
Sensors & Transducers, Vol. 195, Issue 12, December 2015, pp. 77-82

 77

Sensors & Transducers

© 2015 by IFSA Publishing, S. L.
http://www.sensorsportal.com

A Dynamic Deployment Policy of Slave Controllers
for Software Defined Network

Yongqiang Yang and Gang Xu

College of Computer and Information Engineering, Henan University of Economics and Law,
Zheng Zhou, 450002, China
E-mail: xgtony@163.com

Received: 5 November 2015 /Accepted: 30 November 2015 /Published: 30 December 2015

Abstract: In order to solve the problem of Software-Defined Network scalability, the idea of using multiple
controllers to manage the underlying network domain became an effective solution. But how to deploy the
controller rationally to reduce the communication overhead of control plane lacks the corresponding research.
Therefore this paper proposes a controller dynamic deployment strategy. The strategy uses the Quantum Genetic
Algorithm to calculate the optimal controller deployment scheme, and can adjust scheme of deployment
dynamically according to the change of network topology. Experiments show that this deployment scheme can
effectively reduce the whole communication overhead of the control plane, and achieve dynamic adjustment of
deployment scheme at the smaller expense. Copyright © 2015 IFSA Publishing, S. L.

Keywords: Software-Defined Network, Controller, Dynamic deployment, Communication overhead.

1. Introduction

As the increasing of Internet scale and the
growing emergence of new network services, the data
forwarding plane and the tightly coupled mode in the
routing control plane make the switch/router
equipment control function of highly complex, which
greatly increase the difficulty and the cost of network
maintenance and management. Therefore, researchers
put forward the idea of separating control logic and
data forwarding to reduce the complexity of the
network core equipment. This can also improve the
network management and control of flexibility.
Based on the idea, the Clean slate team in the
Stanford University proposed the Software-Defined
Network (SDN) [1]. The appearance of SDN gives
revolutionary influence on the new network system
research. SDN has become the one of the most
popular research direction in educational circles and
industry.

In SDN, all switches at the bottom of the data
forwarding rules are generated by controllers, and
issued through the OpenFlow [2] to each switch. The
controller is a kind of centralized management node.
If the entire network uses a single controller, it is
difficult to secure the scalability and reliability of the
network. If concurrent traffic has increased
dramatically at a certain moment, a single controller
may not be able to respond to a large number of
concurrent requests of OpenFlow switch. The
OpenFlow switch cannot arrive on a large number of
packet forwarding, which lowered the overall
performance of network. And the switch will not be
able to cope with the new network flow when the
single controller fails. Therefore, using multiple
controllers for distributed management becomes the
development direction of SDN. The number and
position of the controller directly determines the
performance and efficiency of the network
deployment.

http://www.sensorsportal.com/HTML/DIGEST/P_2781.htm

http://www.sensorsportal.com/

Sensors & Transducers, Vol. 195, Issue 12, December 2015, pp. 77-82

 78

Some scholars put forward more than two kinds
of controller respectively management framework
HyperFlow [3] and Kandoo [4] in the study on
multiple controller at present. Literature [5] proposed
a management node deployment scheme for Pressure.
The architecture put forward a set of centralized
network state information collection, aggregation,
and filtering strategy. The Pressure deployed strategy
by calculating Pressure score to develop information
aggregation points. The HotSpot proposed in
literature [6] formulated the management node
deployment strategy by calculating the number of
neighbor nodes for each node. The Pressure and
HotSpot cannot automatically obtain the optimal
quantity of node value, which can only rely on the
administrator to set in advance. The two methods
defined the distance between the nodes as the hop
count between nodes simply without considering the
effects of parameters such as delay.

The intelligent optimization algorithm simulates
some natural phenomenon and the process to solve
complex optimization problems. Genetic algorithm is
a kind of intelligent optimization algorithm, which
has a wide range application. It simulates the
biological genetic and evolutionary process to solve
discrete optimization problems. Narayanan [7]
combined quantum computation theory and genetic
algorithm for the first time, and proposed the
Quantum Genetic Algorithm. Han [8] further
introduced the quantum revolving door into the
quantum genetic algorithm, and also appeared some
improvements of the quantum revolving door [9].

This paper mainly studied the controller
deployment problem of SDN. We describe a two
level control system of SDN, and then proposed a
controller deployment strategy based on quantum
genetic algorithm. In addition, we design a dynamic
adjustment strategy of controller to guarantee the
stability of the system. Finally the experiments verify
that the control strategy can effectively reduce the
SDN flat overall communication overhead, and can
adapt to the change of the underlying network
topology by the small dynamic adjustment.

2. The Slave Controller Based on
Quantum Genetic Algorithm
Deployment Strategy

The Slave controller deployment plans will have a

big impact on the efficiency of the whole control
plane. Too much Slave controller will make the Slave
controller and the interaction between the Master
controllers of communication resource depletion. Too
little Slave controller will also increase response
delay in nodes at the bottom of the Slave controller.
The best deployment strategy of Slave controller can
control the plane with the minimum overall
communication overhead to realize the control for
multiple administrative domains. So the Slave
controller deployment is converted into a

0-1 programming problem. The problem model is as
follows:

Variables:
xi: Binary Variables.
If the Slave controller is connected to the ith-

switch, the xi is 1, otherwise the xi is 0.
Input:
S: The underlying node collection.
M: The short circuit matrix.
M(s, t) is communication overhead for the

source s to the destination endpoint t.
M: The serial number of the Master controller.
The objective function:

| | | |

1 1

min (,) (1) (,)
S S

i i i
i i

x M i m x M i c
= =

⋅ + − ⋅  , (1)

which defines the control plane of the whole commu-
nication overhead.

Constraints:

, 1

{ | , 1, (,)

arg min (,)}
j

i n

j S x

c n n S x M i n

M i j∈ =

= ∈ =
= , xi ∈ {0, 1}, (2)

where ci is responsible for the control of the ith node
at the bottom of the Slave controller.

In order to make the network control consumption
overall communication overhead lowest, the Slave
controller deployment plans need to determine how
many Slave controller is set in the underlying
network, and determine what the underlying node is
set to the communication agent. Because of the good
performance of the Quantum Genetic Algorithm in
dealing with discrete optimization problems, this
paper proposes a Slave Controllers Deployment
strategy based on the Quantum Genetic Algorithm
(SCD - QGA). The strategy using the Quantum
Genetic Algorithm solves the 0-1 programming
problem, and draws the optimal Slave controllers
deployment scheme.

2.1. The Quantum Genetic Algorithm

The Quantum genetic algorithm is based on the

concept of quantum bit and quantum superposition.
The quantum bit is the smallest unit of information in
quantum computation. The quantum bits can be in a
state | 0 >, | 1 > state, and arbitrary superposition
between | 0 > and | 1 >. Its state can be described as:

|Ψ〉=α|0〉+β|1〉, (3)

where α, β are the plural and denote respectively
quantum bit for | 0 > and | 1 > probability amplitude.
｜α｜2 denote that the quantum bit is observed as | 0
> state probability. ｜β｜2 denote that the quantum
state is observed for | | 1 > state probability. They
satisfy the normalization conditions:

Sensors & Transducers, Vol. 195, Issue 12, December 2015, pp. 77-82

 79

｜α｜2 +｜β｜2 =1 (4)

The operand of Quantum Genetic Algorithm is
composed of multiple feasible solutions. The feasible
solution can be considered as an individual
chromosome. Each chromosome is composed of
multiple quantum bit. The probability of a quantum
bit can be defined as [α β]T, and a m quantum bit of
chromosome encoding for:

1 2

1 2

...

...
m

m

q
αα α
ββ β

 
=  
 

, (5)

Each genes in the chromosome can be | 0 > state,

1 > | state and superposition of | 0 > and | 1 >. A
chromosome can characterize the state of 2m. After
determining the initial chromosome coding, the
measurement of chromosome can calculate the
fitness of individuals in the calculate population.
Measure is to make the chromosomes each quantum
bit collapse into a certain state. Each quantum bit
generates a random number. If the random number is
less than｜α｜2, the quantum bits of measure-ment
value is 0, or 1. It can be done in quantum revolving
door populations of updates in the iteration process of
evolution. The Quantum revolving door is a unitary
matrix, which is used to alter the probability
amplitude of quantum superposition.

2.2. The Generation Process of Deployment
Scheme

The Quantum Genetic Algorithm is used to
calculate the Slave controller deployment scheme in
this paper. First we need to calculate the input
parameter M to solve the cost minimum of each node
to all other nodes at the bottom of the
communication. So the problem can be transformed
into solving the shortest path in the network.

Step 1: First, the underlying network topology is
converted into a weighted undirected graph. The
weight of each edge is the delay of the link at the
bottom.

Step 2: Then we call the Bellman-Ford algorithm
[10] repeatedly and calculate the monophyletic
shortest path from each of the underlying nodes to
other nodes in turn. The numbers are recorded in the
matrix M.

Step 3: The m deployment scheme are generated
randomly and coded to form the initial population.
Then the Quantum Genetic Algorithm is called to
calculate. When evolution we need to compute each
individual’s adaptive value Fit(X). Before calculating
the adaptive value, each of the node at the bottom
will be specified a fixed Slave controller ci. In the
SCD - QGA strategy the ci is set for the Slave
controller with minimum communication overhead
with node i. The adaptive value mainly depends on
the size of the whole communication overhead.

1| | | |

1 1

Fit() (,) (1) (,)
S S

i i i
i i

x M i m x M i c

−

= =

 
= ⋅ + − ⋅ 
  
 X (6)

The algorithm is terminated after the evolution for

N round. The output of the optimal solution in the
process of evolution is considered as the final
deployment scheme, which deploy the Slave
controllers according to the scheme. The strategy
implementation process is as follows:

Input: the population individual’s number m, the

maximum evolution algebra N, the chromo-
some’s length s, the mutation probability p

Output: the optimal scheme of Xb
1 Call the Bellman - Ford algorithm and calculate

the short circuit matrix M.
2 t←0，Generate original population Q(t) and its

individual number is m. Initialize the
chromosome.

3 The Q(t) is measured and the measurement
value is generated as P(t).

4 for all Xi∈P(t) do
5 Query the matrix M. Specify a minimum

communication cost of Slave controller for
each switch.

6 Calculate Fit(Xi).
7 end for
8 Xb={ Xi |Fit(Xi)=arg max X∈P(t) Fit(X)};
9 while(t<N)
10 Q(t) evolve to Q(t+1) with the quantum

revolving door. t=t+1.
11 The Q(t) is measured and the measurement

value is generated as P(t).
12 for all Xi∈P(t) do
13 Query the matrix M. Specify a minimum

communication cost of Slave controller for
each switch.

14 Calculate Fit(Xi).
15 end for
16 B(t) ={ Xi |Fit(Xi)=arg max X∈P(t) Fit(X)};
17 if Fit(Xb)< Fit(B(t)) then
18 Xb = B(t) ;
19 end while
20 Output Xb

3. The Adjust Strategy of Dynamic Slave
Controller

The underlying network is dynamic change in the

process of SDN operation. The underlying node or
link failure, a new node to join the network and so on
will cause the change of the underlying network
topology. The original deployment plan of Slave
controller is no longer the optimal solution. From the
perspective of reduce the communication cost control
plane, this section presents a deployment solution
strategy with dynamic adjustment Slave controller.

Sensors & Transducers, Vol. 195, Issue 12, December 2015, pp. 77-82

 80

The deployment scheme is recalculated by using
SCD - QGA for the changed network topology, and
the deployment of the Slave controller is adjusted
according to the new plan. There may be a huge
difference between the calculated new scheme with
the original plan. Most of the Slave controller needs
to be deployed. This will greatly increase the
adjustment cost, and also can bring negative effect to
the stability of the control plane. So this method can
hardly be accepted by the operators of SDN. It is a
reasonable way of adjustment that the Slave
controller adjustment range is limited in reassigning
domain, and thus only to adjust the deployment
location of the individual Slave controller.

This paper proposes a Dynamic Slave Controllers
Reassigning policy of Slave controller. The strategy
will evaluate the effects caused by the change of
topology to control plane, and adjust range constraint
in the affected areas. Finally adjustment scheme of
the Slave controller is calculated by the Quantum
Genetic Algorithm.

3.1. The Setting of Adjust Domain

The change of network topology can be divided

into four types: node failure, link failures, the new
node and the new link. The link failure and new link
specifically is the link changes when a node has not
changed. Table 1 gives the four types of topology and
the corresponding adjustment domain set strategy.

Table 1. The adjustment domain set strategy.

The type of

topology change
The adjustment domain set

strategy

Node failure
The neighbor node of failure node in
the management domain

Link failures
Invalid link node in the management
domain

New node
The neighbor node of the new node
in the management domain

New link
The new link node in the
management domain

3.2. The Process of Dynamic Adjustment

After confirmed the adjustment domain, the

DSCR will call Quantum Genetic Algorithm to
calculate the new Slave controller deployment
scheme. During initialization, The Slave controller
adjustment range is limited to domain. The
chromosome of quantum bits digit is set to the
number of nodes in the adjustment domain. Each
quantum bit on behalf of a node in the adjustment
domain. In order to accelerate the convergence speed,
initialization of generation 0 chromosome, each value
of α and β will be set in accordance with the Slave
controller of in the adjustment domain and the
proportion of the bottom node.

The DSCR measure pairs of chromosomes firstly
in the fitness calculation and generate the Slave
controller deployment plan in the adjustment domain.
Then adjust the plan with the existing deployment in
the outside to merge the deployment of the strategy,
so as to get a new deployment plan. The type (6) can
be used to calculate the adaptive value of the new
scheme.

There are certain differences in the initialization
and the calculating of the adaptive value. The other
evolutionary step of DSCR and the whole evolution
process are the same as the SCD - QGA. After
evolution for N round, the optimal solutions of output
in the process of evolution is considered as a new
deployment plan, and adjust the domain to redeploy
the Slave controller according to the scheme. All the
nodes in the domain will divide the administrative
domain according to the communication overhead of
the Slave controller.

4. The Analysis of Simulation Results

This experiment runs in the PC of Pentium 4,
3.2 GHz CPU and 1 Gb of memory. The underlying
network topology is generated by the tool of GT -
ITM [11]. The underlying link delay value distribute
within [1,100] uniformly. The simulation is
implemented in Matlab. The simulation results of
SCD - QGA are compared with the results generated
by the Pressure [5], the HotSpot [6] Slave controller
deployment. The results of simulation will also be
compared with the deployment strategy based on the
Genetic Algorithm. The population size of SCD -
QGA is set to 20.

First of all, the number of Slave controller
calculated for each deployment strategy is analyzed.
The Pressure and HotSpot can not determine the
optimal number of Slave controller automatically,
which can only rely on specify beforehand of
manager. The number of Slave controller Settings
will have great influence on communication
overhead.

The deployment strategy based on intelligent
algorithm can automatically calculate the optimal
number of Slave controller and the deployment
scheme calculated is not affected by artificial
Settings.

If the proportion of total Slave controller node set
to 11 % and 18 % respectively and the size of the
underlying network is 100, the Fig. 1 shows that the
scheme calculated from the Pressure and HotSpot are
the best. When the size of the underlying network is
500, the proportion of the Slave controller node set to
10 % to get the optimal solution of the above two
strategies.

The proportion of the Slave controller is not fixed
in the deployment scheme calculated by the SCD –
QGA. Different proportion of the underlying network
have different Slave controller (as shown in Fig. 2).
The scope of the value is between [0.05, 0.15]
generally.

Sensors & Transducers, Vol. 195, Issue 12, December 2015, pp. 77-82

 81

Fig. 1. The number of Slave controller for the influence of

Pressure and HotSpot.

Fig. 2. The proportion of Slave controller of SCD-QGA
under different network size.

The evolution algebra n is the number of
iterations of the Genetic Algorithm. The solution for
the algorithm is better if the value of n is greater. The
optimal solution for the HotSpot and Pressure is only
affected by the percentage of the Slave controller.
Thus the deployment scheme of the HotSpot and
Pressure is regarded as the two strategies under the
optimal proportion (18 % and 11 %) generated by the
scheme. If the underlying network scale is 100, Fig. 3
shows the evolutionary process of the various
strategies generating the optimal deployment of
schemes. It can be seen that the convergence rate of
the SCD - QGA is the fastest and the deployment
scheme of communication overhead is minimal,
which is followed by GA. The deployment scheme
calculated by the two strategies is better than the
HotSpot and Pressure.

Fig. 3. The evolutionary process of the optimal solution.

In order to test the influence of the dynamic
change of network topology to the communication
overhead for control plan, the experiment generates
100 network topology changed randomly. We test the
initial deployment scheme generated by the SCD -
QGA under the new topology, the recalculate
deployment scheme reSCD - QGA generated by the
SCD - QGA and the deployment scheme generated
by the DSCR. The initial network topology contains
100 nodes. The biggest evolution algebra of quantum
genetic algorithm is set to 500. By shown in Fig. 4,
the scheme of reSCD - QGA and DSCR in terms of
communication overhead is lower than static initial
deployment scheme. The difference between the new
topology and the initial topology is becoming bigger
and bigger especially with the constant changing of
topology. The advantages of reSCD - QGA and
DSCR are becoming more and more obvious.

The biggest advantage of DSCR scheme
comparing with reSCD - QGA is adjusting less Slave
controller to get better effect. The number of changed
deployment Slave controller is called adjustment
scale in the process of the adjustment of the Slave
controller. By as shown in Fig. 5, the reSCD - QGA
adjustment scale to an average is 6.65 in the process
of network topology changes, while the DSCR
adjustment scale to an average is 1.72. It can be seen
that the DSCR adjustment scale significantly is less
than the reSCD - QGA scale. Therefore using DSCR
deployment scheme of dynamic adjustment can
ensure the stability of the control plane.

Fig. 4. The communication overhead of dynamic network
topology changes.

Fig. 5. The adjusting size of the Slave controllers.

Sensors & Transducers, Vol. 195, Issue 12, December 2015, pp. 77-82

 82

5. Conclusion

In this paper, we design a dynamic deployment

strategy of the SDN controller. The scheme reduces
the communication overhead of control plane by
setting the Slave controller. To minimize the
communication overhead of the whole control plane,
the scheme firstly transforms the Slave controller
deployment issues to 0-1 programming problem and
solves the problem by using the Quantum Genetic
Algorithm to get optimal deployment plan. In
addition, we design a Slave controller adjust strategy
to reduce the effect caused by the change of dynamic
topology on the stability of the control plane. The
simulation experiments show that the proposed
strategy not only the administrator need not set
manually the number of Slave controller, but also the
control plane consumed needs less communication
overhead comparing the generated deployment
scheme with other scheme.

References

[1]. Open Network Foundation (ONF). Software defined

networking: the new norm for networks [EB/OL],
https://www.opennetworking.org/images/stories/dow
nloads/white-papers/wp-sdn- newnorm.pdf

[2]. Mckeown N., Anderson T., Balakrishnan H., et al.,
Open-Flow: enabling innovation in campus networks,
ACM SIGCOMM Computer Communication Review,
38, 2, 2008, pp. 69- 75.

[3]. Tootoonchian A., Ganjali Y., HyperFlow: a
distributed control plane for OpenFlow, in

Proceedings of the Internet Network Management
Conference on Research on Enterprise Networking
(INM/WREN'10), 2010, pp. 3-3.

[4]. S. Hassas Yeganeh, Y. Ganjali. Kandoo, A
framework for efficient and scalable offloading of
control applications, in Proceedings of the First
Workshop on Hot Topics in Software Defined
Networks (HotSDN’12), 2012, pp. 19–24.

[5]. R. G. Clegg, S. Clayman, G. Pavlou, L. Mamatas, On
the selection of management/monitoring nodes in
highly dynamic networks, IEEE Trans. Computers,
62, 6, 2013, pp. 1207-1220.

[6]. Mamatas L., Clayman S., Charalambides M., et al.,
Towards an information management overlay for
emerging networks, in Proceedings of the Network
Operations and Management Symposium, Osaka,
Japan, 2010, pp. 527-534.

[7]. Narayanan A., An introductory tutorial to quantum
computing, in Proceedings of the IEEE Colloquium
on quantum Computing Theory, Applications and
Implications, London, 1997, pp. 1-3.

[8]. Han K. H., Park K. H., Lee C. H., et al., Parallel
quantum inspired genetic algorithm for combinatorial
optimization problem, in Proceedings of the 2001
Congress on Evolutionary Computation, USA, 2001,
pp. 1422-1429.

[9]. Xing Huan-Lai, Pan Wei, Zou Xi-Hua, A novel
improved quantum genetic algorithm for combina-
torial optimization problems, Acta Electronica
Sinica, 35, 10, 2007, pp. 1999-2002.

[10]. Bellman R. Dynamic Programming, Princeton
University Press, Princeton, 1957, pp. 124-126.

[11]. Zegura E, Calvert K, Bhattacharjee S., How to model
an internetwork, in Proceedings of the IEEE
International Conference on Computer
Communications, San Francisco, USA, 1996,
pp. 594 – 602.

2015 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved.
(http://www.sensorsportal.com)

http://www.sensorsportal.com/HTML/IFSA_Newsletter_November_December_2015.htm
http://www.sensorsportal.com/HTML/IFSA_Newsletter_November_December_2015.htm
http://www.sensorsportal.com/HTML/IFSA_Newsletter_November_December_2015.htm

