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Abstract: Localization algorithm is an important and challenging topic in today’s wireless sensor networks 
(WSNs). In order to improve the localization accuracy, a weighted centroid localization algorithm based on least 
square to predict the location of any sensor in WSNs is proposed in this paper. The proposed algorithm proposes 
a Least-Square-based weight model which can reasonably weigh the proportion of each anchor node in the 
unknown node. In the weight model, we utilize least square method to compute the weight. Then, we increase 
the weight of anchor nodes closer to the unknown node, introduce the parameter k into the proposed likelihood 
model, and we determine the optimal value of the parameter k through our real experiments. Simulation and 
experimental results show that the proposed weighted centroid algorithm is better than Weighted Centroid 
Localization (WCL) and Anchor-optimized Modified Weighted Centroid Localization based on RSSI 
(AMWCL-RSSI) in terms of the localization accuracy. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 

 

Recent advancements in the wireless 
communications and hardware technology field have 
facilitated the development of wireless sensor 
networks (WSNs) for a wide variety of real-world 
applications, including environmental monitoring, 
disaster relief, site security, medical diagnostics, 
battlefield surveillance, home automation, assisted 
living, and so on [1-6]. 

A recent outdoor application for WSNs is the 
localization of moving targets. This application is 
motivated primarily by the low cost of this solution 

and the lack of effective positioning and tracking 
systems working inside buildings. Indeed, the global 
positioning system solves many localization 
problems outdoor, where the devices can receive the 
signals coming from satellites. Moreover, wireless 
nodes show some advantages in terms of system 
miniaturization, scalability, quick and easy network 
development, cost, and lower energy consumption. 

Most of the proposed localization algorithms rely 
on received-signal-strength (RSS) measurements. In 
fact, RSS can be used to estimate the distance 
between an unknown node (called a target node) and 
a number of anchor nodes with known coordinates. 

http://www.sensorsportal.com/HTML/DIGEST/P_2275.htm
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The location of the target node is then determined by 
multilateration [7-9]. 

Unfortunately, due to the degrading effects of 
reflections, shadowing, and fading of radio waves, 
some studies have shown the large variability  
of RSS [10-12]. As a result, localization methods 
using RSS are affected by large errors and lack of 
accuracy. However, RSS-based techniques remain an 
appealing approach [13]. This is mainly due to the 
fact that RSS measurements can be obtained with 
minimal effort and do not require extra circuitry, with 
remarkable savings in cost and energy consumption 
of a sensor node. In fact, most of WSN transceiver 
chips have a built-in RSS indicator (RSSI), which 
provides RSS measurement without any extra cost. 

There exist several algorithms that can be used to 
determine the position of a target through RSS 
measurements. Some of them are geometric methods, 
such as lateration or a minimum–maximum method, 
whereas some others are based on statistical 
approaches, such as maximum likelihood. 

Alippi et al. have tested an RSS-based outdoor 
localization methodology exploiting a minimum least 
square (LS) algorithm, after modeling a propagation 
channel [14]. The deployment of anchors has a 
density of one node over 25 m2 on an area of 500 m2. 
The average distance error obtained is about 3 m. 

In [15], an extensive indoor RSS measurement 
campaign is carried out in order to tune the 
parameters of the assumed channel model. Then, the 
collected RSS data have been used offline as inputs 
for two localization methods, i.e., the min–max and 
Bayesian filtering algorithms. A distance error  
of the order of 5 and 2 m is achieved for the two  
algorithms, respectively. 

Centroid localization (CL) and weighted centroid 
localization [16-22], have attracted a lot of interest 
because of their simplicity and robustness to changes 
in wireless propagation properties such as path loss. 
This characteristic makes them suitable candidates 
for systems requiring coarse grained, but reliable and 
cost-effective techniques. Strictly speaking, weighted 
centroid localization is not an entirely range-free 
technique because it requires additional information 
aside from simple connectivity. 

Recently many proposed approaches on weighted 
centroid localization focused more on error control 
and management. Weighted centroid localization 
(WCL) is firstly proposed in [23]. In order to avoid 
the creation of RSS maps, complicate probability 
models, or high-computational-effort algorithms, 
Reichenbach and Timmermann proposes 
approximated indoor localization based on a 
weighted centroid approach combined with RSS 
measurements in an IEEE 802.15.4 sensor  
network [24]. The weights are defined as inversely 
proportional to the RSS values measured between the 
target and each anchor node. The solution is tested in 
a square room with a side length of 3 m, using four 
anchor nodes displaced at the corners and one target 
node located in 13 different positions. The obtained 
relative localization error varies between 7.8 % and 

26 %. In [25], Hongyu et al. proposes an 
anchor_optimized modified weighted centroid 
localization algorithm based on RSSI (AMWCL-
RSSI). Other schemes are to discuss inexact position 
problems [26], or analyze the performance of 
weighted centroid localization algorithm [27],  
or enhance its performance for specific  
scenarios [28-29]. 

The aim of this paper is to improve the 
localization accuracy of weighted centroid 
localization, and we propose a weighted centroid 
localization algorithm based on least square for 
WSNs. We compare our proposed scheme with some 
existing solutions via simulations and experiments. 

The rest of this paper is organized as follows. 
Section 2 presents proposed localization algorithm, 
followed by Performance evaluation in Section 3. We 
conclude the paper in Section 4. 
 
 
2. Proposed Localization Algorithm 

 
2.1. Overview of Localization System 
 

The aim of the RSS-based localization is to seek a 
mapping between the measurements to a physical 
location. One of the most important mapping 
functions is the probabilistic model finding the 
weight ( )p i  [30, 31]. Then, the location can be 
regarded as a regression problem [30] as 

( )
1

( , ) ( )
n

i
i

x y I p i
=

= ⋅ , where n  is the number of anchor 

nodes, iI  represents the coordinate of the ith  anchor 

node and ( , )x y  represents the estimated result. This 
paper adopts a novel approach to compute the weight. 

 
 

2.2. RSS Model 
 

RSS model can be expressed as 
 

10 00 10 log ( / )RSS PL d d Nαβ= − + , (1) 

 
where d  is the real distance, 0PL  is the received 

signal strength at reference distance 0d  ( 0 1d = m), 

β  is the path loss exponent, and Nα  is a zero-mean 

Gaussian noise with standard deviation α . 
 
 

2.3. Weighted Centroid Localization 
Algorithm Based on Least Square 
(WCLLS) 

 
In this section, we will introduce the proposed 

weighted centroid Localization Algorithm for 

location estimation. Let id  denote the Euclidean 

distance between the coordinator of anchor i  and the 
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coordinate 
^ ^

( , )x y  for a specific unknown node. We 
assume that each unknown node can hear at least n  

anchor nodes. The variables 
~ ~ ~ ~

1 2 3( , , , , )nD d d d d=   

represent the set of measured distances to anchor 
nodes 1,2,3, ,n  from the unknown node. The 
coordinate ( , )x y  is an estimated position of an 

unknown node. The coordinate 
^ ^

( , )x y  is the position 
of each anchor node. According to [30] and [31], the 
estimated position ( , )x y  can be expressed by 

 

( )
1

( , ) ( )
n

i
i

x y I p i
=

= ⋅ , (2) 

 

where iI  represents the ith anchor node location,  

and ( , )i i iI x y= . 

 

1

( ) 1
n

i

p i
=

= ,   1, 2, ,i n=   (3) 

 
With the geometric relationships, the measured 

distances 
~

id  can be expressed by 
 

~
2 2( ) ( )i i id x x y y= − + −  (4) 
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2
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


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
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





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       ( 2, ,i n=  ) (5) 

 
With (2) and (5), we can get 
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(6) 

 
According to (3) and (6), we can get 
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, 
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Qp S=  

 
 

By using least square method, ( )p i  can be 
expressed as: 
 

( ) 1T Tp Q Q Q S
−

=  (8) 

 
( )p i  is as the weight of anchor node i 

( 1,2, ,i n=  ), but ( )p i  can’t fully reflect the binding 
on the estimated position of the unknown node due to 
the interference of external environment. To this 
problem, we propose a novel weight model. In the 
novel weight model, we increase the weight of 
anchor node closer to the unknown node. Because 
the closer anchor node gets to the unknown node, the 
greater weight anchor node has [23]. Meantime, we 
introduce the parameter k  into the weight model. 
The reasonable parameter k  can further weigh the 
proportion of each anchor node in the unknown node. 

( )( ) ( ) p in
p i

k
⋅  is the improved weight model, and 

( )( ) ( ) ( )p in
p i p i

k
⋅ >  ( n  is the number of anchor 

nodes, k  is a parameter, and 0 k n< < ). Here, we 
consider the impact of the number of anchor nodes to 

localization accuracy in ( )( ) ( ) p in
p i

k
⋅ . 

After ( )( ) ( ) p in
p i

k
⋅  normalization, the weight can 

be expressed as: 
 

( ) ( )

1

( ) ( ) ( ) / ( ( ) ( ) )
n

p i p j

j

n n
w i p i p j

k k=
= ⋅ ⋅ , 0 k n< <  (9) 

 

1

( , ) ( )
n

i
i

x y I w i
=

=  (10) 

 
 
2.4. The Optimal Value of the Parameter k  
 

In this section, we obtain the optimal value of the 
parameter k  through the real experiment. A wireless 

node is based on a MSP430 microprocessor and 
equipped with an IEEE 802.15.4 compliant Chipcon 
CC2500 radio module. The antenna is a 2.4 GHz 
planar inverted-F antenna. In our experiments, 
anchor nodes are randomly distributed in a 50 m x 50 
m region. The position of an unknown node is 
randomly deployed in this region. Here, we choose 
the number of anchor nodes 4,5,6n =  respectively 
for our experiment, and all nodes are able to 
communicate with each other. 

Fig. 1, Fig. 2 and Fig. 3 show the average 
localization error when k  chooses a different value. 

From Fig. 1, when the number of anchor nodes 
4n =  and the parameter 4k = , WCLLS has a 

significant change in the localization accuracy. 
Clearly, it can be seen that when the number of 
anchor nodes 4n = , k  should be closer to 4, but not 
equal to 4. 

From Fig. 2, when the number of anchor nodes 
5n =  and the parameter 5k = , WCLLS has a 

significant change in the localization accuracy. 
Clearly, it can be seen that when the number of 
anchor nodes 5n = , k  should be closer to 5, but not 
equal to 5. 
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Fig. 1. Localization error versus the number  
of anchor nodes. 
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Fig. 2. Localization error versus the number  
of anchor nodes. 

 
 

From Fig. 3, when the number of anchor nodes 
6n =  and the parameter 6k = , WCLLS has a 

significant change in the localization accuracy. 
Clearly, it can be seen that when the number of 
anchor nodes 6n = , k  should be closer to 6, but not 
equal to 6. 

From the analysis above, it can be seen that k  
should be closer to n , but not equal to n , and k n< . 
Hence, we assume k n b= −  as the value of the 
parameter k , where k n< , 0 b n< < . Next, we 
determine the value of the parameter b  through 
MATLAB simulation. 
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Fig. 3. Localization error versus the number  
of anchor nodes. 

 
 

We assume that an unknown node and 8 anchor 
nodes are randomly deployed in a 50m  50m×  
region, and the unknown node is randomly placed in 
10000 different positions. We set 0 60PL dB= −  and 
choose 2,2.5,3,3.5, 4,4.5β = , the zero-mean 

Gaussian noise Nα  has a standard deviation of 3dB . 

The simulation results are as shown in Table 1. From 

Table 1, we can choose 0.1n −  as the optimal value 
of the parameter k . 

 
 

Table 1. The parameter b. 
 

Path loss exponent b 

2 0.09 
2.5 0.11 
3 0.12 

3.5 0.098 
4 0.10 

4.5 0.085 
 
 
Therefore, the weight model ( )w i  in Eq. (9) can 

be expressed as follows: 
 

( ) ( )

1

( ) ( ) / ( ( ) )
0.1 0.1

p i p jn

j

n n
w i p i p j

n n=

   = ⋅ ⋅   − −   
  (11) 

 
 

2.5. Process of Localization Algorithm 
 

The algorithm process of the proposed 
localization algorithm is as follows: 

Step 1: Beacon nodes periodically transmit 
information of themselves which include node ID 
and position information of themselves; 

Step 2: After unknown node receives signals, it 
records RSS values which come from beacon nodes; 

Step 3: Compute the measured distance 
~

id ; 
Step 4: Compute the weight ( )p i  and the 

improved weight 
( )( ) ( ) p in

p i
k

⋅ ; 

Step 5: Compute the weight 
( ) ( )

1

( ) ( ) / ( ( ) )
0.1 0.1

p i p jn

j

n n
w i p i p j

n n=

   = ⋅ ⋅   − −   
  through 

Eq. (11); 
Step 6: Compute the estimated position 

1

( , ) ( )
n

i
i

x y I w i
=

= . 

 
 

3. Performance Evaluation 
 

In this section, we analyze the performance of the 
studied localization schemes through simulations and 
experiments. We compare the proposed weighted 
centroid localization algorithm with WCL [23] and 
AMWCL-RSSI [25]. We set the degree 1g =  in  
all experiments. 
 
 

3.1. Localization Error Versus the Number 
of Anchor Nodes 

 

In this experiment we evaluate the effect that the 
number of anchors has on the location accuracy. 
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Fig. 3 depicts the effect on localization error when 
varying the number of anchors. All nodes are 
deployed in an 100m x 100m  area. Anchor nodes are 
randomly deployed at the edge of the selected area, 
1000 sensor nodes are randomly placed in the region. 
We assume that 0 60PL dB= −  and the zero-mean 

Gaussian noise Nα  has a standard deviation of 3dB . 

We set 2β = . 
From Fig. 4, it can be observed that WCLLS 

outperforms AMWCL-RSSI and WCL in 
localization accuracy. The explanation is that 
WCLLS increases the weights of anchors closer to 
the unknown node. It is also shown that the increase 
of the number of anchor nodes can reduce the 
localization error of WCLLS. When the number of 
anchor nodes is 8, the average localization error of 
WCLLS is approximately 0.6 m which is 
significantly lower than the average localization error 
of AMWCL-RSSI and WCL. 
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Fig. 4. Localization Error versus the Number  
of Anchor Nodes. 

 
 

3.2. Localization Error Versus the Path Loss 
Exponent 

 
In this experiment we evaluate the effect that the 

pass loss exponent has on the location accuracy. 
Fig. 5 depicts the effect on localization error when 
varying the pass loss exponent. All nodes are 
deployed in a 100m x 100m  area. Four anchors are 
respectively placed in four corners, 1000 sensor 
nodes are randomly placed in the region. We assume 
that 0 60PL dB= −  and the zero-mean Gaussian noise 

Nα  has a standard deviation of 3dB . 

From Fig. 5, it can be observed that as the pass 
loss exponent increases, the error in location 
estimation increases for WCLLS. When 2.1β > , the 
average localization error of WCLLS is greater than 
the average localization error of WCL. So, we can 
see that the pass loss exponent has an important 
impart on the localization error of WCLLS. Clearly, 

it is shown that when β  is about 2, WCLLS can 
obtain relative comparison small localization error. 

When the pass loss exponent 2β = , the average 
localization error of WCLLS is about 0.54 m. 
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Fig. 5. Localization Error versus the Path Loss Exponent. 
 
 

3.3. Localization Error Versus the Standard 
Deviation 

 
In this experiment we evaluate the effect that the 

standard deviation has on the location accuracy. 
Fig. 5 depicts the effect on localization error when 
varying the standard deviation. All nodes are 
deployed in an 100m x 100m  area. Four anchors are 
respectively placed in four corners, 1000 sensor 
nodes are randomly placed in the region. We assume 
that 0 60PL dB= −  and 2β = . 

From Fig. 6, it can be observed that as the 
standard deviation increases, the error in location 
estimation increases for WCLLS. Obviously, the 
standard deviation has an impact on the localization 
error of WCLLS. Additionally, WCLLS obviously 
outperforms WCL and AMWCL-RSSI in 
localization error. 
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Fig. 6. Localization Error versus the Standard Deviation.  
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3.4. Localization Error Versus Network Size 
 

In this simulation, we evaluate the effect the size 
of the network has on the location error. We 
simulated three network sizes: 50m x 50m , 
100m x 100m  and 200m x 200m . Four anchors are 
respectively placed in four corners, 1000 sensor 
nodes are randomly placed in the region. We assume 
that 0 60PL dB= −  and 2β = , and the zero-mean 

Gaussian noise Nα  has a standard deviation of 3dB . 

From Table 2, it can be observed that as the 
network size increases, the localization error 
increases for all three localization algorithms. The 
explanation is that the error of the RSS measurement 
increases as the network size increases. It also can be 
observed that WCLLS outperforms AMWCL-RSSI 
and WCL in localization accuracy. From Table 2, we 
can clearly know that the average localization errors 
of WCLLS in three network sizes are respectively 
about 0.2 m, 0.53 m and 1 m. 

 
 

Table 2. Localization error. 
 

Localization 
algorithm 

(m) 
50 m×50 m 100 m×100 m 200 m×200 m

AMWCL-
RSSI 

19.3 39 78 

WCL 4 7.8 15 
WCLLS 0.2 0.53 1 

 
 
3.5. Experiments 
 

In this section, we analyze the performance of the 
studied localization schemes through experiments. 
We compare the proposed algorithm with WCL and 
AMWCL-RSSI. In this experiment, the proposed 
algorithm is tested in a 200 m × 200 m region of our 
University’s campus lawn, 10 anchors are randomly 
placed in the region and an unknown node is placed 
in 50 different positions. Fig. 7, a wireless node is 
based on a MSP430 microprocessor and equipped 
with a compliant Chipcon CC2500 wireless module. 
We obtain the measured distance by (1). 
 
 

 
 

Fig. 7. Sensor node. 

Table 3 shows the localization error of three 
localization algorithms in real experiment. In Table 3, 
the localization error of WCLLS is 1.2 m which is 
lower than that of AMWCL-RSSI and WCL. Clearly, 
WCLLS outperforms WCL and AMWCL-RSSI in 
the localization accuracy. 
 
 

Table 3. Localization error. 
 

Localization 
algorithms 

Localization error 
(meters) 

AMWCL-RSSI 82.3 
WCL 40.1 
WCLLS 1.2 

 
 
4. Conclusions 
 

Many weighted centroid localization schemes 
have been widely used for WSNs. However, these 
schemes do not help, since the localization errors are 
high in practical deployments. To solve these 
problems, in this paper we have researched and 
analyzed many weighted centroid localization 
algorithms and RSS-based localization algorithms, 
and we have proposed a localization scheme, called 
Weighted Centroid Localization Algorithm Based on 
Least Square. WCLLS presents a Least-Square-based 
weight model which can reasonably weigh the 
proportion of each anchor node in the unknown node. 
In the proposed weight model, firstly, we utilize least 
square method to compute the weight. Secondly, the 
proposed weight model increases the weight of 
anchor node closer to the unknown node to estimate 
the location. Thirdly, the parameter is introduced into 
the proposed weight model, and we get the optimal 
value of through our real experiments. We have 
analyzed the performance of WCLLS through the 
network size, the number of anchor nodes, the 
standard deviation and the path loss exponent. All the 
experimental results demonstrate that WCLLS is 
superior to WCL and AMWCL-RSSI in the 
localization accuracy. From the experimental results, 
we can see that WCLLS is also suitable for an 
outdoor environment. More importantly, WCLLS has 
a lower localization error. 
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