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Abstract: Electrocardiogram (ECG) signal plays an important role in the diagnosis of cardiovascular disease. 
However, ECG signal is very faint and always affected by a variety of noise in the process of collecting. How to 
eliminate the noise effectively is an important issue and has been widely studied for many years. In this paper, 
we propose a new ECG de-noising method based on translation invariant (TI) wavelet transform and 
overlapping group shrinkage (OGS). The OGS is a new thresholding function, which is especially suitable for 
processing the large-amplitude coefficients form groups. The proposed method is tested on white Gaussian noise 
added the analog signals and ECG signals. Signal to Noise Ratio (SNR) and Root Mean Square Error (RMSE) 
are used to compare the performance of the proposed method with other de-noising methods. The experimental 
results indicate that the proposed de-noising method is the best in aspects of the improvement of SNR and 
remaining the geometrical characteristics of the ECG signals. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 
 

ECG signal is one of the non-linear, non-
stationary and weak biomedical signals, which can 
reflect human body heart activities and provide 
valuable information of the heart functional 
conditions. It is widely used in various kinds of heart 
disease diagnosis in clinic [1]. However, ECG signal 
is vulnerable to be corrupted by different noise 
during acquisition, such as baseline wander noise, 
power line interference, muscle contraction, motion 
artifacts etc. The noise will degrade the accuracy and 
precision of the analysis, so it must be eliminated in 
order to obtain a clean ECG signal for the accurate 
diagnosis of heart conditions.  

Recently, many de-noising methods have been 
reported in literature for ECG noise reduction, most 
of which based on filter banks, adaptive filtering, 
independent component analysis (ICA), empirical 
mode decomposition (EMD) and wavelet de-noising 
techniques [2-4]. However, the methods of filters are 
not so effective when the signal components and the 
noise components are overlapping in the spectrum, it 
will remove not only the noise components but also 
the high frequency components of the non-stationary 
signal, which will cause further signal distortion. 

Now with the development of wavelet theory, the 
application of signal processing method based on 
wavelet transform is more and more popular due to 
the advantages of the multi-resolution analysis and 
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the better time-frequency analysis characteristics, it 
has been proved to be a powerful tool for non-
stationary signal analysis. The wavelet thresholding 
de-noising method was first proposed by Donoho [5]. 
Since then, lots of de-noising methods based on the 
wavelet transform appeared for the non-stationary 
signals de-noising. Ying proposed a new threshold 
and shrinkage function based on the Multi-analysis 
wavelet threshold de-noising [6]. Han proposed a TI 
multiwavelet de-noising method for the ECG noise 
elimination [7]. 

In this paper, a new TI wavelet de-noising method 
with OGS algorithm is presented for the recovery of 
the signals contaminated by white additive Gaussian 
noise, which can suppress the Pseudo-Gibbs 
phenomenon in Q wave and R wave of the de-noised 
ECG signal. This paper is organized as follows: 
Section 2 introduces the wavelet transform, Section 3 
introduces the OGS algorithm and section 4 explains 
the proposed de-noising method. Experimental 
results are discussed in Section 5. Finally, the 
conclusions are presented in Section 6. 
 
 

2. Wavelet Transform 
 

French scientists Morlet and Grossman put 
forward the concept of continuous wavelet transform 
when they made the analysis of seismic waves and 
found the traditional Fourier Transform can’t meet 
the requirements of the local analysis in 1984 [8]. 

The wavelet transform describes a multi-
resolution decomposition process which decomposes 
a signal into a set of wavelet basis functions, which 
play a key role in the multi-resolution analysis in 
wavelet domain. A “mother wavelet” is a small wave 
which has energy limited and concentrated. If the 
function 2( ) ( )t Lψ ∈ R  satisfies the property: 
 

 1 2| | | ( ) |C t dψ ω ψ ω
+∞ −

−∞
= < ∞ , (1) 

 

where ( )tψ  is the Fourier Transform of ( )tψ . ( )tψ  is 

so called as a “mother wavelet”, and after scaling or 
translation which can generate a family of continuous 
wavelet functions: 
 

 -1/2
,

-
( ) | | ( )       , 0 ，ψ ψ= ∈ ≠a b

t b
t a a b a

a
R , (2) 

 

where a  is the scaling factor and b  is the translation 
factor. 

Thus for an arbitrary function 2( ) ( )f t L∈ R , the 

expression for continuous wavelet transform is  
given as: 
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where *( )tψ  is the conjugate function of ( )tψ . 

Computation of continuous wavelet coefficients 
at every possible scale is a fair amount of work and 

which generates an awful lot of data. In order to 
overcome this redundancy, we need a discretization 
processing. Discrete wavelet transform (DWT) can 
be obtained by discretization the scaling factor a  and 

the translation factor b . In general, the selection of a 
subset of scales and positions are as given below: 
 

0 0 0 0 0,      1,  0,  ,m ma a b nb a a b m n= = > ≠ ∈ Z , (4) 
 

The discrete wavelet functions can be expressed: 
 

 2
, 0 0 0( ) ( )m m

m n t a a t b nψ ψ− −= − , (5) 

 
For the function 2( ) ( )f t L∈ R , the DWT can be 

written by: 
 

 -m/2 *
, 0 0 0| | ( ) ( )    ,m

m nWf a f t a t nb dt m nψ
+∞ −

−∞
= − ∈ Z , (6) 

 
In particular, if 

0 2a =  and 
0 1b = , we can obtain 

the binary wavelet functions: 
 

 2
, ( ) 2 (2 )m m

m n t t nψ ψ− −= − , (7) 

 
The basic information of the signals will not loss 

in DWT, on the contrary, due to the orthogonality of 
the wavelet basis functions, the correlation between 
two points in wavelet space caused by redundancy 
will be eliminated, which makes the calculation error 
smaller. Therefore, DWT results in a more efficient 
and accurate analysis. 

Due to the good ability of time-frequency 
localization characteristics, wavelet transform has 
been widely used in the field of signal de-noising [9]. 
The de-noising method is easy to be conducted by 
dealing with the wavelet coefficients to remove the 
unwanted noise and then reconstructed them. In 
general, it can realize the de-noising purpose of the 
noisy signals. However, due to the lack of translation 
invariance of the wavelet basis, it may produce the 
Pesudo-Gibbs phenomenon in the neighborhood of 
discontinuities. One method to suppress such 
artifacts, termed “cycle spinning”, which first 
presented by Coifman and Donoho [10]. We can 
implement this method by shifting the noisy data, de-
noising the shifted data, and then inverse-shifting the 
de-noised data. Repeating these steps for many times 
and averaging the several results to obtain the final 
reconstructed signal. 
 
 
3. The OGS Algorithm 
 

In recent years, many algorithms based on 
sparsity have been developed for signal de-noising. 
These algorithms often utilize the nonlinear scalar 
thresholding functions of various forms which have 
been devised so as to obtain sparse representations. 
For many natural signals (ECG signal or PCG 
signal), the variables of signals or coefficients are not 
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only sparse but also exhibit a clustering or grouping 
property. For example, wavelet coefficients generally 
have inter and intra-scale clustering tendencies, and 
the large-amplitude values of the coefficients tend not 

to be isolated. However, 1 -norm algorithm such as 

Basic Pursuit (BP) and other separable sparsity 
models such as Lasso algorithm do not capture the 
tendency of coefficients to group sparsity. Chen and 
Selesnick developed a simple translation-invariant 
thresholding algorithm which exploits the grouping 
properties of the signals or coefficients called 
overlapping group shrinkage (OGS) [11]. They used 
this algorithm for speech signal de-noising and good 
results were obtained. The principle of OGS 
algorithm can be described as follows: 

Assuming the noisy observation ( )y i  is defined: 

 
 ( ) ( ) ( ),      y i x i i i Iω= + ∈ , (8) 

 
where ( )x i  is the signal which has a group sparse 

property and ( )iω  is the white Gaussian noise.  

The purpose of de-noising is to estimate the 
“clean signal” from the noisy one. A generally an 
effective approach for deriving thresholding function 
is to formulate the following optimization problem: 
 

 { }2*

2x

1
x arg min (x) y x (x)

2
F Rλ= = − + , (9) 

 
where (x)R  is the penalty function. If (x)R  is the 

separable form, such as (10), it significantly 
simplifies the task: 
 

 (x) ( ( ))
∈

=
i I

R r x i , 
(10) 

 
For example, if (x) | x |R = , then the solution to 

(9) is soft-thresholding corresponding to the  
MAP [12]: 
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where ( ) : max( ,0)x x+ = , the thresholding is λ . 

However, the OGS algorithm minimizes the cost 
function with the non-separable penalty  
function [11]: 
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where }{0,..., 1I N= − , { }0,..., 1J K= − , the set J 

defines the group, the index i is the group index, and j 
is the coefficient index within group i. Each group 
has the same size of | |J . The OGS thresholding 

function can be derived as follows using the 
Majorization-minimization (MM) method [13]: 
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where 

1 2
2

( ;x): ( )
j J k J

r i x i j k
−

∈ ∈

 = − + 
   and with the 

initialization ( )0x y= .  

For the de-noising problem, y  is the noisy data, 

so it is unlike that ( ) 0y i =  for any i. We just 

consider the case where (0) ( ) 0x i ≠ , so ( )( ; x ) 0kr i > , 
( )( ) 1 ( ; x )ky i r iλ +   lies strictly between zero and 

( )y i . When the group size K=1 and (x) | x |R = , then 

the solution is obtained by soft thresholding. The 
computational complexity of each iteration in OGS 
algorithm is of order KN, and the memory required 
for the algorithm is 2N + K. 

It can be seen from the above OGS thresholding 
iteration formula (13), the most important parameters 
are the regularization parameter λ , group size K and 
the number of iterations. 
 
 
3.1. The Parameters Set in OGS 
 

The regularization parameter λ  is the most 
important parameter for the de-noising effect in OSG 
thresholding. λ  should be chosen large enough to 
reduce the noise to a sufficiently negligible level, yet 
no larger so as to avoid unnecessary signal distortion. 

In order to set λ  so as to reduce the white 
Gaussian noise to a desired level, the effect of the 
OGS thresholding on standard white Gaussian noise 
is investigated. Although there is no explicit formula 
in OGS thresholding such as the soft thresholding 
about the output standard deviation σ  of the 
standard Gaussian noise against the thresholding T, 
the σ  can be found by simulation as a function of 

λ  for a fixed group size. In general, the de-noising 

process is more sensitive to λ  for larger group sizes, 

hence, the choice of λ  is more critical. 

Table 1 gives a portion values of λ  so that OGS 
thresholding produces an output signal with specified 
standard deviation σ  when the input signal is 
standard normal Gaussian noise.  
 
 

Table 1. Parameter λ  for standard normal i.i.d. signal 
 

Groups 
(K) 

Output std xσ  

10-2 10-3 10-4 10-5 
1×1 3.36 4.38 5.24 6.00 
1×3 1.16(1.18) 1.46(1.52) 1.60(1.77) 1.64(1.99)
1×5 0.73(0.75) 0.92(0.95) 1.01(1.12) 1.04(1.25)
2×3 0.59(0.61) 0.74(0.77) 0.80(0.89) 0.82(1.01)
3×5 0.29(0.31) 0.32(0.36) 0.35(0.40) 0.36(0.45)
5×5 0.21(0.23) 0.22(0.26) 0.23(0.29) 0.24(0.32)
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The first value of each column is obtained by full 
convergence and the second value is obtained by 
25 iterations. In practice, in order to reduce the 
amount of calculation, we usually choose 
25 iterations.  

For example, suppose one is using the OGS 
thresholding with K=5 for de-noising a signal 
contaminated by white Gaussian noise with standard 

deviation xσ , in order to reduce the noise down to 

1 % of its original value, one should set 0.75 xλ σ=   

if 25 iterations are used in OGS algorithm.  
Refer to [11] for more details about the  
OGS algorithm. 
 
 
4. The Proposed Method 
 

As mentioned above, we propose a novel TI 
wavelet de-noising method with OGS algorithm. 
Signals contaminated with white Gaussian noise 
through the wavelet transform can be well 
represented by few wavelet coefficients. According 
to the group characteristics of wavelet coefficients, 
we choose OGS thresholding function to process the 
detail coefficients only, in order to preserve the low 
frequency shapes of the ECG signals (P-wave and T-
wave), after which the noise components are 
significantly reduced. Finally, reconstruct the wavelet 
coefficients and inverse-shift the de-noised signal. 
Fig. 1 shows the block diagram of the TI wavelet de-
noising scheme. 
 
 

 
 

Fig. 1. Block diagram of the proposed de-noising method. 
 
 

So a possible strategy for de-noising the white 
Gaussian noise added signals can be built as follows:  

1) Determine the suitable wavelet basis function 
and decomposition layers. Shift the noisy signal 
within range of cycle spinning to get a new shifted 
signal and decompose the new signal into wavelet 
coefficients with DWT. 

2) Estimate the noise standard deviation in each 
layer of the wavelet detail coefficients. 

3) Determine the value of K and λ , and the 
number of iterations in the OGS algorithm. OGS 
thresholding function is used to shrink the wavelet 
coefficients of the noisy signal, and then obtain the 
de-noised signal by inversing discrete wavelet 
transform. 

4) Inverse-shift the de-noised signal to get the 
original order.  

5) Repeat the procedure (1)-(4) many times to get 
a series of de-noised signals. Calculate the average 
for all the obtained de-noised signals to get the final 
de-noised signal. 

5. Experiments and Results 
 

In this section, we conduct a number of 
simulations to evaluate our proposed de-noising 
method with six representative analog signals and 
two different ECG signals. The performance of the 
proposed method is compared with some other 
conventional methods. In the experiments, the 
Symlets wavelet (Sym4), 4-level and minimaxi 
thresholding is adopted. In the process of translation 
invariant, we take the cycle of 10 times and K=5, 

0.75λ σ= , 25 iterations are determined in the OGS 
algorithm according to Table 1, σ  is estimated by 
different layers of the detail coefficients. 

The performance of these methods is evaluated 
based on the SNR and RMSE. The SNR can be 
written as follows: 
 

 
1010 log ( )out

signal power
SNR

noise power
= ∗  

 
, (14) 

 
RMSE is defined as follows: 

 
 

2

1

( )
N

i i
i

x y
RMSE

N
=

−
=


, (15) 

 

where ix  is the de-noised signal and iy  is the “clean 

signal”, N is the length of the signal. 
 
 
5.1. Analog Signal De-noising 
 

We choose Spikes with 2 000 sampling points as 
the analog signal to evaluate the performance of the 
proposed de-noising method. White Gaussian noise 
with zero mean and standard deviation 0.055σ =  is 
added artificially to the Spikes signal resulting in the 
input SNR=15.365 dB. The “clean signal” and the 
noisy signal are achieved and shown in Fig. 2(a) and 
Fig. 2(b) respectively. The traditional DWT and TI 
wavelet de-noising methods are performed with soft 
thresholding, hard thresholding and OGS 
thresholding (Totally six de-noising methods). 
Fig. 2(c)-Fig. 2(h) shows the de-noised signal using 
the above six de-noising methods respectively. The 
output SNR of the proposed method is 26.692 dB, 
which increases 11.327 dB compared with the  
input SNR. 

It can be observed from Fig. 2 that the above six 
de-noising methods all can remove the added white 
Gaussian noise roughly. However, the methods in 
Fig. 2(e) and Fig. 2(h) deal with the wavelet 
coefficients by hard thresholding, which may lead to 
the oscillation in the reconstructed signal, and the soft 
thresholding is adopted in Fig. 2(d) and Fig. 2(g), 
which may produce a more smooth reconstructed 
waveform, but it will reduce the amplitudes whose 
absolute values are larger than the preset threshold, 
so a part of the high frequency components of the 
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useful signal will be loss. To overcome the above 
mentioned disadvantages, we use the new TI wavelet 
with OGS thresholding de-noising method as 
proposed. The de-noised signal is shown in Fig. 2(c) 
which suppresses the Pseudo-Gibbs phenomenon in 
the signal singularity effectively and gets a higher 
output SNR. 

In order to compare the performance of the six 
de-noising methods systematically through the input-
output SNR, six typical analog signals (Spikes signal, 

Bumps signal, Doppler signal, Time Shifted Sine 
signal, Angles signal and Parabolas signal) are 
adopted in the next experiments.  

When the input SNR of the six analog signals 
ranging from 5 dB to 30 dB for 5 dB per interval 
increases, the output SNR of different de-noising 
methods are shown in Fig. 3. The X-axis represents 
the input SNR and the Y-axis represents the  
output SNR of the de-noised signal with different de-
noising methods.  
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(a) Clean original signal (b) Noisy signal 
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(c) TI wavelet with OGS thresholding (d) TI wavelet with soft thresholding 
 

0 500 1000 1500 2000

-1

-0.5

0

0.5

1 SNR = 21.290dB

Sampling points

A
m

pl
itu

de

 
0 500 1000 1500 2000

-1

-0.5

0

0.5

1 SNR = 25.255dB

Sampling points

A
m

pl
itu

de

 
 

(e) TI wavelet with hard thresholding (f) Wavelet with OGS thresholding 
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(g) Wavelet with soft thresholding (h) Wavelet with hard thresholding 
 

Fig. 2. Spikes signal before and after de-noising with different methods. 
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(a) Spikes signal (b) Bumps signal 
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(c) Doppler signal (d) Time Shifted Sine signal 
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(e) Angles signal (f) Parabolas signal 
 

Fig. 3. Input and output SNR of different analog signals and de-noising methods. 
 
 

From Fig. 3 we can certainly conclude that for the 
different analog signals, when the input SNR 
increases from low to high, the proposed de-noising 
method is the best of the six methods in terms of the 
output SNR and shows a stable de-noising 
performance. As the ECG signal and Spikes signal 
are similar, the proposed method can also be applied 
to the ECG signal de-noising. 

5.2. ECG Signal De-noising 
 

To validate the superiority of the proposed de-
noising method, ECG signal in the MIT-BIH 
database is employed. The length of the original ECG 
signal is 2 000 sampling points and the sampling rate 
is 250 Hz. We add the white Gaussian noise with 
zero mean and standard deviation 0.06σ =  to the 
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clean original ECG signal, then the input 
SNR=12.228 dB. The above six methods are adopted 
for the de-noising experiments respectively. The 
clean ECG signal, noisy ECG signal and de-noised 

ECG signal are shown in Fig. 4. The results of the 
RMSE are given in Table 2. (c), (d), (e), (f), (g) and 
(h) in Table 2 represents the corresponding de-
noising method respectively. 
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(a) Clean original signal (b) Noisy signal 
 

0 500 1000 1500 2000

-1

-0.5

0

0.5

1 SNR = 19.499dB

Sampling points

A
m

pl
itu

de

 
0 500 1000 1500 2000

-1

-0.5

0

0.5

1 SNR = 15.704dB

Sampling points

A
m

pl
itu

de

 
 

(c) TI wavelet with OGS thresholding (d) TI wavelet with soft thresholding 
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(e) TI wavelet with hard thresholding (f) Wavelet with OGS thresholding 
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(g) Wavelet with soft thresholding (h) Wavelet with hard thresholding 
 

Fig. 4. ECG signal before and after de-noising with different methods. 
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Table 2. Comparison of different de-noising methods 
 
Methods (c) (d) (e) (f) (g) (h) 
RMSE 0.028 0.042 0.036 0.041 0.045 0.046 

 
 

Seen from Fig. 4, the proposed method not only 
eliminates the white Gaussian noise effectively, but 
also suppresses the Pseudo-Gibbs phenomenon in the 
reconstructed ECG signal, which makes the de-
noised ECG signal remain the main characteristics of 
the original signal and keep the amplitudes of R wave 
effectively. From Table 2, it is well known that the 
proposed method performs better than other methods 
according to the RMSE, the de-noised signal of 
which is closer to the original clean signal. 

The proposed method is also tested on another 
ECG signal with the same sampling points and 
sampling frequency. The noisy signal is obtained by 
adding white Gaussian noise and the input SNR is 
12.050 dB. It can be seen from Fig. 5 that the 
proposed de-noising method has a good performance 
in preserving the QRS wave and P wave of noisy 
ECG signal and the oscillation phenomenon is not 
obvious, which is very important for the detection 
and diagnosis of cardiovascular disease. The 
comparison of output SNR and RMSE with other 
methods are shown in Table 3. 
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Fig. 5. ECG signal before and after de-noising  
with the proposed method. 

 
 

Table 3. Comparison of different de-noising methods. 
 

Methods (c) (d) (e) (f) (g) (h) 
SNR 19.56 15.35 18.46 16.84 15.17 16.38

RMSE 0.034 0.041 0.046 0.051 0.058 0.072
 
 

From all the above experimental results, we can 
certainly conclude that the TI wavelet de-noising 
method with OGS algorithm can be an effective tool 
for de-noising the ECG signals providing high SNR 
of the de-noised ECG signals and good visual quality. 
 

6. Conclusions 
 

In the present work, we propose a new ECG 
signal de-noising method based on the TI wavelet 
transform and OGS algorithm. The traditional 
wavelet de-noising method may produce Pesudo-
Gibbs phenomenon which related to the signal 
singularity locations. TI wavelet transform can 
suppress the phenomenon by cycling spinning the 
positions of the signal singularity. OGS thresholding 
function can shrink the wavelet coefficients well. 

The experimental results of the analog signals and 
ECG signals show that the proposed method in this 
paper is superior to the other traditional de-noising 
methods in many aspects such as the smoothness, 
remaining the main ECG geometrical characteristics, 
which contain valuable physiological information for 
diagnostic purpose. The proposed de-noising method 
may be useful for the doctors to accurately diagnose 
cardiovascular ailments in patients.  
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