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Abstract: The emerging high-efficiency video coding standard employs a new coding structure characterized by 
coding unit, prediction unit and transform unit. It improves the coding efficiency significantly, but also 
introduces great computational complexity on the decision of optimal coding unit, prediction unit and 
transforms unit sizes. To reduce the encoding complexity, a fast adaptive coding unit depth range selection 
algorithm is proposed. In the proposed scheme, first of all, the average depth error between adjacent and their 
co-located largest coding unit are utilized to determine depth range of current largest coding unit. And then, 
depth scaling factor in the previous and back frame are obtained to shrink the depth range. Furthermore, we also 
propose a depth range correction algorithm for reducing misjudgment of changes in the larger sequences. 
Experimental results show that the former algorithm can save encoding time of about 10% more than Shen’s 
algorithm with a BD-bitrates loss of 0.81 % and a BD-PSNR loss of 0.026 dB. Correction algorithm can save 
same encoding time of Shen’s algorithm with a BD-bitrates lowering 0.76 % and a BD-PSNR improvement of 
0.028 dB.  
Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 
 

Currently, the content growth of high definition 
(HD) and the HD broadcasting service are offering 
uses to enjoy high quality and high resolution. In the 
future, the content growth of ultra high definition 
(UHD) and the UHD broadcasting service [1-4] also 
will be offered to users following the demands to 
needs for higher quality and higher resolution. 
However, MPEG-2, MPEG-4 and H.264 have a 
difficulty to meet above requirements. Therefore, in 
January, 2010, Video Coding Experts Group (VCEG) 
and ISO/IEC (MPEG) founded a Joint Collaborative 
Team on video coding to develop the next generation 
video coding standard, namely High Efficiency 

Video Coding (HEVC) [5] which aims to further 
reduce bit rate in half with the same reconstructed 
video quality compared with H.264 [6]. While HEVC 
took recursive quad-tree structured [7] coding unit 
(CU) which makes HEVC coding more efficient, but 
it also makes the HEVC have several times higher 
complexity. 

There have been extensive researches on reducing 
HEVC computational complexity. Li [8] et al. 
employed spatial similarity to predict depth range of 
current largest coding unit (LCU), but it had a 
limitation on time saving because at least three 
depths were needed to traverse. Shen [9] et al. 
utilized temporal-spatial similarity to predict depth 
range of current LCU through assigning weights for 
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adjacent LCU and co-located LCU in the previous 
frame. Although the method could reduce candidates 
of CU depth, it needed some improvement because of 
regardless of difference of video sequence. Fixed 
weights were not suitable for all sequences. In 
addition, Kim [10] et al. employed a threshold which 
was obtained by Bayesian theory training to 
terminate CU splitting process and Yu [11] et al. also 
terminated CU splitting process through mean 
squared error. 

This paper proposes a fast adaptive CU depth 
range selection algorithm which improves Shen’s 
method. We assign weights adaptively according to 
average depth error between adjacent and their co-
located LCU for predicting depth range of current 
LCU accurately. Then, depth scaling factor in the 
previous and back frames are utilized to shrink depth 
range (DR) thus reducing computational complexity 
continue. Finally, we put forward a correction 
algorithm (CA) based on linear weighted for depth 
scaling factor. The CA can achieve higher 
performance than Shen’s method. 

The paper is organized as follows. In the next 
section, the complexity problem in CU splitting 
process is analyzed. In Section 3, the proposed 

method is described in detail. Section 4 shows the 
corresponding experimental results. Finally, we 
conclude this paper in Section 5. 
 
 
2. Computational Complexity Problem 
 

In HEVC, every CU will be split into four equal 
sub-CUs through recursive method. The size of sub-
CU is 32×32, 16×16 or 8×8. The final segmentation 
result is determined by rate-distortion function [12]. 
Fig. 1 shows the segmentation process. The rate-
distortion function is defined [13] as follows: 
 

 BSSEwSSEJ chromachromaluma ×+×+= λ , (1) 

 
where B represents necessary bits after predicting for 
current CU, lumaSSE  and chromaSSE  is the sum of 

square error between original block and reconstructed 
block about luminance and chroma respectively, 

chromaw  is the weight of chroma and λ  is the 

Lagrange multiplier. 
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Fig. 1. CU splitting process in HM. 
 
 

In HM, the CU is of four different possible sizes: 
64×64, 32×32, 16×16 and 8×8. Each LCU can be 
split into four CUs recursively up to the maximum 
allowable hierarchical depth. CU splitting process in 
HM about a LCU is shown in Fig 1. Firstly, HM 
codes current 64×64 LCU and calculates rate-
distortion cost. Then, it splits LCU into four sub-CU 
which depth is one and calculates rate-distortion cost 
of the first sub-CU. When depth is two or three, HM 
do the same process until the depth reaches three. 

Finally, HM starts recursion from depth 3 to depth 0. 
For instance, if four 8×8 sub-CU block’s rate-
distortion cost is less than rate-distortion of  
16×16 CU, HM chooses 8×8 CU, otherwise choosing 
16×16 CU. At the same time, the leaf node CUs can 
be further split into predicting unit (PU)s. PU is the 
basic unit for prediction and it allows multiple 
different shapes to encode irregular image patterns as 
shown in Fig 1. The transform unit (TU) is defined 
for residual transform and quantization. From the leaf 
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node of CU, the TU can be split into four sub-TUs 
recursively until the minimal allowable TU depth, 
and signaled by a flag. 

As analyzed above, HEVC performs full search 
on all possible CU size, mode and TU size by 
evaluating the rate distortion (RD) cost. Therefore, it 
results in a substantial computational complexity of 
HEVC about inter frame.  
 
 

3. Proposed Method 
 

In this section, a fast CU size decision algorithm 
based on temporal-spatial similarity and quad-tree 
coding structure is described, including adaptive CU 
depth range selection algorithm and correction 
algorithm. We start with statistical analysis for 
temporal-spatial similarity, which provide useful 
guidelines for assigning weights. We utilize average 
depth error (ADE) which is defined by previous 
frame and current frame to assign weights for co-
located LCU and adjacent LCU in order to get 
predicting depth range. Then, we can continue shrink 
depth range according to depth scaling factor in the 
previous and back frames. Finally, for reducing 
misjudgment of changes in the larger sequences, a 
correction algorithm is proposed. 
 
 

3.1. Statistical Analysis for Temporal- 
Spatial Similarity 

 

HEVC utilizes quad-tree structure and CU depth 
to decide segmentation after traversing every depth in 
the [0,3]. However, we can reduce computational 
complexity through predicting DR in advance thus 
skipping unnecessary depth. This paper utilizes 
temporal-spatial similarity to predict DR type of 
current LCU. We define ADE according to Fig. 2 for 
utilizing temporal-spatial similarity accurately. The 
ADE is defined as follows 

 2/)( TADELADEADE += , (2) 

 
where LADE is average depth error between Left 
LCU and CLeft LCU, TADE is average depth error 
between Top LCU and CTop LCU. 
 
 

 
 

Fig. 2. Temporal-spatial similarity of LCU. 
 
 

As we know, DR type of current LCU is similar 
to adjacent LCU and co-located LCU in the 
reference. We should define temporal similarity 
factor (TSF) and spatial similarity factor (SSF) in 
order to obtain relationship between ADE and 
temporal-spatial similarity. The TSF and SSF are 
defined as follows: 

 

 iii NnumTSF /= , (3) 
 

 iii NnSSF /= , (4) 
 

where i represents interval of ADE, with 0 standing 
for [0, 1], 1 for [1, 2] and 2 for [2, 3]. inum  is the 

4×4 number of equal depth in the interval, in is the 

number of equal average depth in the interval, iN  is 

the total 4×4 number of interval. The temporal-spatial 
similarity results are demonstrated in Table 1. 

 
 

Table 1. The temporal-spatial similarity results of LCU. 
 

 CoL-LCU Left-LCU Top-LCU 
Sequence [0,1] [1,2] [2,3] [0,1] [1,2] [2,3] [0,1] [1,2] [2,3] 
BasketballDrill 0.576 0.307 0.039 0.334 0.345 0.791 0.376 0.384 0.801 
BasketballDrillText 0.571 0.303 0.038 0.338 0.340 0.779 0.376 0.385 0.759 
BasketballPass 0.775 0.453 0.344 0.201 0.325 0.333 0.598 0.599 0.667 
BlowingBubbles 0.491 0.269 0.065 0.181 0.284 0.609 0.251 0.323 0.435 
PartyScene 0.517 0.225 0.016 0.247 0.315 0.782 0.310 0.371 0.800 
PeopleOnStreet 0.510 0.320 0.101 0.187 0.332 0.667 0.171 0.286 0.660 
RaceHorsesC 0.413 0.279 0.158 0.102 0.217 0.250 0.132 0.250 0.278 
Average 0.550 0.308 0.109 0.227 0.308 0.602 0.316 0.371 0.629 

 
 

From Table 1, with increment of ADE, temporal 
similarity gradually reduces and spatial similarity 
improves. Accordingly, we can predict DR type of 
current LCU through obtaining adaptive weights 
according to ADE. 
 

3.2. Adaptive Depth Range Selection Scheme 
 

Video sequence has a strong temporal-spatial 
similarity especially in flat area. The DR type of 
current LCU is similar to adjacent LCU. At the same 
time, co-located LCU in the reference can be 
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referential basis of current LCU because of high 
correlation for video sequence. So we can utilize 
adjacent LCU and co-located LCU to predict DR 
type of current LCU thus skipping unnecessary CU 
depth and PU predicting process. We can use average 
depth of co-located LCU, left LCU and top LCU to 
define predDepth  in order to determine DR type of 

current LCU. predDepth  is defined as follows: 

 

  = ×= N
i iipred avedepthwDepth

0
, (5) 

 
where N=2, i is the index of reference LCU, with 0 
standing for co-located LCU, 1 for left LCU and 2 for 
top LCU. iavedepth  is average depth of 

corresponding LCU. iw  is weights of corresponding 

LCU and the sum is equal to 1. The weights of co-
located LCU, left LCU and top LCU 
is 5.01.0 +×− ADE , 25.005.0 +× ADE  and 

25.005.0 +× ADE  respectively according to analysis 
results as shown in Table 1. 

We can predict DR type of current LCU 
according to predDepth  as mentioned above. The 

relationship between predDepth  and DR type is 

demonstrated in Table 2. 
 
 

Table 2. Relationship between predicting depth  
and DR type. 

 

predDepth  Candidates Depth DR 

0 0 [0,0] 
(0, 0.5] 0,1 [0,1] 

(0.5, 1.5] 0,1,2 [0,2] 
(1.5, 2.5] 1,2,3 [1,3] 
(2.5, 3] 2,3 [2,3] 

 
 

From Table 2, we can skip unnecessary CU depth 
according to DR type which is obtained through 

predDepth  thus reducing computational complexity. 

In order to prove accuracy of the DR type, we 
make a statistics about the accuracy of DR type 
including depth after HM algorithm. The accuracy is 
demonstrated in Table 3. 
 
 

Table 3. The accuracy of DR type. 
 

Sequence [0,0] [0,1] [0,2] [1,3] [2,3] 
BasketballDrill 94.32 % 96.41 % 96.34 % 91.95 % 95.83 %
Traffic 98.79 % 98.54 % 98.18 % 86.60 % 93.57 %
BasketballDrillText 94.80 % 97.11 % 96.10 % 92.54 % 89.58 %
BlowingBubbles 100 % 100 % 97.51 % 92.17 % 97.92 %
Cactus 98.55 % 98.63 % 98.44 % 92.04 % 94.57 %
PartyScene 98.10 % 97.59 % 96.80 % 92.21 % 93.64 %
PeopleOnStreet 97.02 % 98.05 % 96.49 % 96.58 % 92.13 %
ChinaSpeed 93.76 % 99.12 % 97.08 % 94.18 % 88.75 %
Average 96.92 % 98.18 % 97.12 % 92.28 % 93.25 %

From Table 3, misjudgment rate of five DR type 
are less than 8 %, especially in first three DR type 
only 1.82 %-3.08 %. So, proposed ACUDR 
algorithm can achieve high reliability. 
 
 

3.3. Depth Scaling Factor Shrink DR 
 

We can’t reduce much computational complexity 
in interval [0, 2] and [1, 3] because we still have three 
depth need to traverse. As we know, neighbor frames 
have a similar CU depth because of high correlation 
for video sequence. Therefore, we define depth 
scaling factor (DSF) according to previous and back 
frames in order to reduce DR thus reducing 
computational complexity continue. The DSF is 
defined as follows 

 

 NcountDSF ijij /= , (6) 
 

where i=0, 1 represents co-located LCU in the 
previous and back frame respectively, j represents 
CU depth. ijcount  represents CU depth 4×4 number 

in the co-located LCU, N=256. 
For DR= [0, 2], if 00DSF  and 10DSF  are equal 

to 0, depth 0 is eliminated from the candidate depth; 
if 02DSF  and 12DSF  are less than 0.125, we traverse 

only interval [0, 1]. 
For DR= [1, 3], if 01DSF  and 11DSF  are equal 

to 0, depth 1 is eliminated from the candidate depth; 
if 03DSF  and 13DSF  are less than 0.125, we traverse 

only interval [1, 2]. 
For DR= [2, 3], if 02DSF  and 12DSF  are less 

than 0.125, depth 2 is eliminated from the candidate 
depth; if 03DSF  and 13DSF  are less than 0.125, we 

traverse only interval [2, 2]. 
 
 

3.4. Depth Range Correction Algorithm 
 

The algorithm devised in section 3.2 would result 
in errors in predicting sharp scene shifting sequences. 
Therefore, a correction algorithm, CA, was invented 
to deal with this drawback. Shown in Fig. 3, co-
located LCU in adjacent two frames, together with 
the left and upper LCU of current LCU were adopted 
to determine depth range to traverse through. The 
weighed formula is defined as follows:  
 
 

 
 

Fig. 3. Temporal-spatial similarity of LCU. 
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  = ×= 3
0

)/(
j ijji NcountwCU , (7) 

 

where i represents CU depth, CU stands for 
percentage of each CU depth; j is the index of 
reference LCU, with 0 standing for co-located LCU 
in the previous frame, 1 for LCU in the back frame, 
2 and 3 for left and top LCU of current LCU 
respectively. ijcount  is the percentage of each CU 

depth i in LCU j. jw  is the weight of LCU j. 0w  and 

1w  are set 0.3, while 2w  and 3w  are set 0.2, N 

symbolizes 4×4 number in one LCU, that is 256. 
When 0CU , 1CU , 2CU  and 3CU  are known, 

those depth percent coefficients that are less than 0.1 
will be removed from candidates. The rest CU depth 
will be traversed through to lower coding complexity.  
 
 

4. Experimental Results and Discussions 
 

To test the effectiveness of the proposed 
algorithm, HM9.0 [14] was selected as the test 
model. The experiments were conducted on a PC 
with configurations as follows: CPU Intel core  
i5-2500, clock speed 3.30 GHz, RAM 8 G, operating 

system Windows 7 and developer tool Microsoft 
Visual Studio 2008. 100 frames of each sequence 
were tested with random access mode [15] and with 
QP including 22, 27, 32, 37. Experimental results 
were presented in the form of BD-PSNR, 
(Bjøntegaard delta peak signal-to-noise rate), BDBR 
(Bjøntegaard delta bit rate) [16] and TΔ . BDPSNR 
indicates PSNR difference at the same bitrate, while 
BDBR shows bitrate variance at the same PSNR 
level. TΔ (%) is defined as follows 
 

 %100/)( ×−=Δ HMHMp TTTT , (8) 

 
where PT  and HMT  represents coding time of the 

proposed algorithm and original HM algorithm 
respectively. 

Twelve sequences were tested on common test 
conditions. In the meantime, Shen’s method was 
realized and compared with this paper’s ACUDR, 
ACUDR+DSF and CA algorithms. Table 4 shows the 
comparison among ACUDR, CA and Shen’s 
algorithms. Table 5 reveals the difference between 
ACUDR+DSF and Shen’s method. 

 
 

Table 4. Comparison results among Shen’s method, ACUDR and CA algorithms. 
 

Type Sequence 

Shen Proposed method 
ACUDR ACUDR CA 

BDPSNR 
(dB) 

BDBR
(%) 

TΔ
(%) 

BDPSNR
(dB) 

BDBR 
(%) 

TΔ  
(%) 

BDPSNR 
(dB) 

BDBR 
(%) 

TΔ
(%) 

Class A 
(2560×1600) 

Traffic -0.031 1.01 -37.57 -0.025 0.82 -36.42 -0.024 0.80 -32.42
PeopleOnStreet -0.025 0.63 -22.15 -0.019 0.47 -22.54 -0.028 0.70 -28.13

Class B 
(1920×1080) 

BasketballDrive -0.022 1.23 -33.85 -0.018 0.89 -32.73 -0.012 0.64 -30.73
Cactus -0.012 0.60 -32.22 -0.009 0.45 -31.69 -0.012 0.57 -29.53

Class C 
(832×480) 

BasketballDrill -0.061 1.68 -22.96 -0.046 1.27 -22.86 -0.025 0.69 -20.61
BQMall -0.078 2.01 -22.56 -0.047 1.22 -22.13 -0.021 0.55 -20.33

Class D 
(416×240) 

BasketballPass -0.050 1.15 -14.68 -0.003 0.094 -11.10 0.003 -0.076 -13.53
BlowingBubbles -0.009 0.25 -10.66 -0.033 0.74 -14.65 -0.004 0.11 -10.66

Class E 
(1280×720) 

KristenAndSara -0.029 1.07 -47.95 -0.014 0.53 -46.31 -0.014 0.55 -37.36
Vidyo4 -0.038 1.48 -43.78 -0.029 1.16 -43.14 -0.004 0.15 -40.10

Class F 
BasketballDrillText -0.07 1.80 -22.73 -0.051 1.31 -22.28 -0.021 0.55 -20.75
ChinaSpeed -0.09 1.67 -26.67 -0.055 1.03 -26.46 -0.017 0.32 -28.19
Average -0.043 1.22 -28.15 -0.029 0.83 -27.69 -0.015 0.46 -26.03

 
 

Table 5. Comparison results between ACUDR+DSF and Shen’s algorithms. 
 

Type Sequence 
Shen ACUDR+DSF 

BDPSNR 
(dB) 

BDBR 
(%) 

TΔ  
(%) 

BDPSNR 
(dB) 

BDBR 
(%) 

TΔ  
(%) 

Class A 
(2560×1600) 

Traffic -0.031 1.01 -37.57 -0.11 3.49 -41.96 
PeopleOnStreet -0.025 0.63 -22.15 -0.047 1.18 -36.25 

Class B 
(1920×1080) 

Kimono -0.010 0.33 -32.59 -0.037 1.27 -43.70 
Cactus -0.012 0.60 -32.22 -0.034 1.70 -39.31 

Class C 
(832×480) 

PartyScene -0.020 0.45 -20.79 -0.048 1.13 -31.96 
RaceHorsesC -0.018 0.52 -15.86 -0.041 1.16 -27.34 

Class D 
(416×240) 

RaceHorses -0.002 0.04 -11.63 -0.031 0.67 -21.07 
BlowingBubbles -0.009 0.25 -10.66 -0.022 0.62 -19.53 

Class E 
(1280×720) 

Vidyo3 -0.017 0.56 -42.31 -0.049 1.71 -46.89 
FourPeople -0.021 0.64 -42.23 -0.059 1.76 -45.89 

Class F 
BasketballDrillText -0.07 1.80 -22.73 -0.08 2.06 -32.80 
ChinaSpeed -0.09 1.67 -26.67 -0.078 1.46 -38.02 

           Average -0.027 0.71 -26.45 -0.053 1.52 -35.39 
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From Table 4, it can be seen that compared with 
HM9.0, Shen’s methods saved 28.15 % coding time, 
reduced 0.043 dB PSNR and increased BDBR by 
1.22 %. The proposed ACUDR algorithm, took up 
nearly the same coding time while BDPSNR 
increased by 0.014 dB and BDBR decreased by 
0.39 % compared with Shen’s method. CA algorithm 
was employed to deal with sharp scene shifting 
sequences. In comparison with Shen’s, it cost 
comparable coding time with BDPSNR increasing by 
0.028 dB and BDBR decreasing by 0.76 %. CA is 
especially applicable to BasketballDrill, BQMall and 
Class F sequences in that it predicted LCU depth 
range more accurately. According to Table 5, the 
combination of ACUDR+SFD saved 35.39 % time 
when compared with original HM9.0 algorithms. 
And it occupied 10 % less time than Shen’s did 
without obvious increase in BDBR and decrease in 
BDPSNR. Fig. 4 shows rate distortion performance 
of sequences PeopleOnStreet, Kimono, PartyScene 
and BlowingBubbles tested with each algorithm 
(HM9.0, Shen’s, ACUDR, CA and ACUDR+DSF). 

From Fig. 4, it is clear that all the algorithms 
possessed comparable rate distortion performance, 
indicating some reliability of the proposed 
algorithms. Fig. 5 shows the LCU partitions of each 
scheme. The red part demonstrates the mismatches 
with the original partitions. 

From Fig. 5, CA partition result is closer to the 
original one than Shen’s. There only exist several 
mismatches, which have similar CU depths with 
original ones. Therefore, the global rate distortion 
performance stays stable.  
 
 

5. Conclusions 
 

This paper proposes an adaptive CU depth 
selection algorithm, aiming to improve Shen’s 
methods. Firstly, average depth error was adopted to 
decide the weight of adjacent LCU and co-located 
LCU, which was later used to determine LCU DR 
type. Secondly, depth scaling factors of the adjacent 
frames were used to shrink DR. Finally, with respect 
to sharp scene change sequences, a depth range 
correction algorithm was devised, which took 
advantage of neighboring frames depth scaling 
factors. Results showed that the proposed 
ACRDR+SFD took up 10 % time less than Shen’s 
did while BDBR increased by about 0.81 % and 
BDPSNR decrease by 0.026 dB. Nevertheless, CA 
cost nearly equivalent time, with 0.76 % lower 
BDBR and 0.028 dB increase in BDPSNR.  
Further researches on inter prediction modes to avoid 
unnecessary mode traversal, thus lowering  
coding complexity.  

 
 

 
(a) PeopleOnStreet 

 

 
(b) Kimono 

 

 
 

(c) PartyScene 
 

BlowingBubbles 
 

Fig. 4. Rate distortion performance of sequences. 
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(a) HM9.0 
 

 
(b) Shen 

 

 
 

(c) CA 
 

(d) ACUDR+DSF 
 

Fig. 5. Quad-tree partitioning results of BasketballPass sequence when QP is equal to 32. 
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