When >2.1, the
average localization error of WCLLS is greater than
the average localization error of WCL. So, we can
see that the pass loss exponent has an important
impart on the localization error of WCLLS. Clearly,

it is shown that when B is about 2, WCLLS can
obtain relative comparison small localization error.
When the pass loss exponent =2 , the average
localization error of WCLLS is about 0.54 m.

40

T T
S | L

35 —+— AMWCL-RSSI ||

—e— WCL
30 —=4A— WCLLS

251

20+

15+

Localization error (m )

10+

I |
2 2.05 21 2.15
path loss exponent

Fig. 5. Localization Error versus the Path Loss Exponent.

3.3. Localization Error Versusthe Standard
Deviation

In this experiment we evauate the effect that the
standard deviation has on the location accuracy.
Fig. 5 depicts the effect on localization error when
varying the standard deviation. All nodes are
deployed in an 100m x 100m area. Four anchors are
respectively placed in four corners, 1000 sensor
nodes are randomly placed in the region. We assume
that PLO=-60dB and f=2.

From Fig. 6, it can be observed that as the
standard deviation increases, the error in location
estimation increases for WCLLS. Obviously, the
standard deviation has an impact on the localization
error of WCLLS. Additionally, WCLLS obviously
outperforms WCL and AMWCL-RSSI in
localization error.

40 ‘ ‘ ‘
- v @ 1
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T
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w
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Localization error (m)
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Fig. 6. Localization Error versus the Standard Deviation.
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3.4. Localization Error Versus Network Size

In this simulation, we evaluate the effect the size
of the network has on the location error. We
simulated three network sizes: 50mx 50m
100m x 100m and 200m x 200m . Four anchors are
respectively placed in four corners, 1000 sensor
nodes are randomly placed in the region. We assume
that PLO=-60dB and =2 , and the zero-mean

Gaussian noise N, has a standard deviation of 3dB .

From Table 2, it can be observed that as the
network size increases, the localization error
increases for al three localization algorithms. The
explanation is that the error of the RSS measurement
increases as the network size increases. It also can be
observed that WCLLS outperforms AMWCL-RSSI
and WCL in localization accuracy. From Table 2, we
can clearly know that the average localization errors
of WCLLS in three network sizes are respectively
about 0.2 m, 0.53mand 1 m.

Table 2. Localization error.

Localization

algorithm |50 mx50 m [100 mx100 m| 200 mx200 m
AMS/r\/nC):L

RSS 19.3 39 78
WCL 4 7.8 15
WCLLS 0.2 0.53 1

3.5. Experiments

In this section, we analyze the performance of the
studied localization schemes through experiments.
We compare the proposed algorithm with WCL and
AMWCL-RSSI. In this experiment, the proposed
algorithm is tested in @ 200 m x 200 m region of our
University’s campus lawn, 10 anchors are randomly
placed in the region and an unknown node is placed
in 50 different positions. Fig. 7, a wireless node is
based on a MSP430 microprocessor and equipped
with a compliant Chipcon CC2500 wireless module.
We obtain the measured distance by (1).

Fig. 7. Sensor node.
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Table 3 shows the localization error of three
localization algorithmsin rea experiment. In Table 3,
the localization error of WCLLS is 1.2 m which is
lower than that of AMWCL-RSSI and WCL. Clearly,
WCLLS outperforms WCL and AMWCL-RSS! in
the localization accuracy.

Table 3. Localization error.

Localization Localization error
algorithms (meters)
AMWCL-RSSI 82.3
WCL 40.1
WCLLS 1.2

4. Conclusions

Many weighted centroid localization schemes
have been widely used for WSNs. However, these
schemes do not help, since the localization errors are
high in practica deployments. To solve these
problems, in this paper we have researched and
analyzed many weighted centroid localization
algorithms and RSS-based localization algorithms,
and we have proposed a localization scheme, called
Weighted Centroid Localization Algorithm Based on
Least Square. WCLLS presents a L east-Square-based
weight model which can reasonably weigh the
proportion of each anchor node in the unknown node.
In the proposed weight model, firstly, we utilize least
sguare method to compute the weight. Secondly, the
proposed weight model increases the weight of
anchor node closer to the unknown node to estimate
the location. Thirdly, the parameter is introduced into
the proposed weight model, and we get the optimal
value of through our real experiments. We have
analyzed the performance of WCLLS through the
network size, the number of anchor nodes, the
standard deviation and the path loss exponent. All the
experimental results demonstrate that WCLLS is
superior to WCL and AMWCL-RSS| in the
localization accuracy. From the experimental results,
we can see that WCLLS is aso suitable for an
outdoor environment. More importantly, WCLLS has
alower localization error.
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