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Abstract: Capillary microfluidics or capillarics is gaining importance in the biotechnological domain. It 
combines the advantages of capillary actuation that does not require pumps or syringes to move the fluids, with 
low-cost fabrication, user-friendliness, portability and telemedicine compatibility. In this work, we present 
expressions of the spontaneous capillary flow velocity in different geometrical configurations. It is shown that 
relatively large velocities - at the scale of microsystems — can be reached by capillary microflows. 
Consequently transport distances can be important. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 

 

In biotechnology and medicine, point of care 
(POC) and home care systems are progressively 
gaining momentum. Such systems must be easily 
portable, user friendly, robust and low-cost. These 
systems considerably improve the comfort of patients 
and the rapidity of the diagnostics [1]. 

The conventional microfluidic systems use fluids 
moved by pumps, syringes or electric means, and are 
not the best solutions when portability and low-cost 
are an issue. Such systems are bulky and/or require 
costly, external appliances. 

On the other hand, capillary-based systems fulfill 
the requirements for POC and home-care [2-5]. In 
these systems, fluids are moved by capillary and 
surface tension forces. The self-motion of the fluid is 
called spontaneous capillary flow (SCF). In fact in 
such systems, the energy source for the fluid motion 

is the capillary force exerted by the triple line at the 
front end of the flow. This contrasts with pump or 
syringe-driven flows where the motor of the motion 
is a pump or a syringe placed at the back end of  
the flow.  

Moreover, the energy source for capillary-based 
systems is “packed in” under the form of an adequate 
surface energy of the walls, while the energy source 
is external to the biochip when dealing with  
active systems using pumps, syringes or other 
electrical means.  

Much different geometry of capillary channels 
exist (Fig. 1). Capillary systems can be confined, i.e. 
use closed microchannels [6], or they can have an 
open-surface and the microchannel has the shape of a 
groove etched in a solid substrate [7-11] or they can 
even be “suspended”, i.e. the liquids flow between 
vertical walls without supporting walls at the  
bottom [12-14].  
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Fig. 1. Different morphologies of capillary channels:  

(1) rectangular, confined; (2) U-groove; (3) V-groove;  
(4) rectangular suspended. 

 
 

For the applications in medicine and 
biotechnology, it is of utmost importance to 
determine the sample liquid velocities in such 
capillary systems. Especially it is essential to know if 
sufficiently high velocities can be reached in these 
channels. It is also of importance to know if a system 
can be totally filled by the sample liquid in an 
adequate time lapse. 

In this work, we derive differential equations for 
the velocity in capillary channels that collapse in 
closed form expressions when inertia can be 
neglected — which is frequent at the microscale. 
Four geometries are investigated and compared:  

1) Rectangular, confined channels; 
2) Rectangular, open-surface U-grooves;  
3) Triangular, open surface V-grooves; 
4) Rectangular, suspended channels (Fig. 1).  
The case of the triangular V-groove will not be 

studied in details; we just report the results of Rye 
and colleagues [7-9]. 

It is shown that the velocities are functions of the 
inverse of the square root of time, and that they are 
the product of the square root of a “physical” 
velocity and of a “geometrical” velocity. Depending 
on the morphology of the channel, relatively large 
velocities can be obtained, at least in the first few 
millimeters of the channel. 

 
 

2. The Dynamics of SCF 
 
We place ourselves in the simplified case where 

the liquid boundaries are a solid wall with a Young 
contact angle θ, and — in the case of open  
channels — a free boundary with air. From a 
dynamic standpoint, the average velocity of the open 
microflow can be determined using a balance 
between capillary forces, surface tension forces and 
friction with walls [15-18].  

The capillary force writes [19, 20] 
 

γθγ FWcap ppF −= cos , (1) 

 
where γ is the surface tension between the liquid and 
air, pW and pF are the wetted and free perimeters 
respectively in a cross-section of the channel, as 
shown in Fig. 2. 

On the other hand, the friction force is  
 

( )tzpSF Wdrag ττ == , (2) 

where τ is the wall friction, S is the wetted surface 
and z is the distance of the interface from inlet which 
depends on the time t. 
 
 

pW

pF

z

 
 

Fig. 2. Sketch of a capillary flow, with the free  
and wetted perimeters. 

 
 

On the other hand, the friction force is  
 

( )tzpSF Wdrag ττ == , (2) 

 
where τ is the wall friction, S is the wetted surface 
and z is the distance of the interface from inlet which 
depends on the time t. 
 

The force balance on the fluid flow is then 
 

dragcap FF
dt

dV
m −= , (3) 

 

where m is the mass of the fluid in the channel and V 
is the average velocity. The mass of fluid being 
proportional to the penetration distance, (3) can be 
written under the form 
 

( ) ( )tzppp
dt

dV
Stz WFWc τγθγρ −−= cos , (4) 

 

where Sc is the cross-section area and ρ is the 
volumic mass of the fluid. The Reynolds number of 
the fluid being small, the flow is highly laminar and 
the flow profile is “Poiseuille-like” in the channel. 
The friction τ then depends on the geometry of the 
channel and on the average velocity V. Locally, the 
wall fiction is 
 

λ
μμτ V

y

V
=

∂
∂

= , (5) 

 
where λ is the typical length that depends on the 
geometry. Upon substitution of (5) in (4), and using 
the relation dtdzV = , one obtains the second order 

differential equation for the motion 
 

0
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λ
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Usually, at the microscale, inertia can be 
neglected, because the Reynolds number of the order 
or less than 1. In such a case, relation (6) can be 
simplified to 
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( )
W
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dt

dz γθγ
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 (7) 

 
Integration of (7) yields 

 

( )
t

p
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z

W

FW γθγ
μ
λ −= cos2

 (8) 

 
Finally the capillary velocity is simply the time 

derivative of z 
 

( )
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pp
V

W

FW 1cos

2

γθγ
μ

λ −=  (9) 

 
Relations (8) and (9) are in agreement with the 

Lucas-Washburn-Rideal law for the capillary flow 
inside cylindrical channels [15-17]. Finally the 
relation between the capillary velocity and the 
distance is 

 


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In (8), (9) and (10), the only difficulty is the 

determination of the friction length λ. In the 
following, we show on some examples how λ can be 
approximately calculated. 
 
 
2.1. Confined Rectangular Channels 
 

In such channels, of width w and height h, the 
friction can approximately be expressed as 
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(11) 

 
where µ is the dynamic viscosity of the fluid. The 
friction length is then 
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On the other hand, the capillary force is 

 
( )hwFcap += θγ cos2  (13) 

 
The travel distance as a function of the time is 

then given by 
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(14) 

Note that, because the channel is closed, w and h 
are reversible in relation (14). If we note e the 
channel aspect ratio e=w/h, the capillary velocity is 
given by 
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where 
 

( )
( ) θλθ

cos
2112

1cos
21 he

ee
f =

+
+=  (16) 

 
is the non-dimensional function that depends on the 
geometry (and on the contact angle θ). Relation (15) 
states that the velocity is the product of the square 
root of a “physical velocity” μγ — which 

depends on the properties of the fluid—by the square 
root of a “geometrical velocity” th  and by a 

characteristic non-dimensional function 1f . 

Finally, eliminating the time from (14) and (15) 
produces the relation between the velocity and the 
penetration distance 
 

12 f
z

h
V

μ
γ=  (17) 

 
 
2.2. Open Rectangular U-grooves 

 
 

The SCF in open rectangular U-grooves is 
shown in Fig. 3. 

 
 

w

θ=60°

 
 

Fig. 3. SCF in a U-groove (quasi-static Evolver 
calculation). 

 
 

Following the same approach as that of preceding 
section, the friction length is given by 

 








 +

+
=

w

h

h

w

hw

2

2

6

1λ  
(18) 



Sensors & Transducers, Vol. 183, Issue 12, December 2014, pp. 123-128 

 126

and 
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The capillary velocity is then 
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relation which has the same form as (15) with a 
different geometrical function f2: 
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The penetration as a function of the distance  
z is then 
 

22 f
z

h
V

μ
γ=  (22) 

 
 
2.3. Suspended Rectangular Channels 
 

A suspended microflow is a flow that uses 
capillary forces and surface tension to fill and 
maintain a fluid in microscale structures devoid of a 
ceiling and floor (Fig. 4A). These flows have the 
advantage to be accessible on both sides, from above 
and from below.  

 
 

Inlet port Outlet port

suspended channel

1.2 cm

BA

 
 

Fig. 4. A: sketch of a suspended flow;  
B: SCF in a suspended channel (w=300 µm, h= 1 mm). 

 
 

The dynamics of this kind of microflow is 
derived in the same manner as for U-grooves [14], 
and we find 

 

6
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and 
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3. Experiments 
 

In this section, we experimentally checked the 
results of the preceding section.  

Clearly the Formulas (8) and (9) collapse to the 
Lucas-Washburn-Rideal equation in the case of the 
cylinder: in such a case λ=R/4, where R is the radius 
of the cylinder. 

Let us consider first the results obtained by Han 
and coworkers [21] for confined nanochannels of 
approximately rectangular cross section, and coated 
by a SiO2 layer. The nanochannels are 900 nm wide 
and 50 nm deep. Four different liquids were used: 
water, a 40 % ethanol solution, pure ethanol and 
isopropanol. Relation (14) is compared to the 
experimental results in Fig. 5. A good agreement is 
observed using the same physical properties of the 
liquids indicated in the publication. Note that the 
Washburn kinetics is respected, i.e. the travel 
distance is proportional to the square root of time. 
Note also that the contact angle is constant because 
the plots are linear: the capillary number being small, 
the advancing contact angle is constant and equal to 
the static contact angle.  

 
 

 
 

Fig. 5. Travel distances vs. square root of time  
in a silicon nanochannel coated by a silica layer  

(w=900 nm, h=50 nm). 
 
 

Second, experiments using rectangular U-groove 
have been performed: the channel is shown in insert 
of Fig. 6. The device is made of PMMA and 
hydrophilically treated with plasma O2. Again the 
agreement between experiments and relation (19) is 
satisfactory. 
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Fig. 6. SCF in a winding, rectangular, U-groove channel 
etched in PMMA (w=300 µm, h=1 mm) for three aqueous 
liquids. The three liquids are water dyed with different 
food coloring at different concentration. Dots are 
experimental results while continuous lines correspond to 
relation (19). 

 
 

Finally, experiments using a suspended  
channel have been conducted: the channel is shown 
in Fig. 4B and in insert of Fig. 7. The device is made 
of PMMA and hydrophilically treated with  
plasma O2.  

 
 

 
 

Fig. 7. Penetration distance as a function of time for three 
aqueous liquids. The aqueous liquids are water dyed with 
different food coloring at different concentration. Dots 
correspond to the experimental results, the continuous lines 
to the theoretical solution without inertial terms — relation 
(24), and dotted lines to the theoretical solution with the 
inertial terms — relation (6). 

 
 

4. Comparisons 
 

When comparing the different geometrical 
configurations, it is the geometrical function f that 
produces the velocity difference (Fig. 8). Fig. 9 
shows the penetration distance in the channel as a 
function of the elapsed time for two different aspect 
ratios e=0.22 and e=0.63 and a contact angle of 30°. 

We have added the case of the open triangular 
channel described by Rye and colleagues [15-17], 
where the dynamics is calculated by the Lucas-
Washburn-Rideal expression with an equivalent 
hydraulic radius. The liquid is water, with a surface 
tension γ = 72 mN/m, and a dynamic viscosity 
µ=0.001 Pa.s.  

The closed, open-U and suspended channels stay 
always in the same order for the velocity magnitude: 
the velocity is largest for the confined channel, then 
for the U-groove, and then for the suspended 
channel. On the other hand, the velocity in  
the V-groove varies considerably with the groove 
angle. Note that the aspect ratio e in the case of  
the V-groove is related to the groove angle by the 
relation ( ) 222tan ehw ==α . For e=0.22, α~6°, 

and for e=0.63, α~35°. 
 
 

Rectangular confined

U-groove

suspended

 
 

Fig. 8. Comparison of the penetration distance with the 
aspect ratio for confined-rectangular, open-rectangular and 
suspended channels. Continuous and dotted lines 
correspond respectively to a contact angle of 30° and 50°. 

 
 

(B) : e=0.63(A) : e=0.22

 
Fig. 9. Comparison of the penetration distance between the 
different geometries. A: aspect ratio e=0.22. B: aspect ratio 

e=0.63. In both cases the contact angle is 30°. 
 
 

5. Conclusions 
 

In this work, the capillary velocities in closed 
channels, U-grooves and suspended channels have 
been investigated. Closed form expressions for the 
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velocities with a dependency as t1  have been 

found, in agreement with the Lucas-Washburn-
Rideal approach.  

Relations between travel distance and time, and 
capillary velocity and time have been derived for 
different channel geometries, and they show the same 
canonical form. They only differ by a non-
dimensional “form” function typical of each channel. 

These expressions can be extrapolated to 
composite walls of different materials [14] — which 
is often the case with closed channels where the 
cover can be made of a different material. 

It seems that there is a need to investigate further 
the velocity in very narrow V-grooves since the usual 
expression of the literature diverges when the groove 
angle decreases towards zero. Moreover, the non-
Newtonian aspect is still to be investigated since 
biological fluids have often a shear-thinning 
behavior, and their viscosity increases with the 
decrease of the velocity in the capillary channel.  
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