Contents

Volume 148
Issue 1
January 2013
www.sensorsportal.com
ISSN 1726-5479

Research Articles

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
<pre><code> | |
</code></pre>
| Microelectromechanical System (MEMS) Switches for Radio Frequency | Ashish Kumar Sharma, Navneet Gupta
 | Applications - A Review |
| Measurement of Transient Surface Temperature of Conductive Solid Using | Zhiqiang Sun, Yu Chen, Xing Chen
 | Thermocouples with Different Junctions |
| Optical Force Sensor for the DEXMART Hand Twisted String Actuation | Gianluca Palli and Salvatore Pirozzi
 | System |
| Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement | Muhammad Jaysuman Puspanathan, Nor Muzakkir Nor Ayob, Fazlul Rahman Yunus, Khairul Hamimah Abas, Herlina Abdul Rahim, Leo Pei Ling, Ruzairi Abdul Rahim, Fatin Aliah Phang, Mohd Hafiz Fazalul Rahiman, Zulkarnay Zakaria
 | |
| Development of Ethernet Based Remote Monitoring and Controlling of MST | Lakshmi Narayana Roshanna, Nagabhushan Raju Konduru, Rajendra Prasad Thommendru, Chandrasekhar Reddy Devanna, Chaitanya Pavan Kanchisamudram
 | Radar Transmitters using ARM Cortex Microcontroller
 | |
| A Portable Spectrophotometer for Water Quality Analysis | Xiaomin Zhang, Yanjun Fang, Youquan Zhao
 | |
| MATLAB Graphical User Interface based Fuzzy Logic Controllers for Liquid | Immanuel J., Parvathi C. S., L. Shrimanth Sudheer and P. Bhaskar
 | Level Control System |
| Method and Device for Image Coding & Transferring Based | Su Jun, Vasyl Yatskiv
 | on Residue Number System |
| Estimation of Emissivity with the Help of an Infrared Camera | B. Chakraborty and B. K. Sinha
 | |
| Simple and Robust Multipoint Data Acquisition Bus Built on Top of the | Alexey Pavluchenko, Alexander Kukla, Sergey Lozovoy
 | Standard RS 232 Interface |
| Optimizing Micro-scale Thermoelectric Model using Finite Element Method | Divya Jatain, Ajay Agarwal, Manoj Kumar
 | |
The Fourth International Conference on Sensor Device Technologies and Applications

SENSORDEVICES 2013
25 - 31 August 2013 - Barcelona, Spain

Deadline for papers: 30 March 2013

The Seventh International Conference on Sensor Technologies and Applications

SENSORCOMM 2013
25 - 31 August 2013 - Barcelona, Spain

Deadline for papers: 30 March 2013

The Sixth International Conference on Advances in Circuits, Electronics and Micro-electronics

CENICS 2013
25 - 31 August 2013 - Barcelona, Spain

Tracks: Semiconductors and applications - Design, models and languages - Signal processing circuits - Arithmetic computational circuits - Microelectronics - Electronics technologies - Special circuits - Consumer electronics - Application-oriented electronics

Deadline for papers: 30 March 2013

Optical Force Sensor for the DEXMART Hand Twisted String Actuation System

1 Gianluca PALLI and 2 Salvatore PIROZZI
1 Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione
Università di Bologna, 40136 Bologna, Italy
2 Dipartimento di Ingegneria Industriale e dell’Informazione,
Seconda Università degli Studi di Napoli, 81031 Aversa, Italy
E-mail: gianluca.palli@unibo.it, salvatore.pirozzi@unina2.it

Received: 8 November 2012 /Accepted: 24 January 2013 /Published: 31 January 2013

Abstract: In this paper, the force sensor developed for the twisted string actuation system of the DEXMART Hand is described. The proposed solution makes use of optoelectronic components for measuring the deformation of the properly designed motor module structure caused by the force applied to the tendon transmission system. The paper reports the working principle, the calibration and the characterization of the sensor in terms of sensitivity, repeatability, full-scale and Signal-to-Noise ratio. Copyright © 2013 IFSA.

Keywords: Force sensor, Optoelectronic sensor, Mechatronic design, Tendon transmission, Robotic hand.

1. Introduction

Tendon-based transmission systems represent the most promising solution toward the implementation of dexterous anthropomorphic robotic hands [1-4]. To solve some of the problems that characterize tendon-based transmissions, the so-called ‘twisted string actuation’ has been developed within the DEXMART Project [5]. In [6] and [7] the authors present the mechatronic details of this actuation systems together with its modeling and performance within a force feedback control loop. With respect to conventional solutions, the main advantages of this actuation system consist in the direct connection between the motor and the tendon without intermediate mechanisms (like gearboxes, pulleys or ball screws), in the direct transformation from rotative to linear motion, in the extremely reduced friction (only an axial bearing is needed), in the very high reduction ratio, in its intrinsic compliance and in the possibility of using very small high-speed motors, allowing to obtain a very compact and lightweight actuation module.

In the last years, the interest in lightweight and compliant robotic systems has significantly grown. This new class of robots has not been explicitly conceived for industrial applications, but to extend the robotic tasks scenario also to common human-like operations and manipulation activities, such as home and entertainment applications, as well as assistance to elder and impaired people. The development of robotic hands and lightweight robots makes possible a new level of interaction with the humans and the environment, in fact such complex systems are specifically designed to allow the robot to interact with completely unstructured environments: a safe interaction in a so generic and critical scenario can be ensured only by introducing in the mechanism a
smooth and compliant behavior. In robotic hands, such a compliant behavior is usually provided by torque and or force control, hence force and torque sensors appear mandatory [8, 9].

Different solutions for the measurement of the forces transmitted by tendon-based actuation systems have been proposed in literature. In [10] a tension differential-type torque sensor is presented. It is based on the idea that the torque around a drive pulley is proportional to the tension difference, and as a consequence it can be directly measured without sensing tendon tensions. In [1] the authors present a force sensor based on the use of one strain gauge with a compact mechanical structure. A solution based on the Fiber Bragg Grating, directly bonded to the tendon, has been adopted in [11], with the aim to guarantee, for the proposed sensor, the immunity to electromagnetic disturbances, by exploiting the properties of optical fibers. In [12], the authors present, for the first time, a force sensor based on the use of discrete optoelectronic components, limited to the measurements of the tendon force at actuator side. The solution proposed takes advantage of mechanical properties of a compliant metallic frame specially designed and integrated into the actuator. In [13] and [14] a sensor for the tendon force measurement, that can be positioning at any point along the tendon, is presented. To control the twisted string actuation system with its intrinsic compliance, the measurement of the actuation force is fundamental as described in [7]. Solutions based on strain-gauges has been investigated, but, from the mechanical point of view, these solutions, with the corresponding conditioning electronics, were very cumbersome with respect to the twisted string actuation system, and the conditioning electronics were quite complex due to the low voltage levels typical of the strain-gauges, which need of filtering and amplifying stages. But the major drawback of the strain gauge based solutions was the high sensitivity to electromagnetic disturbances that make it unusable near the motors and in the industrial environments. For these reasons, a suitable force sensor for the actuation module of the DEXMART Hand has been developed, as reported in this paper.

The technology selected for the sensory system of the DEXMART Hand is principally based on the optoelectronics, in order to avoid any problem related to electromagnetic disturbances and to obtain very compact, lightweight and low power consumption sensor solutions. All other optoelectronic based sensors developed for the DEXMART Hand can be found in [12-16]. The proposed innovative force sensor exploits the angle-varying radiation pattern of common Light Emitting Diodes (LEDs) and responsivity pattern of Photo Detectors (PDs) in order to measure the deformation of the motor module structure caused by the tendon force. Optoelectronic components with a very narrow angle of view have been chosen (manufacturing codes SEP8736 for the LED and SDP8436 for the PD), both from Honeywell, with the aim of obtaining a large sensitivity for the sensor (please refer to the components datasheets for details on the radiation and responsivity patterns). The advantages of this type of implementation consist in the very high sensitivity and the simplicity of the conditioning electronics used in this work with respect to strain gauge based load cells, together with the high immunity to electromagnetic disturbances, low weight and low power consumption.

2. Sensor Description

Fig. 1 reports a detailed view of the motor module that drives the twisted string actuation system. This module, manufactured in ABS plastic by rapid prototyping, is characterized by an integrated force sensor composed by a LED and a PD, by a mounting rail for a rapid mechanical connection with the forearm structure that ease the assembly and the repairing of the system, by the integrated motor power electronics, by a flexible connection (realized by a silicon tube) between the motor shaft and the transmission shaft for solving problems of misalignment of their rotational axes and by an integrated combined bearing. This structure has been implemented in such a way that the transmission force is entirely supported by the output shaft, the combined bearing and the flexible beams (which are necessary for force measure as detailed in the following), while the motor is only used to transmit to the output shaft the necessary torque for driving the twisted string actuation.

The structure of the motor module is schematized in Fig. 2. This structure is composed by a couple of compliant beams, that support the motor, and produce a translation Δx of the upper part of the structure under the effect of the transmission force F. The behavior of the beam with constraints at both its ends, highlighted by the red dashed rectangle in Fig. 2, is a well know topic in the field of compliant structures and as a consequence the relation between the force and the deformation is known in closed form. For the realized structure, within the linear
deformation domain, the relation between the transmission force F and the displacement Δx can be represented by the sum of the contribution of the two flexible beams as

$$\Delta x = \frac{F}{2} \left(\frac{L^3}{12EI_s} \right) = \frac{FL^3}{24EI_s}, \quad (1)$$

where I_s is the moment of inertia of the beam sectional area, L is the beam length and E is the Young’s modulus of the material. The displacement Δx causes a variation of both the view angle and the distance between the LED and the PD, allowing an indirect measurement of the force F through the change in the PD photocurrent caused by the deformation of the structure.

Fig. 2. Force sensors based on optoelectronic components.

Fig. 3 reports a scheme of the interaction between the LED and the PD. The two optoelectronic components are mounted facing each other, with an alignment offset x and a distance between the component bases equal to L. Subtracting from L the component sizes, is obtained L_0. Recalling the theory on LED radiation patterns reported in [16], it is possible to model the system in order to select the positioning of the optoelectronic components. In particular, if the distance

$$d_0 = \sqrt{L_0^2 + x^2}, \quad (2)$$

between the component tips, is large enough to render the far-field approximation valid, the LED and the PD can be regarded as a point source and a point receiver, respectively. With this hypothesis, when the structure is in the rest position (no force applied), the photocurrent P_0, measured by the PD, is proportional to the product between the radiant intensity pattern of the LED, evaluated in β_0 (denoted as $I(\beta_0)$), and the responsivity pattern of the PD, evaluated in β_0 (denoted as $R(\beta_0)$), and inversely proportional to the square distance d_0, i.e.,

$$P_0 = K \frac{I(\beta_0)R(\beta_0)}{d_0^2}, \quad (4)$$

where K is a dimensional multiplicative constant and the symmetrical positioning of the components has been exploited. Note that the dependence on the spherical coordinate φ of the radiation and responsivity patterns is here omitted since the devices only move within a plane at constant φ. When a force F is applied to the structure, the relative position of the optoelectronic components experiences a variation equal to the compliant frame deformation Δx with respect to its initial value, according to (1). The variation Δx of the alignment offset between the components produces the variations of the distance and the angle β. As a consequence, a different amount of light will be sensed by the PD and converted into a different photocurrent $P(\Delta x)$, that for a generic deformation Δx (proportional to a generic force F) can be written as

$$P(\Delta x) = K \frac{I(\beta(\Delta x))R(\beta(\Delta x))}{(d(\Delta x))^2}, \quad (5)$$

This happens because both the radiation pattern of the LED, the responsivity pattern of the PD and the distance d between the two components vary with the relative position. In particular, the LED emits different values of light intensity for different values of the angle β and at the same time the PD detects the intensity of incident light with different weights depending on the angle β. The combination of these two effects leads to the observed variations of the photocurrent.

Fig. 3. Working principle of the proposed force sensor.

This model explains that the sensor characteristics, in terms of sensitivity, full-scale and SNR, depend on how the responsivity and radiation patterns of the optoelectronic components are sensitive with respect to β variations. A proper design of compliant structure that supports the motor allows to achieve a quasi-linear response of the sensor, as reported in the next section.

2. Sensor Characterization

The conditioning electronics used to complete the sensor implementation is very simple and the scheme is reported in Fig. 4. There are only two resistors in
addition to the optoelectronic components, a first one used to drive the LED by fixing the forward current and a second one used to transduce the photocurrent measured by the PD into the sensor output voltage. Since the variations of the output voltage are characterized by a high Signal-to-Noise ratio, any additional filtering and/or amplification stages are not needed and the sensor, together its conditioning electronics, are completely integrable in the motor module. The characterization of the sensor has been carried out by using a strain-gauge load cell as reference sensor and by applying a continuous varying load up to the maximum desired value (80 N) to the motor module, reported in Fig. 1, by means of a commercial linear motor (manufacturing code LinMot-37×160). The resulting calibration curve is reported in Fig. 5, where the relationship 'Output Voltage' vs. 'Force' shows the high linearity obtained for the presented sensor. The maximum linearity error is below 1.5 % and the resulting calibration constant is 15 mV/N. Different experiments have been compared in order to test the measurement repeatability.

The figure demonstrates that the noise level is below the signal level for more than 50 dB, since the signal bandwidth is limited to a few Hz.

The results for three experiments are reported in Fig. 6, where the sensor shows a very high repeatability. Finally, Fig. 7 shows a typical voltage signal of the proposed sensor (top) and the Power Spectral Density (PSD) of the same signal (bottom).

6. Conclusions

The very compact force sensor integrated into the DEXMART Hand actuation system is described in this paper. The basic working principle and experimental results are reported, showing that the proposed solution based on optoelectronic components allows the adoption of a very simple conditioning electronics, obtaining a very compact and easy to integrate solution. The resulting sensor presents a full scale of 80N, a sensitivity of 15 mV/N, a maximum linearity error of 1.5 % and an high repeatability.

Acknowledgements

The research leading to these results has been funded by the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 216239 (DEXMART project).

References

Jacob Y. Wong, Roy L. Anderson

Non-Dispersive Infrared Gas Measurement

Written by experts in the field, the Non-Dispersive Infrared Gas Measurement begins with a brief survey of various gas measurement techniques and continues with fundamental aspects and cutting-edge progress in NDIR gas sensors in their historical development.

- It addresses various fields, including:
 - Interactive and non-interactive gas sensors
 - Non-dispersive infrared gas sensors’ components
 - Single- and Double beam designs
 - Historical background and today’s of NDIR gas measurements

Providing sufficient background information and details, the book Non-Dispersive Infrared Gas Measurement is an excellent resource for advanced level undergraduate and graduate students as well as researchers, instrumentation engineers, applied physicists, chemists, material scientists in gas, chemical, biological, and medical sensors to have a comprehensive understanding of the development of non-dispersive infrared gas sensors and the trends for the future investigation.

Maria Teresa Restivo, Fernando Gomes de Almeida, Maria de Fátima Chouzal

Strain Measurement

Measurement of Physical and Chemical Quantities Series

'Strain Measurement' deals with measurement of stresses and strains in mechanical and structural components. This topic is related to such diverse disciplines as physical and mechanical sciences, engineering (mechanical, aeronautical, civil, automotive, nuclear, etc.), materials, electronics, medicine and biology, and uses experimental methodologies to test and evaluate the behaviour and performance of all kinds of materials, structures and mechanical systems.

The material covered includes:
- Introduction to the elementary concepts of stress and strain state of a body;
- Experimental extensometry measurement techniques;
- Basic instrumentation theory and techniques associated with the use of strain gauges;
- Optical fibre based extensometry;
- Uncertainty estimation on the measurement of mechanical stress;
- Supplemented multimedia components such as animations, simulations and video clips.

The different subjects exposed in this book are presented in a very simple and easy sequence, which makes it most adequate for engineering students, technicians and professionals, as well as for other users interested in mechanical measurements and related instrumentation.

http://sensorsportal.com/HTML/BOOKSTORE/Strain_Measurement.htm
International Frequency Sensor Association Publishing

Call for Books Proposals
Sensors, MEMS, Measuring instrumentation, etc.

Benefits and rewards of being an IFSA author:

1. **Royalties**
 Today IFSA offers most high royalty in the world: you will receive 50% of each book sold in comparison with 8-11% from other publishers, and get payment on monthly basis compared with other publishers’ yearly basis.

2. **Quick Publication**
 IFSA recognizes the value to our customers of timely information, so we produce your book quickly: 2 months publishing schedule compared with other publishers’ 5-10-month schedule.

3. **The Best Targeted Marketing and Promotion**
 As a leading online publisher in sensors related fields, IFSA and its Sensors Web Portal has a great expertise and experience to market and promote your book worldwide. An extensive marketing plan will be developed for each new book, including intensive promotions in IFSA’s media: journal, magazine, newsletter and online bookstore at Sensors Web Portal.

4. **Published Format: printable pdf (Acrobat).**
 When you publish with IFSA your book will never go out of print and can be delivered to customers in a few minutes.

You are invited kindly to share in the benefits of being an IFSA author and to submit your book proposal or/and a sample chapter for review by e-mail to editor@sensorsportal.com. These proposals may include technical references, application engineering handbooks, monographs, guides and textbooks. Also edited survey books, state-of-the-art or state-of-the-art technology, are of interest to us. For more detail please visit http://www.sensorsportal.com/HTMLIFSA_Publishing.htm

IMAGE SENSORS 2013

Two day conference plus expert pre-conference workshops and innovation platforms

FOCUS ON DIGITAL IMAGING

19-21 March, Park Plaza Victoria, London

image-sensors.com

BOOK NOW AND SAVE 15%

image-sensors.com
Book now to save 15%, quote 'AD15IFSA'
Aims and Scope

Sensors & Transducers is a peer reviewed international, interdisciplinary journal that provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes original research articles, timely state-of-the-art reviews and application specific articles with the following devices areas:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- Sensors interfaces, buses and networks;
- Signal processing and interfacing;
- Frequency (period, duty-cycle)-to-code converters, ADC;
- Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Further information on this journal is available from the Publisher's web site:
http://www.sensorsportal.com/HTML/DIGEST/Submission.htm

Subscriptions

An annual subscription includes 12 regular issues and some special issues. Annual subscription rates for 2013 are the following:

Electronic version (in printable pdf format): 400.00 EUR
Printed with b/w illustrations: 640.00 EUR
Printed full color version: 760.00 EUR

40 % discount is available for IFSA Members.

Prices include shipping costs by mail. Further information about subscription is available through IFSA Publishing's web site: http://www.sensorsportal.com/HTML/DIGEST/Journal_Subscription.htm

Advertising Information

If you are interested in advertising or other commercial opportunities please e-mail sales@sensorsportal.com and your enquiry will be passed to the correct person who will respond to you within 24 hours. Please download also our Media Planner 2013: http://www.sensorsportal.com/DOWNLOADS/Media_Planner_2013.pdf

Books for Review

Publications should be sent to the IFSA Publishing Office: Ronda de Ramon Otero Pedrayo, 42C, 1-5, 08860, Castelldefels, Barcelona, Spain.

Abstracting Services

This journal is cited, indexed and abstracted by Chemical Abstracts, EBSCO Publishing, IndexCopernicus Journals Master List, ProQuest Science Journals, CAS Source Index (CASSI), Ulrich's Periodicals Directory, Scirus, Google Scholar, etc. Since 2011 Sensors & Transducers journal is covered and indexed (including a Scopus, Embase, Engineering Village and Reaxys) in Elsevier products.

Instructions for Authors

Please visit the journal web page http://www.sensorsportal.com/HTML/DIGEST/Submission.htm Authors must follow the instructions very carefully when submitting their manuscripts. Manuscript must be send electronically in both: MS Word 2003 for Windows (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com
Modern Sensors, Transducers and Sensor Networks

Modern Sensors, Transducers and Sensor Networks is the first book from the Advances in Sensors: Reviews book Series contains dozen collected sensor related state-of-the-art reviews written by 31 internationally recognized experts from academia and industry.

Built upon the series Advances in Sensors: Reviews - a premier sensor review source, the Modern Sensors, Transducers and Sensor Networks presents an overview of highlights in the field. Coverage includes current developments in sensing nanomaterials, technologies, MEMS sensor design, synthesis, modeling and applications of sensors, transducers and wireless sensor networks, signal detection and advanced signal processing, as well as new sensing principles and methods of measurements.

Modern Sensors, Transducers and Sensor Networks is intended for anyone who wants to cover a comprehensive range of topics in the field of sensors paradigms and developments. It provides guidance for technology solution developers from academia, research institutions, and industry, providing them with a broader perspective of sensor science and industry.

Order online:
http://sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors.htm

www.sensorsportal.com