Intelligent Data Acquisition and Information Process Technologies and Their Applications. Part II
Contents

Research Articles

Study on VSI Switching Frequency Optimization of PMSM Based Servo System
Shi-xiong Zhang .. 1

Application of an Improved Genetic Algorithm in Network Information Filtering
Min Ren, Baoya Song, Jirong Jiang .. 7

Compression of Power Quality Data Based on Improved DCT Transform
Hua Ouyang, Hu Li, Mei Qian .. 13

Mechanical Optimization Design Based on Genetic Algorithm
Ying Sun, Yuesheng Gu and Hegen Xiong .. 19

Camera Pose Estimation in Dynamic Scenes with Background Tracking
Dong Zhang and Ping Li .. 25

Application of Step Design Method to Realize the Synchronization of Genesio Chaotic System
Yu ZhiPeng .. 34

Short-term Probabilistic Load Forecasting with the Consideration of Human Body Amenity
Ning Lu .. 39

Analysis on Rural Land Circulation Subject Interests
Shi Dong-mei, Xu Yue-ming, Wang Jian, Tong Lei .. 45

A High Precision Multi-function Electronic Scale Based on PSoC3
Lv Dian-ji, Peng Jian-sheng, Zhou Guo-juan, Xu Yong .. 51

Studies on Equalization Strategy of Battery Management System for Electric Vehicle
Nan Jinrui, Guo Meng .. 57

Design and Optimal Control of Parallel Robot
Ying Sun, Yuesheng Gu and Hegen Xiong .. 64

Pure Surface Texture Mapping Technology and it's Application for Mirror Image
Wei Feng Wang, Hui Feng Yan, QinMao, Ming Liang Zhou .. 68

Forming Flaws Analysis of Lead Screw Cold Roll-Beating Based on Stress-Strain Evolution
He Wangyun, Li Yan, Yang Mingshun, Wang Ming .. 74

A Reflective Grating Microcantilever Biosensor
Feng Wen, Yuejin Zhao, Xiaomei Yu, Cheng Gong, Jiancheng Yang .. 83
An Improved Bilinear Interpolation Algorithm Using Center Coordinates of Pixels
Jing Lu, Min Xia, Wei Li, and Ke-cheng Yang

International Frequency Sensor Association (IFSA).

Digital Sensors and Sensor Systems: Practical Design
Sergey Y. Yurish

The goal of this book is to help the practitioners achieve the best metrological and technical performances of digital sensors and sensor systems at low cost, and significantly to reduce time-to-market. It should be also useful for students, lectures and professors to provide a solid background of the novel concepts and design approach.

Book features include:
- Each chapter can be used independently and contains its own detailed list of references
- Easy-to-repeat experiments
- Practical orientation
- Dozens examples of various complete sensors and sensor systems for physical and chemical, electrical and non-electrical values
- Detailed description of technology driven and coming alternative to the ADC a frequency (time)-to-digital conversion

Digital Sensors and Sensor Systems: Practical Design will greatly benefit undergraduate and at PhD students; engineers, scientists and researchers in both industry and academia. It is especially suited as a reference guide for practitioners, working for Original Equipment Manufacturers (OEM) electronics market (electronics/hardware), sensor industry, and using commercial-off-the-shelf components.

http://sensorsportal.com/HTML/BOOKSTORE/Digital_Sensors.htm

Non-Dispersive Infrared Gas Measurement
Jacob Y. Wong, Roy L. Anderson

Written by experts in the field, the Non-Dispersive Infrared Gas Measurement begins with a brief survey of various gas measurement techniques and continues with fundamental aspects and cutting-edge progress in NDIR gas sensors in their historical development.

- It addresses various fields, including:
 - Interactive and non-interactive gas sensors
 - Non-dispersive infrared gas sensors’ components
 - Single- and Double beam designs
 - Historical background and today’s of NDIR gas measurements

Providing sufficient background information and details, the book Non-Dispersive Infrared Gas Measurement is an excellent resource for advanced level undergraduate and graduate students as well as researchers, instrumentation engineers, applied physicists, chemists, material scientists in gas, chemical, biological, and medical sensors to have a comprehensive understanding of the development of non-dispersive infrared gas sensors and trends for the future investigation.

The Fourth International Conference on Sensor Device Technologies and Applications

SENSORDEVICES 2013
25 - 31 August 2013 - Barcelona, Spain

Deadline for papers: 30 March 2013

The Seventh International Conference on Sensor Technologies and Applications

SENSORCOMM 2013
25 - 31 August 2013 - Barcelona, Spain

Deadline for papers: 30 March 2013

The Sixth International Conference on Advances in Circuits, Electronics and Micro-electronics

CENICS 2013
25 - 31 August 2013 - Barcelona, Spain

Tracks: Semiconductors and applications - Design, models and languages - Signal processing circuits - Arithmetic computational circuits - Microelectronics - Electronics technologies - Special circuits - Consumer electronics - Application-oriented electronics

Deadline for papers: 30 March 2013

Compression of Power Quality Data Based on Improved DCT Transform

Hua Ouyang, Hui Li, Mei Qian
School of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
E-mail: 78ouyang@163.com

Received: 4 December 2012 /Accepted: 15 January 2013 /Published: 19 February 2013

Abstract: Compression is the preprocessing work before power quality event data transmission and analysis. In this paper segmented discrete cosine transform (DCT) was used for power quality signal compression. For transient power quality event, such as short duration voltage variation, wavelet transform was used to detect the singularity of the signal firstly. Then the signal was divided into segments by singularities and DCT was performed following. The simulation results show that for stable power quality data, the compression effect of DCT is better than that of wavelet transform. And for short duration voltage variation signal, the compression effect of segmented DCT is better than that of direct DCT. Finally the experiment result was presented to prove the effection of above method. Copyright © 2013 IFSA.

Keywords: Power quality, Short duration voltage variation, Data compression, Wavelet transform, Segmented DCT.

1. Introduction

Compression is the preprocessing work before transmission or analysis of the power quality (PQ) data. The storage of PQ event data is becoming an important issue. As we all know that the frequency range of power quality disturbance is very large. Frequency of voltage fluctuation and flicker caused by arc furnace is lower than 25 Hz, while frequency of pulse transient caused by lightning impulse is high above several Mega-Hz. The power quality monitoring device with 1 MHz to 4 MHz sampling frequency is necessary for recording high frequency transient disturbance. This implies a dramatic need of data compression in terms of storage [1]. In addition, sampled data may be sent to remote control center to analysis and process, which brings enormous stress to channel capacity. Compression – method of reducing the bandwidth or storage capacity needed for analysis and processing is of great importance to power quality monitoring.

There are two parts of compression: lossless compression and lossy compression. According to the principle of information theory, signal is considered as the combination of redundancy and information. The purpose of lossless compression is to reduce redundancy of data, where there is none information losing which is called as entropy coding. Contrariwise, there is information loss in lossy compression which can be called as entropy compression. Transform coding is kind of lossy compression. Original data are transformed to a compact orthogonal space firstly by a certain transforms, and then some coefficients of the transform are discarded according to a certain criterion, finally, the reconstructed signal is achieved by the invert transform. Usually, lossless coding technology is used after lossy transform coding, which would obtain better compression effect. Wavelet transform (WT) has many applications in PQ disturbance data detection and compression [2-5]. PQ data are sinusoidal signal of voltage or current. We
know that the orthonormal basis of discrete cosine transform (DCT) is sinusoidal signal, also. According to the principle of similarity, DCT would be more effective than that of WT in energy concentration characteristics [6]. What’s more, DCT transform is a set of real-value orthogonal transform, thus the calculation quantity is smaller than that of complex FFT algorithm.

In this paper segmented DCT was used in PQ data event compression. Harmonic is stable PQ signals only including sinusoidal signal (fundamental and harmonic signal). DCT was used directly for harmonics signal. Short duration voltage variation (SDVV) is transient PQ signal with high frequency transient disturbance, which can not to be considered stable in the whole long time. So the compression effect using DCT does not act well. Taking account of the problems above, WT was used to detect the singularity of the signal. Then signal was divided into segments by singularities and DCT was performed following. The simulation and experiment results show that the compression effect of segmented DCT is better than that of DCT for SDVV signal.

2. The Principle of DCT

Let \(X = (x_1, x_2, ..., x_N) \) is a column that consists of \(N \) samples, \(A \) is a matrix of \(N \times N \), then
\[
Y = AX
\]
(1)

Defining a linear transformation of \(X \), \(A \) is called the kernel matrix of the transform.

The kernel matrix of DCT is
\[
A = \frac{2}{\sqrt{N}} \left[c(k) \cos \left(\frac{2m+1)k \pi}{2N} \right) \right]_{k,m=0,1,L,N-1}
\]
(2)

That is
\[
Y_k = \frac{2}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) \cos \left(\frac{2m+1)k \pi}{2N} \right),
\]
(3)

where
\[
c(k) = \begin{cases}
 1 & k = 0 \\
 \frac{1}{\sqrt{2}} & k = 1,2,L,N-1
\end{cases}
\]
(4)

Thus, when samples are real, the DCT of samples are real, too.

3. Compression based on DCT

There are two kinds of PQ: stable PQ and transient PQ. The characteristics of stable PQ are waveform distortion, which include harmonics, voltage fluctuation and flicker, voltage unbalance and notch.

The characteristics of transient PQ are spectrum and duration, which include transient resonance, transient pulse, voltage sag and swap. Different characteristic would be taken into account to get better compression effect.

3.1. Compression of stable PQ event data

A typical stable PQ disturbance is harmonic. Let voltage signal with harmonics and inter harmonics under 40 dB white Gaussian noise is
\[
x(n) = \cos(100\pi n T_s + \frac{\pi}{3}) + 0.03\cos(110\pi n T_s + \frac{\pi}{5}) + 0.2\cos(500\pi n T_s + \frac{\pi}{10}) + 0.1\cos(700\pi n T_s) + 0.05\cos(360\pi n T_s + \frac{\pi}{2})
\]

Sampling frequency is \(f_s = 6400 \) Hz. And sampling number is 1024, that is to say, 8 periods. The waveform of \(x(n) \) was shown in Fig. 1(a), and DCT coefficients was shown in Fig. 1(b). It can be seen that most of DCT coefficients are small, which is beneficial to data compression.

There are several ways of measuring the distortion due to compression. Compression ratio (CR) and percentage of mean square error (MSE) are two of them.

CR is defined as:
\[
CR = \left(1 - \frac{S_{\text{new}}}{S_{\text{old}}} \right) \times 100\% ,
\]
(5)

where \(S_{\text{new}} \) is the amount of data after compression, and \(S_{\text{old}} \) is the amount of data before compression.

MSE is defined as:
\[
MSE = \frac{\sum_{k=1}^{N-1} (x(k) - y(k))^2}{\sum_{k=1}^{N-1} x(k)^2} \times 100\% ,
\]
(6)

where \(x(k) \) is the original signal; and \(y(k) \) is the reconstructed signal.

When CR is selected to be 87.5 %, then only 128 samples would be retained and 896 smallest samples must be set to zero. The original, reconstructed waveform of the data and the error between them were shown in Fig. 2. The compression performance of DCT and WT was compared here. While PQ data were compressed using Daubechies-4 wavelet transform, three-level decomposition is used. This made 1/8 of the transform samples coming from approximation coefficients. When detail coefficients were discarded, the CR is 87.5 %, too. The MSE of DCT is 0.9165, while the MSE of WT is 1.13894. The reconstructed errors of DCT and WT were shown in Fig. 2 (b), (d), respectively. It can be seen that under the same CR, the MSE of DCT was smaller than that of WT. That is to say, the compression performance of DCT is better than that of WT for harmonics.
Fig. 1. Waveform of harmonics signal and its DCT transform: (a) Waveform of harmonics signal with 40 dB white noise; (b) DCT transform of harmonics signal.

Fig. 2. Error when CR is 87.5 % of harmonic signal: (a) Original signal and its DCT reconstructed; (b) Error between original data and reconstructed data after DCT; (c) Original signal and its WT reconstructed; (d) Error between original data and reconstructed data after WT.

3.2. Compression of Stable PQ Event Data

Typical transient PQ disturbance is SDVV. The fundamental frequency of SDVV data is 50 Hz, sampling frequency is $f_s = 6400$ Hz, and sampling number is 1024. Between 150 and 400 samples, voltage sag with amplitude of 0.6 p.u. happens; and between 600 and 900 samples, voltage swell with amplitude of 1.5 p.u. happens.

CR was selected to be 87.5 % as above. Original data and reconstructed data using DCT were shown in Fig. 3. The MSE was 2.1432. It can be seen that the compression performance of direct DCT was bad. At the discontinuity point of SDVV event, peaks of reconstructed coefficients appeared. The reason lies in that DCT is frequency domain analysis, which is unfit for nonstationary signal.

3.3. PQ Event Data Compression based on Segmented DCT

SDVV signal is one of some kinds of signals that existing singularity points in begin-end time, which can be detected as the modulus maximum of WT detail scales [7-10]. In this paper, modulus maxima of the first detail signal of Db4 WT are extracted, and the positions where weak signal singularity occurs can be found, which are considered as the begin-end time of SDVV signal.
Reconstructed approximation coefficients and detail coefficients waveform of single-scaling decomposition were shown in Fig. 4. Db4 WT was used here. Singularity points of signal in reconstructed detail coefficients could be seen easily. The modulus maxima happen at 149, 301, 400, 601, 799, 901 sample points, which were much near the real singularity points.

According to the analysis above, we can get the method of PQ data compression based on segmented DCT transform. Firstly detail coefficients of wavelet are extracted to judge the existing of singularity point. If no singularity point exists, DCT is performed directly; and if singularity points exist, signal would be segmented by singularity points and segmented DCT and its reconstruction are performed separately. Using the segmented DCT method presented above, the MSE of SDVV signal is 0.7325 when CR is selected to be 87.5 %. Comparing the errors of Fig. 3 (b) and Fig. 5 (b), it can be seen that segmented DCT method reduces the reconstructed error at singularity point.

4. Compression of Real PQ Event

Real PQ event data with 32000 samples were shown in Fig. 6. The frequency is 6400 Hz. Also, we let CR = 87.5 %, and get MSN = 0.7913. The signal to noise ratio (SNR) is 42.0328. From the example it can be seen that the reconstructed signal remain the characters of original signal, and the method presented here is effective.
5. Conclusions

PQ event data compression using segmented DCT is discussed here. The simulation and experiment results show that the compression effect of segmented DCT is better than that of WT for harmonic signal and short duration voltage variation signal. However, the CR is fixed in this paper, which is not flexible for performance. One of the next works is how to select the compression.

References

[6]. Hu Zhi-Kun, He Zhi-min, AN Qing, et al, A Compression Approach of Power Quality Monitoring Data Based on Two-dimension DCT, *Journal of*

Aims and Scope

Sensors & Transducers is a peer reviewed international, interdisciplinary journal that provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes original research articles, timely state-of-the-art reviews and application specific articles with the following devices areas:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- Sensors interfaces, buses and networks;
- Signal processing and interfacing;
- Frequency (period, duty-cycle)-to-code converters, ADC;
- Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Further information on this journal is available from the Publisher's web site:
http://www.sensorsportal.com/HTML/DIGEST/Submission.htm

Subscriptions

An annual subscription includes 12 regular issues and some special issues. Annual subscription rates for 2013 are the following:

Electronic version (in printable pdf format): 400.00 EUR
Printed with b/w illustrations: 640.00 EUR
Printed full color version: 760.00 EUR

40 % discount is available for IFSA Members.

Prices include shipping costs by mail. Further information about subscription is available through IFSA Publishing's web site: http://www.sensorsportal.com/HTML/DIGEST/Journal_Subscription.htm

Advertising Information

If you are interested in advertising or other commercial opportunities please e-mail sales@sensorsportal.com and your enquiry will be passed to the correct person who will respond to you within 24 hours. Please download also our Media Planner 2013: http://www.sensorsportal.com/DOWNLOADS/Media_Planner_2013.pdf

Books for Review

Publications should be sent to the IFSA Publishing Office: Ronda de Ramon Otero Pedrayo, 42C, 1-5, 08860, Castelldefels, Barcelona, Spain.

Abstracting Services

This journal is cited, indexed and abstracted by Chemical Abstracts, EBSCO Publishing, IndexCopernicus Journals Master List, ProQuest Science Journals, CAS Source Index (CASSI), Ulrich's Periodicals Directory, Scirus, Google Scholar, etc. Since 2011 Sensors & Transducers journal is covered and indexed (including a Scopus, Embase, Engineering Village and Reaxys) in Elsevier products.

Instructions for Authors

Please visit the journal web page http://www.sensorsportal.com/HTML/DIGEST/Submission.htm Authors must follow the instructions very carefully when submitting their manuscripts. Manuscript must be send electronically in both: MS Word 2003 for Windows (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com
Modern Sensors, Transducers and Sensor Networks

Modern Sensors, Transducers and Sensor Networks is the first book from the Advances in Sensors: Reviews book Series contains dozen collected sensor related state-of-the-art reviews written by 31 internationally recognized experts from academia and industry.

Built upon the series Advances in Sensors: Reviews - a premier sensor review source, the Modern Sensors, Transducers and Sensor Networks presents an overview of highlights in the field. Coverage includes current developments in sensing nanomaterials, technologies, MEMS sensor design, synthesis, modeling and applications of sensors, transducers and wireless sensor networks, signal detection and advanced signal processing, as well as new sensing principles and methods of measurements.

Modern Sensors, Transducers and Sensor Networks is intended for anyone who wants to cover a comprehensive range of topics in the field of sensors paradigms and developments. It provides guidance for technology solution developers from academia, research institutions, and industry, providing them with a broader perspective of sensor science and industry.

Order online: http://sensorsportal.com/html/bookstore/Advance_in_Sensors.htm

www.sensorsportal.com