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Abstract: In order to solve the problem of Software-Defined Network scalability, the idea of using multiple 
controllers to manage the underlying network domain became an effective solution. But how to deploy the 
controller rationally to reduce the communication overhead of control plane lacks the corresponding research. 
Therefore this paper proposes a controller dynamic deployment strategy. The strategy uses the Quantum Genetic 
Algorithm to calculate the optimal controller deployment scheme, and can adjust scheme of deployment 
dynamically according to the change of network topology. Experiments show that this deployment scheme can 
effectively reduce the whole communication overhead of the control plane, and achieve dynamic adjustment of 
deployment scheme at the smaller expense. Copyright © 2015 IFSA Publishing, S. L. 
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1. Introduction 
 

As the increasing of Internet scale and the 
growing emergence of new network services, the data 
forwarding plane and the tightly coupled mode in the 
routing control plane make the switch/router 
equipment control function of highly complex, which 
greatly increase the difficulty and the cost of network 
maintenance and management. Therefore, researchers 
put forward the idea of separating control logic and 
data forwarding to reduce the complexity of the 
network core equipment. This can also improve the 
network management and control of flexibility. 
Based on the idea, the Clean slate team in the 
Stanford University proposed the Software-Defined 
Network (SDN) [1]. The appearance of SDN gives 
revolutionary influence on the new network system 
research. SDN has become the one of the most 
popular research direction in educational circles and 
industry. 

In SDN, all switches at the bottom of the data 
forwarding rules are generated by controllers, and 
issued through the OpenFlow [2] to each switch. The 
controller is a kind of centralized management node. 
If the entire network uses a single controller, it is 
difficult to secure the scalability and reliability of the 
network. If concurrent traffic has increased 
dramatically at a certain moment, a single controller 
may not be able to respond to a large number of 
concurrent requests of OpenFlow switch. The 
OpenFlow switch cannot arrive on a large number of 
packet forwarding, which lowered the overall 
performance of network. And the switch will not be 
able to cope with the new network flow when the 
single controller fails. Therefore, using multiple 
controllers for distributed management becomes the 
development direction of SDN. The number and 
position of the controller directly determines the 
performance and efficiency of the network 
deployment. 
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Some scholars put forward more than two kinds 
of controller respectively management framework 
HyperFlow [3] and Kandoo [4] in the study on 
multiple controller at present. Literature [5] proposed 
a management node deployment scheme for Pressure. 
The architecture put forward a set of centralized 
network state information collection, aggregation, 
and filtering strategy. The Pressure deployed strategy 
by calculating Pressure score to develop information 
aggregation points. The HotSpot proposed in 
literature [6] formulated the management node 
deployment strategy by calculating the number of 
neighbor nodes for each node. The Pressure and 
HotSpot cannot automatically obtain the optimal 
quantity of node value, which can only rely on the 
administrator to set in advance. The two methods 
defined the distance between the nodes as the hop 
count between nodes simply without considering the 
effects of parameters such as delay. 

The intelligent optimization algorithm simulates 
some natural phenomenon and the process to solve 
complex optimization problems. Genetic algorithm is 
a kind of intelligent optimization algorithm, which 
has a wide range application. It simulates the 
biological genetic and evolutionary process to solve 
discrete optimization problems. Narayanan [7] 
combined quantum computation theory and genetic 
algorithm for the first time, and proposed the 
Quantum Genetic Algorithm. Han [8] further 
introduced the quantum revolving door into the 
quantum genetic algorithm, and also appeared some 
improvements of the quantum revolving door [9]. 

This paper mainly studied the controller 
deployment problem of SDN. We describe a two 
level control system of SDN, and then proposed a 
controller deployment strategy based on quantum 
genetic algorithm. In addition, we design a dynamic 
adjustment strategy of controller to guarantee the 
stability of the system. Finally the experiments verify 
that the control strategy can effectively reduce the 
SDN flat overall communication overhead, and can 
adapt to the change of the underlying network 
topology by the small dynamic adjustment. 

 
 

2. The Slave Controller Based on 
Quantum Genetic Algorithm 
Deployment Strategy 
 
The Slave controller deployment plans will have a 

big impact on the efficiency of the whole control 
plane. Too much Slave controller will make the Slave 
controller and the interaction between the Master 
controllers of communication resource depletion. Too 
little Slave controller will also increase response 
delay in nodes at the bottom of the Slave controller. 
The best deployment strategy of Slave controller can 
control the plane with the minimum overall 
communication overhead to realize the control for 
multiple administrative domains. So the Slave 
controller deployment is converted into a  

0-1 programming problem. The problem model is as 
follows: 

Variables: 
xi: Binary Variables.  
If the Slave controller is connected to the ith-

switch, the xi is 1, otherwise the xi is 0. 
Input: 
S: The underlying node collection. 
M: The short circuit matrix.  
M(s, t) is communication overhead for the 

source s to the destination endpoint t. 
M: The serial number of the Master controller. 
The objective function: 
 

| | | |
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which defines the control plane of the whole commu- 
nication overhead.  

Constraints: 
 

, 1
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where ci is responsible for the control of the ith node 
at the bottom of the Slave controller. 

In order to make the network control consumption 
overall communication overhead lowest, the Slave 
controller deployment plans need to determine how 
many Slave controller is set in the underlying 
network, and determine what the underlying node is 
set to the communication agent. Because of the good 
performance of the Quantum Genetic Algorithm in 
dealing with discrete optimization problems, this 
paper proposes a Slave Controllers Deployment 
strategy based on the Quantum Genetic Algorithm 
(SCD - QGA). The strategy using the Quantum 
Genetic Algorithm solves the 0-1 programming 
problem, and draws the optimal Slave controllers 
deployment scheme. 

 
 

2.1. The Quantum Genetic Algorithm 
 
The Quantum genetic algorithm is based on the 

concept of quantum bit and quantum superposition. 
The quantum bit is the smallest unit of information in 
quantum computation. The quantum bits can be in a 
state | 0 >, | 1 > state, and arbitrary superposition 
between | 0 > and | 1 >. Its state can be described as: 

 
|Ψ〉=α|0〉+β|1〉, (3) 

 
where α, β are the plural and denote respectively 
quantum bit for | 0 > and | 1 > probability amplitude. 
｜α｜2 denote that the quantum bit is observed as | 0 
> state probability. ｜β｜2 denote that the quantum 
state is observed for | | 1 > state probability. They 
satisfy the normalization conditions: 
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｜α｜2 +｜β｜2 =1 (4) 
 

The operand of Quantum Genetic Algorithm is 
composed of multiple feasible solutions. The feasible 
solution can be considered as an individual 
chromosome. Each chromosome is composed of 
multiple quantum bit. The probability of a quantum 
bit can be defined as [α β]T, and a m quantum bit of 
chromosome encoding for: 

 

1 2

1 2

...

...
m

m

q
αα α
ββ β

 
=  
 

, (5) 

 
Each genes in the chromosome can be | 0 > state,  

1 > | state and superposition of | 0 > and | 1 >. A 
chromosome can characterize the state of 2m. After 
determining the initial chromosome coding, the 
measurement of chromosome can calculate the 
fitness of individuals in the calculate population. 
Measure is to make the chromosomes each quantum 
bit collapse into a certain state. Each quantum bit 
generates a random number. If the random number is 
less than｜α｜2, the quantum bits of measure-ment 
value is 0, or 1. It can be done in quantum revolving 
door populations of updates in the iteration process of 
evolution. The Quantum revolving door is a unitary 
matrix, which is used to alter the probability 
amplitude of quantum superposition. 

 
 

2.2. The Generation Process of Deployment 
Scheme  

 

The Quantum Genetic Algorithm is used to 
calculate the Slave controller deployment scheme in 
this paper. First we need to calculate the input 
parameter M to solve the cost minimum of each node 
to all other nodes at the bottom of the 
communication. So the problem can be transformed 
into solving the shortest path in the network.  

Step 1: First, the underlying network topology is 
converted into a weighted undirected graph. The 
weight of each edge is the delay of the link at the 
bottom.  

Step 2: Then we call the Bellman-Ford algorithm 
[10] repeatedly and calculate the monophyletic 
shortest path from each of the underlying nodes to 
other nodes in turn. The numbers are recorded in the 
matrix M. 

Step 3: The m deployment scheme are generated 
randomly and coded to form the initial population. 
Then the Quantum Genetic Algorithm is called to 
calculate. When evolution we need to compute each 
individual’s adaptive value Fit(X). Before calculating 
the adaptive value, each of the node at the bottom 
will be specified a fixed Slave controller ci. In the 
SCD - QGA strategy the ci is set for the Slave 
controller with minimum communication overhead 
with node i. The adaptive value mainly depends on 
the size of the whole communication overhead. 

1| | | |

1 1
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The algorithm is terminated after the evolution for 

N round. The output of the optimal solution in the 
process of evolution is considered as the final 
deployment scheme, which deploy the Slave 
controllers according to the scheme. The strategy 
implementation process is as follows: 

 
Input: the population individual’s number m, the 

maximum evolution algebra N, the chromo- 
some’s length s, the mutation probability p 

Output: the optimal scheme of Xb 
1 Call the Bellman - Ford algorithm and calculate 

the short circuit matrix M. 
2 t←0，Generate original population Q(t) and its 

individual number is m. Initialize the 
chromosome. 

3 The Q(t) is measured and the measurement 
value is generated as P(t). 

4 for all Xi∈P(t) do 
5   Query the matrix M. Specify a minimum 

communication cost of Slave controller for 
each switch. 

6   Calculate Fit(Xi). 
7 end for
8 Xb={ Xi |Fit(Xi)=arg max X∈P(t) Fit(X)}; 
9 while(t<N) 
10   Q(t) evolve to Q(t+1) with the quantum 

revolving door. t=t+1. 
11   The Q(t) is measured and the measurement 

value is generated as P(t). 
12 for all Xi∈P(t) do 
13     Query the matrix M. Specify a minimum 

communication cost of Slave controller for 
each switch. 

14     Calculate Fit(Xi). 
15 end for
16 B(t) ={ Xi |Fit(Xi)=arg max X∈P(t) Fit(X)}; 
17 if Fit(Xb )< Fit(B(t)) then 
18 Xb = B(t) ; 
19 end while
20 Output Xb 

 
 

3. The Adjust Strategy of Dynamic Slave 
Controller 
 
The underlying network is dynamic change in the 

process of SDN operation. The underlying node or 
link failure, a new node to join the network and so on 
will cause the change of the underlying network 
topology. The original deployment plan of Slave 
controller is no longer the optimal solution. From the 
perspective of reduce the communication cost control 
plane, this section presents a deployment solution 
strategy with dynamic adjustment Slave controller. 
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The deployment scheme is recalculated by using 
SCD - QGA for the changed network topology, and 
the deployment of the Slave controller is adjusted 
according to the new plan. There may be a huge 
difference between the calculated new scheme with 
the original plan. Most of the Slave controller needs 
to be deployed. This will greatly increase the 
adjustment cost, and also can bring negative effect to 
the stability of the control plane. So this method can 
hardly be accepted by the operators of SDN. It is a 
reasonable way of adjustment that the Slave 
controller adjustment range is limited in reassigning 
domain, and thus only to adjust the deployment 
location of the individual Slave controller.  

This paper proposes a Dynamic Slave Controllers 
Reassigning policy of Slave controller. The strategy 
will evaluate the effects caused by the change of 
topology to control plane, and adjust range constraint 
in the affected areas. Finally adjustment scheme of 
the Slave controller is calculated by the Quantum 
Genetic Algorithm. 

 
 

3.1. The Setting of Adjust Domain  
 
The change of network topology can be divided 

into four types: node failure, link failures, the new 
node and the new link. The link failure and new link 
specifically is the link changes when a node has not 
changed. Table 1 gives the four types of topology and 
the corresponding adjustment domain set strategy. 

 
 

Table 1. The adjustment domain set strategy. 

 
The type of 

topology change 
The adjustment domain set 

strategy 

Node failure 
The neighbor node of failure node in 
the management domain 

Link failures 
Invalid link node in the management 
domain 

New node 
The neighbor node of the new node 
in the management domain 

New link 
The new link node in the 
management domain 

 
 

3.2. The Process of Dynamic Adjustment 
 
After confirmed the adjustment domain, the 

DSCR will call Quantum Genetic Algorithm to 
calculate the new Slave controller deployment 
scheme. During initialization, The Slave controller 
adjustment range is limited to domain. The 
chromosome of quantum bits digit is set to the 
number of nodes in the adjustment domain. Each 
quantum bit on behalf of a node in the adjustment 
domain. In order to accelerate the convergence speed, 
initialization of generation 0 chromosome, each value 
of α and β will be set in accordance with the Slave 
controller of in the adjustment domain and the 
proportion of the bottom node. 

The DSCR measure pairs of chromosomes firstly 
in the fitness calculation and generate the Slave 
controller deployment plan in the adjustment domain. 
Then adjust the plan with the existing deployment in 
the outside to merge the deployment of the strategy, 
so as to get a new deployment plan. The type (6) can 
be used to calculate the adaptive value of the new 
scheme.  

There are certain differences in the initialization 
and the calculating of the adaptive value. The other 
evolutionary step of DSCR and the whole evolution 
process are the same as the SCD - QGA. After 
evolution for N round, the optimal solutions of output 
in the process of evolution is considered as a new 
deployment plan, and adjust the domain to redeploy 
the Slave controller according to the scheme. All the 
nodes in the domain will divide the administrative 
domain according to the communication overhead of 
the Slave controller. 

 
 

4. The Analysis of Simulation Results 
 

This experiment runs in the PC of Pentium 4,  
3.2 GHz CPU and 1 Gb of memory. The underlying 
network topology is generated by the tool of GT - 
ITM [11]. The underlying link delay value distribute 
within [1,100] uniformly. The simulation is 
implemented in Matlab. The simulation results of 
SCD - QGA are compared with the results generated 
by the Pressure [5], the HotSpot [6] Slave controller 
deployment. The results of simulation will also be 
compared with the deployment strategy based on the 
Genetic Algorithm. The population size of SCD - 
QGA is set to 20. 

First of all, the number of Slave controller 
calculated for each deployment strategy is analyzed. 
The Pressure and HotSpot can not determine the 
optimal number of Slave controller automatically, 
which can only rely on specify beforehand of 
manager. The number of Slave controller Settings 
will have great influence on communication 
overhead.    

The deployment strategy based on intelligent 
algorithm can automatically calculate the optimal 
number of Slave controller and the deployment 
scheme calculated is not affected by artificial 
Settings. 

If the proportion of total Slave controller node set 
to 11 % and 18 % respectively and the size of the 
underlying network is 100, the Fig. 1 shows that the 
scheme calculated from the Pressure and HotSpot are 
the best. When the size of the underlying network is 
500, the proportion of the Slave controller node set to 
10 % to get the optimal solution of the above two 
strategies.   

The proportion of the Slave controller is not fixed 
in the deployment scheme calculated by the SCD – 
QGA. Different proportion of the underlying network 
have different Slave controller (as shown in Fig. 2). 
The scope of the value is between [0.05, 0.15] 
generally. 
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Fig. 1. The number of Slave controller for the influence of 

Pressure and HotSpot. 
 

 

 
 

Fig. 2.  The proportion of Slave controller of SCD-QGA 
under different network size. 

 
 

The evolution algebra n is the number of 
iterations of the Genetic Algorithm. The solution for 
the algorithm is better if the value of n is greater. The 
optimal solution for the HotSpot and Pressure is only 
affected by the percentage of the Slave controller. 
Thus the deployment scheme of the HotSpot and 
Pressure is regarded as the two strategies under the 
optimal proportion (18 % and 11 %) generated by the 
scheme. If the underlying network scale is 100, Fig. 3 
shows the evolutionary process of the various 
strategies generating the optimal deployment of 
schemes. It can be seen that the convergence rate of 
the SCD - QGA is the fastest and the deployment 
scheme of communication overhead is minimal, 
which is followed by GA. The deployment scheme 
calculated by the two strategies is better than the 
HotSpot and Pressure.  
 
 

 
 

Fig. 3. The evolutionary process of the optimal solution. 

In order to test the influence of the dynamic 
change of network topology to the communication 
overhead for control plan, the experiment generates 
100 network topology changed randomly. We test the 
initial deployment scheme generated by the SCD - 
QGA under the new topology, the recalculate 
deployment scheme reSCD - QGA generated by the 
SCD - QGA and the deployment scheme generated 
by the DSCR. The initial network topology contains 
100 nodes. The biggest evolution algebra of quantum 
genetic algorithm is set to 500. By shown in Fig. 4, 
the scheme of reSCD - QGA and DSCR in terms of 
communication overhead is lower than static initial 
deployment scheme. The difference between the new 
topology and the initial topology is becoming bigger 
and bigger especially with the constant changing of 
topology. The advantages of reSCD - QGA and 
DSCR are becoming more and more obvious. 

The biggest advantage of DSCR scheme 
comparing with reSCD - QGA is adjusting less Slave 
controller to get better effect. The number of changed 
deployment Slave controller is called adjustment 
scale in the process of the adjustment of the Slave 
controller. By as shown in Fig. 5, the reSCD - QGA 
adjustment scale to an average is 6.65 in the process 
of network topology changes, while the DSCR 
adjustment scale to an average is 1.72. It can be seen 
that the DSCR adjustment scale significantly is less 
than the reSCD - QGA scale. Therefore using DSCR 
deployment scheme of dynamic adjustment can 
ensure the stability of the control plane. 

 

 
 

Fig. 4. The communication overhead of dynamic network 
topology changes. 

 
 

 
 
Fig. 5. The adjusting size of the Slave controllers. 
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5. Conclusion 
 
In this paper, we design a dynamic deployment 

strategy of the SDN controller. The scheme reduces 
the communication overhead of control plane by 
setting the Slave controller. To minimize the 
communication overhead of the whole control plane, 
the scheme firstly transforms the Slave controller 
deployment issues to 0-1 programming problem and 
solves the problem by using the Quantum Genetic 
Algorithm to get optimal deployment plan. In 
addition, we design a Slave controller adjust strategy 
to reduce the effect caused by the change of dynamic 
topology on the stability of the control plane. The 
simulation experiments show that the proposed 
strategy not only the administrator need not set 
manually the number of Slave controller, but also the 
control plane consumed needs less communication 
overhead comparing the generated deployment 
scheme with other scheme. 
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