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Abstract: The emerging high-efficiency video coding standard employs a new coding structure characterized by
coding unit, prediction unit and transform unit. It improves the coding efficiency significantly, but aso
introduces great computational complexity on the decision of optima coding unit, prediction unit and
transforms unit sizes. To reduce the encoding complexity, a fast adaptive coding unit depth range selection
algorithm is proposed. In the proposed scheme, first of all, the average depth error between adjacent and their
co-located largest coding unit are utilized to determine depth range of current largest coding unit. And then,
depth scaling factor in the previous and back frame are obtained to shrink the depth range. Furthermore, we also
propose a depth range correction algorithm for reducing misjudgment of changes in the larger sequences.
Experimental results show that the former algorithm can save encoding time of about 10% more than Shen's
algorithm with a BD-bitrates loss of 0.81 % and a BD-PSNR loss of 0.026 dB. Correction algorithm can save
same encoding time of Shen’s algorithm with a BD-bitrates lowering 0.76 % and a BD-PSNR improvement of

0.028 dB.
Copyright © 2014 IFSA Publishing, S L.
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1. Introduction

Currently, the content growth of high definition
(HD) and the HD broadcasting service are offering
uses to enjoy high quality and high resolution. In the
future, the content growth of ultra high definition
(UHD) and the UHD broadcasting service [1-4] also
will be offered to users following the demands to
needs for higher quality and higher resolution.
However, MPEG-2, MPEG-4 and H.264 have a
difficulty to meet above requirements. Therefore, in
January, 2010, Video Coding Experts Group (VCEG)
and 1SO/IEC (MPEG) founded a Joint Collaborative
Team on video coding to develop the next generation
video coding standard, namely High Efficiency

http://www.sensorsportal.com/HTML/DIGEST/P_2571.htm

Video Coding (HEVC) [5] which aims to further
reduce bit rate in half with the same reconstructed
video quality compared with H.264 [6]. While HEVC
took recursive quad-tree structured [7] coding unit
(CU) which makes HEVC coding more efficient, but
it also makes the HEVC have severa times higher
complexity.

There have been extensive researches on reducing
HEVC computational complexity. Li [8] et al.
employed spatial similarity to predict depth range of
current largest coding unit (LCU), but it had a
limitation on time saving because at least three
depths were needed to traverse. Shen [9] et d.
utilized temporal-spatial similarity to predict depth
range of current LCU through assigning weights for
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adjacent LCU and co-located LCU in the previous
frame. Although the method could reduce candidates
of CU depth, it needed some improvement because of
regardless of difference of video sequence. Fixed
weights were not suitable for all segquences. In
addition, Kim [10] et al. employed a threshold which
was obtained by Bayesian theory training to
terminate CU splitting process and Yu [11] et a. also
terminated CU splitting process through mean
squared error.

This paper proposes a fast adaptive CU depth
range selection algorithm which improves Shen's
method. We assign weights adaptively according to
average depth error between adjacent and their co-
located LCU for predicting depth range of current
LCU accurately. Then, depth scaling factor in the
previous and back frames are utilized to shrink depth
range (DR) thus reducing computational complexity
continue. Finally, we put forward a correction
algorithm (CA) based on linear weighted for depth
scaling factor. The CA can achieve higher
performance than Shen’s method.

The paper is organized as follows. In the next
section, the complexity problem in CU splitting
process is analyzed. In Section 3, the proposed

method is described in detail. Section 4 shows the
corresponding experimental results. Finally, we
conclude this paper in Section 5.

2. Computational Complexity Problem

In HEVC, every CU will be split into four equal
sub-CUs through recursive method. The size of sub-
CU is 32x32, 16x16 or 8x8. The final segmentation
result is determined by rate-distortion function [12].
Fig. 1 shows the segmentation process. The rate-
distortion function is defined [13] as follows:

J = SHma + WerromaX SEhromat AX B, (1)

where B represents necessary bits after predicting for
current CU, SSE|,, and SSEg,oma 1S the sum of
square error between original block and reconstructed
block about luminance and chroma respectively,
Weroma 1S the weight of chroma and A is the

Lagrange multiplier.
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Split flag=0 Split flag=1 PU_Inter
0| 1 B
2N,| cw CU depth=2
2 3 NZ = 8
2N, 2N x2N 2NxN Nx2N NxN
Last depth: no spltiting flag
0 1 »
2N3 cu3 CU depth=3
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CU splitting process PU predicting mode

Fig. 1. CU splitting processin HM.

In HM, the CU is of four different possible sizes:
64x64, 32x32, 16x16 and 8x8. Each LCU can be
split into four CUs recursively up to the maximum
allowable hierarchical depth. CU splitting process in
HM about a LCU is shown in Fig 1. Firstly, HM
codes current 64x64 LCU and calculates rate-
distortion cost. Then, it splits LCU into four sub-CU
which depth is one and calculates rate-distortion cost
of the first sub-CU. When depth is two or three, HM
do the same process until the depth reaches three.
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Finally, HM starts recursion from depth 3 to depth 0.
For instance, if four 8x8 sub-CU block’'s rate-
distortion cost is less than rate-distortion of
16x16 CU, HM chooses 8x8 CU, otherwise choosing
16x16 CU. At the same time, the leaf node CUs can
be further split into predicting unit (PU)s. PU is the
basic unit for prediction and it allows multiple
different shapes to encode irregular image patterns as
shown in Fig 1. The transform unit (TU) is defined
for residual transform and quantization. From the leaf
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node of CU, the TU can be split into four sub-TUs
recursively until the minimal alowable TU depth,
and signaled by aflag.

As analyzed above, HEVC performs full search
on al possible CU size, mode and TU size by
evauating the rate distortion (RD) cost. Therefore, it
results in a substantial computational complexity of
HEV C about inter frame.

3. Proposed Method

In this section, a fast CU size decision agorithm
based on temporal-spatial similarity and quad-tree
coding structure is described, including adaptive CU
depth range selection agorithm and correction
algorithm. We start with statistical analysis for
temporal-spatial similarity, which provide useful
guidelines for assigning weights. We utilize average
depth error (ADE) which is defined by previous
frame and current frame to assign weights for co-
located LCU and adjacent LCU in order to get
predicting depth range. Then, we can continue shrink
depth range according to depth scaling factor in the
previous and back frames. Finally, for reducing
misjudgment of changes in the larger sequences, a
correction algorithm is proposed.

3.1. Statistical Analysisfor Temporal-
Spatial Similarity

HEVC utilizes quad-tree structure and CU depth
to decide segmentation after traversing every depth in
the [0,3]. However, we can reduce computational
complexity through predicting DR in advance thus
skipping unnecessary depth. This paper utilizes
temporal-spatial similarity to predict DR type of
current LCU. We define ADE according to Fig. 2 for
utilizing temporal-spatial similarity accurately. The
ADE is defined as follows

ADE = (|LADE| +[TADE|)/2, )

where LADE is average depth error between Left
LCU and CLeft LCU, TADE is average depth error
between Top LCU and CTop LCU.

CTop Top

LCU LCU

CoL Cur
ClLeft | LCU Left [N
LCU LCU

Previous frame Current frame

Fig. 2. Temporal-spatial similarity of LCU.

As we know, DR type of current LCU is similar
to adjacent LCU and co-located LCU in the
reference. We should define temporal similarity
factor (TSF) and spatial similarity factor (SSF) in
order to obtain relationship between ADE and
temporal-spatial similarity. The TSF and SSF are
defined as follows:

TS =num /N;, 3
SS:i=ni/Ni, (4)

where i represents interval of ADE, with 0 standing
for [0, 1], 1 for [1, 2] and 2 for [2, 3]. num is the
4x4 number of equal depth in the interval, nis the
number of equal average depth in the interval, N; is

the total 4x4 number of interval. The temporal-spatial
similarity results are demonstrated in Table 1.

Table 1. The temporal-spatial similarity results of LCU.

CoL-LCU Left-LCU Top-LCU

Sequence 01 [112] [123 [0 [[12 [[23 |04 [[12 [[23]

BasketbalIDrill 0576 | 0307 | 0.039 | 0334 | 0345 | 0.791 | 0376 | 0.384 | 0.801
Basketbal I Drill Text 0571 | 0303 | 0038 | 0338 |0340 |0.779 | 0376 | 0385 | 0.759
BasketballPass 0775 | 0453 | 0344 | 0201 | 0325 | 0333 | 0598 | 0599 | 0.667
BlowingBubbles 0491 | 0269 | 0065 | 0181 | 0284 | 0609 | 0251 | 0.323 | 0.435
PartyScene 0517 | 0225 | 0016 | 0247 | 0315 | 0.782 | 0.310 | 0.371 | 0.800
PeopleOnSireet 0510 | 0320 | 0101 | 0.87 | 0.332 | 0.667 | 0171 | 0.286 | 0.660
RaceHorsesC 0413 [ 0279 | 0458 | 0402 | 0217 | 0250 | 0132 | 0250 | 0.278
Average 0550 | 0308 | 0109 | 0227 | 0.308 | 0602 | 0.316 | 0.371 | 0.629

From Table 1, with increment of ADE, temporal
similarity gradually reduces and spatial similarity
improves. Accordingly, we can predict DR type of
current LCU through obtaining adaptive weights
according to ADE.

3.2. Adaptive Depth Range Selection Scheme

Video sequence has a strong temporal-spatial
similarity especidly in flat area. The DR type of
current LCU is similar to adjacent LCU. At the same
time, co-located LCU in the reference can be
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referential basis of current LCU because of high
correlation for video sequence. So we can utilize
adjacent LCU and co-located LCU to predict DR
type of current LCU thus skipping unnecessary CU
depth and PU predicting process. We can use average
depth of co-located LCU, left LCU and top LCU to
define Depthy,¢ in order to determine DR type of

current LCU. Depth,, o isdefined asfollows:

Depthyeq = ziN:Owi x avedepth , 5)

where N=2, i is the index of reference LCU, with 0
standing for co-located LCU, 1 for left LCU and 2 for
top LCU. avedepth; is average depth of

corresponding LCU. W, is weights of corresponding

LCU and the sum is equa to 1. The weights of co-
located LCU, left LCU and top LCU
is—0.1x ADE + 0.5, 0.05x ADE + 0.25 and
0.05x ADE + 0.25 respectively according to analysis
results as shown in Table 1.

We can predict DR type of current LCU
according to Depth,o; as mentioned above. The

relationship between Depth,oq and DR type is
demonstrated in Table 2.

Table 2. Relationship between predicting depth

and DR type.
Depthpyeg Candidates Depth DR
0 0 [0,0]
(0, 0.5] 0.1 [0,1]
(0.5, 1.5] 0,12 [0,2]
(15, 2.5] 123 [1,3]
(25,3 23 [2.3]

From Table 2, we can skip unnecessary CU depth
according to DR type which is obtained through
Depth,eq thus reducing computational complexity.

In order to prove accuracy of the DR type, we
make a statistics about the accuracy of DR type
including depth after HM agorithm. The accuracy is
demonstrated in Table 3.

Table 3. The accuracy of DR type.

Sequence 00 | 04 | (02 | 13 | [23]
BasketbalIDrill | 94.32 %] 96.41 %] 96.34 %| 91.95 %) 95.83 %
Traffic 98.79 %] 98.54 %] 98.18 % 86.60 %|93.57 %
Basketbal I Drill Text | 94.80 %|97.11 %] 96.10 %)| 92.54 %) 89.58 %
BlowingBubbles | 100 % | 100 % |97.51 %)|92.17 %) 97.92 %

Cactus 98.55 %|98.63 %|98.44 %|92.04 %|94.57 %
PartyScene 98.10 %|97.59 % 96.80 %|92.21 %|93.64 %
PeopleOnStreet 97.02 %] 98.05 % 96.49 %| 96.58 %|92.13 %
ChinaSpeed 93.76 %] 99.12 %[ 97.08 %| 94.18 % 88.75 %
IAverage 96.92 %|98.18 %|97.12 %|92.28 %|93.25 %
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From Table 3, misudgment rate of five DR type
are less than 8 %, especidly in first three DR type
only 182%308%. So, proposed ACUDR
algorithm can achieve high reliability.

3.3. Depth Scaling Factor Shrink DR

We can’t reduce much computational complexity
ininterval [0, 2] and [1, 3] because we still have three
depth need to traverse. As we know, neighbor frames
have a similar CU depth because of high correlation
for video sequence. Therefore, we define depth
scaling factor (DSF) according to previous and back
frames in order to reduce DR thus reducing
computational complexity continue. The DSF is
defined asfollows

DS =count;; /N, (6)

where i=0, 1 represents co-located LCU in the
previous and back frame respectively, j represents
CU depth. count;; represents CU depth 4x4 number

in the co-located L CU, N=256.

For DR= [0, 2], if DSF,, and DSF, are equd
to O, depth 0 is eliminated from the candidate depth;
if DSFg, and DSF, arelessthan 0.125, we traverse
only interval [0, 1].

For DR= [1, 3], if DS~y and DSF;; are equd
to O, depth 1 is eliminated from the candidate depth;
if DSFy; and DSF; areless than 0.125, we traverse
only interval [1, 2].

For DR= [2, 3], if DSFy, and DSF, are less
than 0.125, depth 2 is eliminated from the candidate
depth; if DSFy; and DSF5 are less than 0.125, we
traverse only interval [2, 2].

3.4. Depth Range Correction Algorithm

The agorithm devised in section 3.2 would result
in errors in predicting sharp scene shifting sequences.
Therefore, a correction algorithm, CA, was invented
to deal with this drawback. Shown in Fig. 3, co-
located LCU in adjacent two frames, together with
the left and upper LCU of current LCU were adopted
to determine depth range to traverse through. The
weighed formulais defined as follows:

Previous frame Current frame Back frame

Fig. 3. Temporal-spatia similarity of LCU.
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CU; =Z?:O(wj xcount;; / N), (7
where i represents CU depth, CU stands for
percentage of each CU depth; j is the index of
reference LCU, with 0 standing for co-located LCU
in the previous frame, 1 for LCU in the back frame,
2and 3 for left and top LCU of current LCU
respectively. count; is the percentage of each CU

depthiinLCU j. w; isthe weight of LCU j. w, and
w, are set 0.3, while w, and w; are set 0.2, N
symbolizes 4x4 number in one LCU, that is 256.
When CU,, CU;, CU, and CU; are known,
those depth percent coefficients that are less than 0.1

will be removed from candidates. The rest CU depth
will be traversed through to lower coding complexity.

4. Experimental Results and Discussions

To test the effectiveness of the proposed
agorithm, HM9.0 [14] was sedlected as the test
model. The experiments were conducted on a PC
with configurations as follows. CPU Intel core
i5-2500, clock speed 3.30 GHz, RAM 8 G, operating

system Windows7 and developer tool Microsoft
Visual Studio 2008. 100 frames of each sequence
were tested with random access mode [15] and with
QP including 22, 27, 32, 37. Experimental results
were presented in the form of BD-PSNR,
(Bjentegaard delta peak signal-to-noise rate), BDBR
(Bjontegaard delta bit rate) [16] and AT . BDPSNR
indicates PSNR difference at the same bitrate, while
BDBR shows bitrate variance at the same PSNR
level. AT (%) isdefined asfollows

AT =(Tp —Tym )/ Tym x100%, (8)

where T, and T,,, represents coding time of the

proposed algorithm and origina HM algorithm
respectively.

Twelve sequences were tested on common test
conditions. In the meantime, Shen's method was
realized and compared with this paper's ACUDR,
ACUDR+DSF and CA algorithms. Table 4 shows the
comparison among ACUDR, CA and Shen's
agorithms. Table 5 reveals the difference between
ACUDR+DSF and Shen’s method.

Table 4. Comparison results among Shen’s method, ACUDR and CA algorithms.

Shen Proposed method
. ACUDR ACUDR CA
ype Sequence BDPSNR [BDBR| AT |BDPSNR| BDBR | AT |BDPSNR| BDBR | AT
(dB) (%) | (%) (dB) (%) (%) (dB) (%) | (%)
Class A Traffic -0.031 1.01 | -37.57 -0.025 0.82 -36.42 -0.024 0.80 -32.42
(2560x1600) |PeopleOnSireet 0025 | 063 |-2215] -0.019 047 | 2254 | 0028 | 070 |-2813
ClassB |BasketballDrive 0022 | 123 | -3385] -0.018 089 | 3273 | 0012 | 064 |-30.73
(1920x1080) [Cactus 0012 | 060 |-3222] -0.009 045 | 3169 | 0012 | 057 |-2953
ClassC_ |BasketbalDril 20061 | 168 | -22.96] -0.046 127 | 2286 | -0025 | 069 |-2061
(832x480) BQMall -0.078 2.01 | -22.56 -0.047 1.22 -22.13 -0.021 0.55 -20.33
ClassD Basketbal|Pass -0.050 1.15 | -14.68 -0.003 0.094 -11.10 0.003 -0.076 |-13.53
(416x240) [BlowingBubbles 20009 | 025 |-10.66] -0.033 074 | 1465 | -0004 | 011 |-10.66
ClassE  [KristenAndSara 20020 | 107 |-47.95] -0.014 053 | 4631 | 0014 | 055 |-37.36
(1280x720) [Vidyod 0038 | 148 | -43.78| -0.029 116 | 4314 | -0004 | 015 |-40.10
lar  BaketballDrilText 007 | 180 |2273| -0.051 131 | 2228 | -0021 | 055 |-20.75
ChinaSpeed 2009 | 167 |2667] -0.055 103 | 2646 | -0017 | 032 |-2819
Average 20043 | 122 |-2815] -0.029 083 | 2760 | 0015 | 046 |-2603
Table 5. Comparison results between ACUDR+DSF and Shen’s algorithms.
Shen ACUDR+DSF
Type Sequence BDPSNR | BDBR | AT | BDPSNR | BDBR AT
(dB) (%) (%) (dB) (%) (%)
Class A Traffic -0.031 1.01 -37.57 -0.11 3.49 -41.96
(2560x1600) PeopleOnStreet -0.025 0.63 -22.15 -0.047 1.18 -36.25
ClassB Kimono 20,010 033 | 3259 20037 127 43.70
(1920x1080) Cactus -0.012 0.60 -32.22 -0.034 1.70 -39.31
ClassC PartyScene -0.020 0.45 -20.79 -0.048 1.13 -31.96
(832x480) RaceHorsesC 20018 052 | -15.86 20041 116 2734
ClassD RaceHorses 20.002 004 | -1163 20031 0.67 2107
(416x240) BlowingBubbles 20.009 025 | -10.66 20022 0.62 1953
ClassE Vidyo3 20017 056 | 4231 20,049 171 ~26.89
(1280x720) FourPeople -0.021 0.64 -42.23 -0.059 176 ~45.89
oot Basketbal Drill Text 20,07 180 | 2273 -0.08 206 32.80
ChinaSpeed -0.09 1.67 -26.67 -0.078 1.46 -38.02
Average 20027 071 | 2645 20053 152 -35.39
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From Table 4, it can be seen that compared with
HM9.0, Shen's methods saved 28.15 % coding time,
reduced 0.043dB PSNR and increased BDBR by
1.22 %. The proposed ACUDR agorithm, took up
nearly the same coding time while BDPSNR
increased by 0.014dB and BDBR decreased by
0.39 % compared with Shen’s method. CA agorithm
was employed to deal with sharp scene shifting
seguences. In comparison with Shen's, it cost
comparable coding time with BDPSNR increasing by
0.028 dB and BDBR decreasing by 0.76 %. CA is
especialy applicable to BasketbalIDrill, BQMall and
Class F sequences in that it predicted LCU depth
range more accurately. According to Table 5, the
combination of ACUDR+SFD saved 35.39 % time
when compared with origina HM9.0 agorithms.
And it occupied 10 % less time than Shen’s did
without obvious increase in BDBR and decrease in
BDPSNR. Fig. 4 shows rate distortion performance
of sequences PeopleOnStreet, Kimono, PartyScene
and BlowingBubbles tested with each algorithm
(HM9.0, Shen’'s, ACUDR, CA and ACUDR+DSF).

From Fig. 4, it is clear that al the agorithms
possessed comparable rate distortion performance,
indicating some reiability of the proposed
algorithms. Fig. 5 shows the LCU partitions of each
scheme. The red part demonstrates the mismatches
with the original partitions.
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From Fig. 5, CA partition result is closer to the
origina one than Shen's. There only exist severa
mismatches, which have similar CU depths with
original ones. Therefore, the global rate distortion
performance stays stable.

5. Conclusions

This paper proposes an adaptive CU depth
selection agorithm, aiming to improve Shen's
methods. Firstly, average depth error was adopted to
decide the weight of adjacent LCU and co-located
LCU, which was later used to determine LCU DR
type. Secondly, depth scaling factors of the adjacent
frames were used to shrink DR. Finaly, with respect
to sharp scene change sequences, a depth range
correction algorithm was devised, which took
advantage of neighboring frames depth scaling
factors. Results showed that the proposed
ACRDR+SFD took up 10 % time less than Shen's
did while BDBR increased by about 0.81% and
BDPSNR decrease by 0.026 dB. Nevertheless, CA
cost nearly equivalent time, with 0.76 % lower
BDBR and 0.028dB increase in BDPSNR.
Further researches on inter prediction modes to avoid
unnecessary mode traversal, thus lowering
coding complexity.
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Fig. 4. Rate distortion performance of sequences.
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(c) CA

(d) ACUDR+DSF

Fig. 5. Quad-tree partitioning results of BasketballPass sequence when QP is equal to 32.
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