Sensors & Transducers

Volume 148, Issue 1
January 2013

Editors-in-Chief: professor Sergey Y. Yurish,
Tel.: +34 696067716, e-mail: editor@sensorsportal.com

Editor for Western Europe
Meijer, Gerard C.M., Delft Univ. of Technology, The Netherlands
Ferrari, Vittorio, Università di Brescia, Italy

Editor for Eastern Europe
Sachenko, Anatoly, Ternopil National Economic University, Ukraine

Editor for North America
Katz, Evgeny, Clarkson University, USA
Datskos, Panos G., Oak Ridge National Laboratory, USA
Fabien, J. Josse, Marquette University, USA

Editor for South America
Costa-Felix, Rodrigo, Inmetro, Brazil

Editors for Asia
Ohyama, Shinji, Tokyo Institute of Technology, Japan
Zhengbing, Hu, Huazhong Univ. of Science and Technol., China

Editor for Asia-Pacific
Mukhopadhyay, Subhas, Massey University, New Zealand

Editor for Africa
Maki K.Habib, American University in Cairo, Egypt

Editorial Board

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia
Abramchuk, George, Measure. Tech. & Advanced Applications, Canada
Ascoli, Giorgio, George Mason University, USA
Atelay, Selcuk, Inonu University, Turkey
Atghiabe, Ahmad, University of Tehran, Iran
Augatis, Vygantas, Kaunas University of Technology, Lithuania
Ayesh, Aladdin, De Montfort University, UK
Baliga, Shankar, B., General Monitors, USA
Basu, Sukumar, Jadavpur University, India
Bouvet, Marcel, University of Burgundy, France
Campanella, Luigi, University La Sapienza, Italy
Carvalho, Vitor, University of Porto, Portugal
Chang, Wen-Yaw, Chung Yuan Christian University, Taiwan
Cortes, Camilo A., Universidad Nacional de Colombia, Colombia
De Stefano, Luca, Institute for Microelectronics and Microsystem, Italy
Ding, Jianning, Changzhou University, China
Djordjevich, Alexandar, University of Hong Kong, Hong Kong
Donato, Nicola, University of Messina, Italy
Dong, Feng, Tianjin University, China
Erkmen, Aydan M., Middle East Technical University, Turkey
Gaur, Elena, Coventry University, UK
Gole, James, Georgia Institute of Technology, USA
Gong, Hao, National University of Singapore, Singapore
Gonzalez de la Rosa, Juan Jose, University of Cadiz, Spain
Guillet, Bruno, University de Caen, France
Hadjiloucas, Sillas, The University of Reading, UK
Hui, David, University of New Orleans, USA
Jaffrezic-Renault, Nicole, Claude Bernard University Lyon 1, France
Jamil, Mohammad, Qatar University, Qatar
Kanlisas, Eugenijus, Vienna University of Technology, Austria
Kim, Min Young, Kyungpook National University, Korea
Kumar, Arun, University of Delaware, USA
Lay-Eskakille, Aimo, University of Lecce, Italy
Lin, Paul, Cleveland State University, USA
Liu, Alhua, Chinese Academy of Sciences, China
Mansor, Muhammad Naufal, University Malaysia Perlis, Malaysia
Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico
Mistra, Vivekanand, National Institute of Technology, India
Mohghavemi, Mahmoud, University of Malaya, Malaysia
Morello, Rosario, University “Mediterranea” of Reggio Calabria, Italy
Mulia, Imtiaz, National Chemical Laboratory, Pune, India
Nabok, Aleksy, Sheffield Hallam University, UK
Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria
Passaro, Vittorio M. N., Politecnico di Bari, Italy
Penza, Michele, ENEA, Italy
Pereira, Jose Miguel, Instituto Politecnico de Setubal, Portugal
Pogacnik, Lea, University of Ljubljana, Slovenia
Pullini, Daniele, Centro Ricerche FIAT, Italy
Reig, Candid, University of Valencia, Spain
Restivo, Maria Teresa, University of Porto, Portugal
Rodriguez Martinez, Angel, Universidad Politecnica de Cataluña, Spain
Sadana, Ajit, University of Mississippi, USA
Sadeghian Marnani, Hamed, University of Tehran, Iran
Sapozhnikova, Ksenia, D. I. Mendeleev Institute for Metrology, Russia
Singhal, Subodh Kumar, National Physical Laboratory, India
Shah, Kriyang, La Trobe University, Australia
Shi, Wendian, California Institute of Technology, USA
Shmulty, Yuriy, Gauanjuta University, Mexico
Song, Xu, An Yang Normal University, China
Srivastava, Arvind K., LightField, Corp, USA
Stefanescu, Dan Mihai, Romanian Measurement Society, Romania
Sumriddetekajorn, Sarun, Nat. Electr. & Comp. Tech. Center, Thailand
Sun, Zhiqiang, Central South University, China
Szőveg, Victor, Saratov State Technical University, Russia
Thirunavukkarasu, I., Manipal University Karnataka, India
Vazquez, Carmen, Universidad Carlos III Madrid, Spain
Wang, Jiangping, Xi’an Shiyou University, China
Xue, Ning, Agilent, Inc., USA
Yang, Dongfang, National Research Council, Canada
Yang, Shuang-Hua, Shanghai Jiao Tong University, China
Yaping Dan, University Malaysia Perlis, Malaysia
Zakaria, Zulkarnay, Shanghai Jiao Tong University, China
Zhang, Wenming, Shanghai Jiao Tong University, China

Sensors & Transducers Journal (ISSN 1726-5479) is a peer review international journal published monthly online by International Frequency Sensor Association (IFSA). Available in both: print and electronic (printable pdf) formats. Copyright © 2013 by International Frequency Sensor Association. All rights reserved.
Contents

Volume 148  
Issue 1  
January 2013

www.sensorsportal.com  ISSN 1726-5479

Research Articles

Low Value Capacitance Measurements for Capacitive Sensors – A Review  
Prabhu Ramanathan, Sudha Ramasamy, Prateek Jain, Hardik Nagrecha, Saurav Paul,  
P.Aruimozhivarman, Rao Tatavarti

Microelectromechanical System (MEMS) Switches for Radio Frequency  
Applications - A Review  
Ashish Kumar Sharma, Navneet Gupta

Measurement of Transient Surface Temperature of Conductive Solid Using  
Thermocouples with Different Junctions  
Zhiqiang Sun, Yu Chen, Xing Chen

Optical Force Sensor for the DEXMART Hand Twisted String Actuation System  
Gianluca Palli and Salvatore Pirozzi

Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement  
Muhammad Jaysuman Pusppanathan, Nor Muzakkir Nor Ayob, Fazlul Rahman Yunus,  
Khairul Hamimah Abas, Herlina Abdul Rahim, Leo Pei Ling, Ruzairi Abdul Rahim,  
Fatin Aliah Phang, Mohd Hafiz Fazalul Rahiman, Zulkarnay Zakaria

Development of Ethernet Based Remote Monitoring and Controlling of MST Radar  
Transmitters using ARM Cortex Microcontroller  
Lakshmi Narayana Roshanna, Nagabhushan Raju Konduru, Rajendra Prasad  
Thommundru, Chandrasekhar Reddy Devanna, Chaitanya Pavan Kanchisamudram

A Portable Spectrophotometer for Water Quality Analysis  
Xiaomin Zhang, Yanjun Fang, Youquan Zhao

MATLAB Graphical User Interface based Fuzzy Logic Controllers for Liquid Level  
Control System  
Immanuel J., Parvathi C. S., L. Shrimanth Sudheer and P. Bhaskar

Method and Device for Image Coding & Transferring Based  
on Residue Number System  
Su Jun, Vasyl Yatskiv

Estimation of Emissivity with the Help of an Infrared Camera  
B. Chakraborty and B. K. Sinha

Simple and Robust Multipoint Data Acquisition Bus Built on Top of the Standard  
RS 232 Interface  
Alexey Pavluchenko, Alexander Kukla, Sergey Lozovoy

Optimizing Micro-scale Thermoelectric Model using Finite Element Method  
Divya Jatain, Ajay Agarwal, Manoj Kumar
The Fourth International Conference on Sensor Device Technologies and Applications

SENSORDEVICES 2013
25 - 31 August 2013 - Barcelona, Spain


Deadline for papers: 30 March 2013

http://www.iaaria.org/conferences2013/SENSORDEVICES13.html

The Seventh International Conference on Sensor Technologies and Applications

SENSORCOMM 2013
25 - 31 August 2013 - Barcelona, Spain


Deadline for papers: 30 March 2013

http://www.iaaria.org/conferences2013/SENSORCOMM13.html

The Sixth International Conference on Advances in Circuits, Electronics and Micro-electronics

CENICS 2013
25 - 31 August 2013 - Barcelona, Spain

Tracks: Semiconductors and applications - Design, models and languages - Signal processing circuits - Arithmetic computational circuits - Microelectronics - Electronics technologies - Special circuits - Consumer electronics - Application-oriented electronics

Deadline for papers: 30 March 2013

http://www.iaaria.org/conferences2013/CENICS13.html
Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

1 Muhammad Jaysuman PUSPPANATHAN, 1 Nor Muzakkir NOR AYOB, 1 Fazlul Rahman YUNUS, 1 Khairul Hamimah ABAS, 1 Herlina Abdul RAHIM, 1 Leo Pei LING, 1 Ruzairi Abdul RAHIM, 2 Fatin Aliah PHANG, 3 Mohd Hafiz FAZALUL RAHIMAN, 3 Zulkarnay ZAKARIA

1 Process Tomography and Instrumentation Research Group (PROTOM-i), INFOCOMM Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia 81310 UTM Skudai, Johor, Malaysia. Tel.: +607-5537801, fax: +607-5537811
2 Centre of Engineering Education (CEE), Universiti Teknologi Malaysia, 81300 UTM Skudai, Johor, Malaysia. Tel.: +607-5537906, fax: +607-553 7592
3 School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia. Tel.: +604 9885166
E-mail: ruzairi@fke.utm.my, p-fatin@utm.my, hafiz@unimap.edu.my

Received: 6 June 2012 /Accepted: 24 January 2013 /Published: 28 January 2013

Abstract: This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improves and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized. Copyright © 2013 IFSA.

Keywords: Tomography, Ultrasonic, Two phase flow, Flow measurement, Transceiver.

1. Introduction

This research aims to develop a non-invasive ultrasonic tomography system and to develop application to reconstruct images of a two-phase liquid – gas flow system. Similar research in non-invasive method of ultrasonic tomogram fabrication technique was introduced [1]. The development on ultrasonic tomography has shifted to focusing on two-phase liquid–gas flow. This system implemented invasive method which is not appropriate practically in most industries [2]. This system requires high
excitation voltage (200 V) to transmit ultrasonic signals via a transmitter. Such high voltage has many restrictions in terms of safety and cost.

A common ultrasonic tomography system uses a separated type of ultrasonic transmitter and ultrasonic receiver with a specified frequency range. Such system raises some difficulties and disadvantages such as; i) More space required to mount more sensors, ii) More sensors will cost higher expenses and iii) Accuracy of the system will decrease.

To overcome the above mentioned problems, this research implemented the use of ultrasonic transceiver replacing the use of separated ultrasonic transmitter–receiver pair. Hence, such system can improve the accuracy of measurement and uses less space compare to the separated transmitter–receiver pair.

2. Ultrasonic Sensor and Hardware Configuration

Ultrasonic waves are high (ultra) frequency sound (sonic) wave which vibrate at a frequency above 20 000 vibrations per second or 20 kHz. The behavior of ultrasonic is similar to audible sounds but has a much shorter wavelength. Most ultrasonic waves can be described in terms of harmonic (sinusoidal) waves. The ultrasonic waves can only propagate through the medium of solid, liquid or gas but not in vacuum.

There are several types of ultrasonic transducer available in the market with different range of frequencies. A good tomography sensor should possess some important features such as non-invasive and non-intrusive. It should not necessitate rupture of the walls of a pipeline and does not disturb the nature of the process being examined [3]. For this reason, ultrasonic transceivers as shown in Fig. 1 were employed in this research.

![Fig. 1. Ultrasonic transceiver sensors.](image)

The ultrasonic transceiver (as in Fig. 1) is a type of transducer that converts electrical energy into high frequency sound waves and also converting sound waves back to electrical energy. It contains piezoelectric crystal materials that have the ability to transform mechanical energy into electrical energy and vice versa [4]. This sensor is suitable for non-invasive measurements and it is low cost. Its flat main surface makes it easy to be mounted on an acrylic pipe.

In most non-destructive testing or medical applications, an object or field of interest is irradiated from a single viewpoint, usually with a narrow beam of ultrasonic acoustic energy [5]. The ultrasonic transceiver implemented in this research utilizes an angle of 120° degree wide beam. Fig. 2 illustrates the comparison between wide beam and narrow beam ultrasonic projections.

![Fig. 2. (a) Wide beam, and (b) narrow beam projections.](image)
to use for less number of these sensors can be used to produce the same or even better results comparing to the use of common separated transmitter–receiver transducer.

The sensor configuration of a transceiver and common transducer surrounding a pipe surface was compared and illustrated as in Fig. 3. Separated transmitter-receiver pair needs to be sequentially arranged. Each transmitter will require a receiver mounted next to it while using ultrasonic transceivers only requires a switching method to switch select the transceivers.

![Fig. 3. Sensor configuration comparison; (a) Separated transmitter–receiver setup, (b) Transceiver setup.](image)

All 8 transceivers are firmly mounted on the acrylic pipe surface. This was done by using a sensor jig to hold firm all the sensors [7] surrounding the acrylic pipe as in Fig. 4. All sensors are evenly placed to ensure the better receiving signals are captured. Correct and precise positioning of the sensors is crucial to obtain accurate results.

![Fig. 4. Sensor jig design.](image)

In order to fabricate a precise hardware system, the whole hardware system was designed in 3D using Solidwork software as in Fig. 5 (a) while Fig. 5 (b) is the actual hardware system used in this research.

![Fig. 5. Acrylic pipeline for tomography system, (a) 3D drawing, (b) fabricated experimental setup.](image)

### 3. Software System

In this research, signal data from hardware system was synchronized with a software system developed to process the incoming ultrasound signal. For an ultrasonic receiver to receive ultrasound signals, the ultrasonic transmitter will require pulse tone to transmit ultrasound signals. This can be done by generating 40 kHz pulse wave via a microcontroller [8]. By using a Peripheral Interface Circuit (PIC) microcontroller, an external wave signal generator will not be necessary. Hence, it could highly decrease the cost and the hardware size of this system.

Pulse waves are sent to all 8 channels via Port B of the microcontroller which has 8 input-output (I/O) pins for 8 channels. The transmitted 40 kHz pulse wave signal was captured using an oscilloscope as
shown in Fig. 6 below. These pulses will vibrate the sensor surface and produce sound wave at 40 kHz to a located receiver.

![Fig. 6. 40 kHz Pulse Signal.](image)

The transmitted ultrasound wave signal can be captured by the transceivers which are switched to receiving mode (RX). The captured acoustic wave response is shown in below Fig. 7.

![Fig. 7. Response signal at receiver.](image)

The received signal will then be amplified via a signal conditioning circuit before reconstructing images. The ultrasonic signal conditioning circuit is shown in Fig. 8. The ultrasonic signal conditioning circuit consists of two major components where the first component is the amplifier and the second component is the signal processing circuit. The first part was built using the audio operational amplifier, LM833. This op-amp is a high speed op-amp with excellent phase margin and stability. The amplifier was designed in two stages with inverting amplifier connection. The first stage is the pre-amplifier with gain $AA = -150$ and the second stage is to amplify with gain $AB = -150$. A single gain is not sufficient enough to analyse the obtained signals.

Therefore, the received signals are amplified twice. The processed signal will then be used to reconstruct images representing the two phase liquid–gas flow.

3.1. Data Acquisition

In this research, the NI-USB 6218 data acquisition device (DAQ) from National Instruments were used. This device is connected via Universal Serial Bus (USB) to a computer. To work along with this device, Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) from National Instruments was used. The NI-USB 6218 will acquire all signals via its analogue input pins and store it in a binary text file for the image reconstruction process.

The DAQ program will only take place if the assigned external trigger pin (PFI0) from the device is triggered. This process was carried out by using the same microcontroller used to control the transceivers switching sequence to trigger NI-USB. Fig. 9 shows the data acquisition block diagram using LabVIEW software while Fig. 10 illustrates the flow chart of the data acquisition process.

![Fig. 8. Ultrasonic signal conditioning.](image)
4. Image Reconstruction

The final part of the system is to evaluate the obtained measurement data from the signal conditioning circuit. By using Linear Back Projection (LBP) algorithm, the flow regime image can be reconstructed. This method is computationally straightforward to implement besides low computation cost and is a widely preferable method for image reconstruction.

The measurements obtained at each projected data are the attenuated sensor values due to object space in the image plane. These sensor values are then projected back by multiplying with the corresponding normalized sensitivity maps using the below equation:

\[
V_{LBP}(x, y) = \sum_{i=1}^{S} \sum_{j=1}^{S} S_{Tx,Rx} \times M_{Tx,Rx}(x,y),
\]

where \(V_{LBP}(x,y)\) is the voltage distribution obtained using LBP, \(S_{Tx,Rx}\) is the sensor loss voltage of the transmitter (Tx) and receiver (Rx) and \(M_{Tx,Rx}(x,y)\) is the normalized sensitivity maps. The flow chart to apply the LBP program can be illustrated as in Fig. 11.

![Fig. 9. NI-USB block diagram program in LabVIEW.](image)

![Fig. 10. The data acquisition flow chart.](image)

![Fig. 11. Linear back projection algorithm application flow chart.](image)
tomogram images are then reconstructed on the mapped sensitivity map to visualize the two phase liquid-gas flow.

Firstly, the cross section of the pipe must be mapped onto a $32 \times 32$ rectangular arrangement sum of 1024 pixels as shown in Fig. 12. This setting is suitable of producing a frame per second imaging [10].

The mapping configuration for the transceivers will differ from the common separated transmitter–receiver pair type of the ultrasonic transducer where the total of 16 sensors will be involved to be mapped (8 unit transmitters and 8 unit receivers). Fig. 13 below shows the image plane model for the 16 ultrasonic common type transducers where each transmitter and receiver is located side by side in sequence.

The mapping process and sensor arrangement (as in Fig. 12 and Fig. 13) shows that the use of ultrasonic transceiver arrangement has more space available for the extra number of sensors to be mounted while the use of common separated transmitter-receiver sensor are very limited due to space constrain on the pipe surface.

4. Result and Discussion

The liquid–gas flow regimes are identified by placing the acrylic pipeline horizontally such that the gas phase (air) flows in the upper section of the pipe and the liquid (tap water) in the lower section. A horizontal pipe with a static liquid model and empty air are used to carry out measurements on two phase liquid–gas flow. Four types of measurement were carried out; i) full flow, ii) three quarter flow, iii) two quarter flow and iv) one quarter flow.

The final reconstructed tomogram results are shown in below Fig. 14.

The reconstructed images using the Linear Back Projection (LBP) technique results in blurring the object image. The blurring is due to the projection along straight lines and the smearing effect. The distribution of the intensity is centre symmetrical and dependent on the projection angle where the blurring function is the inverse of the corresponding pipe radius.

One of the methods to reduce the blurring is by using the Hybrid Binary Reconstruction Algorithm (HBRA). This algorithm has the advantage of correcting and improving the stability and repeatability of the reconstructed images [11]. This procedure is only appropriate for two-phase flow imaging in cases where the phases are well separated such as liquid-gas flow [12]. Since the use of transceivers has more spaces for more sensors to be installed, increasing the amount of sensors will contribute for better image resolution and better results.

5. Conclusion

This research shows that this system is able to detect the presence of two phase liquid–gas flow in pipelines. From the image result which has been successfully generated, the use of only 8 transceivers can produce the same result as 16 pairs of separated transmitters–receivers. The separated ultrasonic transmitter-receiver transducer which is commonly used in ultrasonic tomography measurement requires larger space to mount it on the surface of the pipeline. This is due to the needs of having extra pairs of transmitter–receiver where each of these transmitters–receiver pairs has only a single function, either to transmit or receive only. Comparing to the use of the transceivers, 8 units of ultrasonic transceivers could perform measurements as the performance of 16 pairs separated transmitter–receiver.
Acknowledgements

The authors would like to thank the Faculty of Electrical Engineering, Universiti Teknologi Malaysia and Process Tomography and Instrumentation Research Group (PROTOM-i) for discussions that have been useful in this paper.

References

Non-Dispersive Infrared Gas Measurement

Written by experts in the field, the Non-Dispersive Infrared Gas Measurement begins with a brief survey of various gas measurement techniques and continues with fundamental aspects and cutting-edge progress in NDIR gas sensors in their historical development.

- It addresses various fields, including:
  - Interactive and non-interactive gas sensors
  - Non-dispersive infrared gas sensors’ components
  - Single- and Double beam designs
  - Historical background and today’s of NDIR gas measurements

Providing sufficient background information and details, the book Non-Dispersive Infrared Gas Measurement is an excellent resource for advanced level undergraduate and graduate students as well as researchers, instrumentation engineers, applied physicists, chemists, material scientists in gas, chemical, biological, and medical sensors to have a comprehensive understanding of the development of non-dispersive infrared gas sensors and the trends for the future investigation.


Strain Measurement

'Strain Measurement' deals with measurement of stresses and strains in mechanical and structural components. This topic is related to such diverse disciplines as physical and mechanical sciences, engineering (mechanical, aeronautical, civil, automotive, nuclear, etc.), materials, electronics, medicine and biology, and uses experimental methodologies to test and evaluate the behaviour and performance of all kinds of materials, structures and mechanical systems.

The material covered includes:

- Introduction to the elementary concepts of stress and strain state of a body;
- Experimental extensometry measurement techniques;
- Basic instrumentation theory and techniques associated with the use of strain gauges;
- Optical fibre based extensometry;
- Uncertainty estimation on the measurement of mechanical stress;
- Supplemented multimedia components such as animations, simulations and video clips.

The different subjects exposed in this book are presented in a very simple and easy sequence, which makes it most adequate for engineering students, technicians and professionals, as well as for other users interested in mechanical measurements and related instrumentation.

http://sensorsportal.com/HTML/BOOKSTORE/Strain_Measurement.htm
International Frequency Sensor Association Publishing

Call for Books Proposals

Sensors, MEMS, Measuring instrumentation, etc.

Benefits and rewards of being an IFSA author:

1. Royalties
   Today IFSA offers most high royalty in the world: you will receive 50% of each book sold in comparison with 8-11% from other publishers, and get payment on monthly basis compared with other publishers yearly basis.

2. Quick Publication
   IFSA recognizes the value to our customers of timely information, so we produce your book quickly: 2 months publishing schedule compared with other publishers’ 5-10-month schedule.

3. The Best Targeted Marketing and Promotion
   As a leading online publisher in sensors related fields, IFSA and its Sensors Web Portal has a great expertise and experience to market and promote your book worldwide. An extensive marketing plan will be developed for each new book, including intensive promotions in IFSA’s media: journal, magazine, newsletter and online bookstore at Sensors Web Portal.

4. Published Format: printable pdf (Acrobat).
   When you publish with IFSA your book will never go out of print and can be delivered to customers in a few minutes.

You are invited kindly to share in the benefits of being an IFSA author and to submit your book proposal or/and a sample chapter for review by email to editor@sensorsportal.com. These proposals may include technical references, application engineering handbooks, monographs, guides and textbooks. Also edited survey books, state-of-the-art or state-of-the-technology, are of interest to us. For more detail please visit http://www.sensorsportal.com/HTMLIFSA_Publishing.htm

IMAGE SENSORS 2013

FOCUS ON DIGITAL IMAGING

19-21 March, Park Plaza Victoria, London
image-sensors.com

BOOK NOW AND SAVE 15%
Aims and Scope

_Sensors & Transducers_ is a peer reviewed international, interdisciplinary journal that provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes original research articles, timely state-of-the-art reviews and application specific articles with the following devices areas:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- Sensors interfaces, buses and networks;
- Signal processing and interfacing;
- Frequency (period, duty-cycle)-to-code converters, ADC;
- Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Further information on this journal is available from the Publisher's web site: http://www.sensorsportal.com/HTML/DIGEST/Submission.htm

Subscriptions

An annual subscription includes 12 regular issues and some special issues. Annual subscription rates for 2013 are the following:

Electronic version (in printable pdf format): 400.00 EUR
Printed with b/w illustrations: 640.00 EUR
Printed full color version: 760.00 EUR

40 % discount is available for IFSA Members.

Prices include shipping costs by mail. Further information about subscription is available through IFSA Publishing's web site: http://www.sensorsportal.com/HTML/DIGEST/Journal_Subscription.htm

Advertising Information

If you are interested in advertising or other commercial opportunities please e-mail sales@sensorsportal.com and your enquiry will be passed to the correct person who will respond to you within 24 hours. Please download also our Media Planner 2013: http://www.sensorsportal.com/DOWNLOADS/Media_Planner_2013.pdf

Books for Review

Publications should be sent to the IFSA Publishing Office: Ronda de Ramon Otero Pedrayo, 42C, 1-5, 08860, Castelldefels, Barcelona, Spain.

Abstracting Services

This journal is cited, indexed and abstracted by Chemical Abstracts, EBSCO Publishing, IndexCopernicus Journals Master List, ProQuest Science Journals, CAS Source Index (CASSI), Ulrich's Periodicals Directory, Scirus, Google Scholar, etc. Since 2011 _Sensors & Transducers_ journal is covered and indexed (including a Scopus, Embase, Engineering Village and Reaxys) in Elsevier products.

Instructions for Authors

Please visit the journal web page http://www.sensorsportal.com/HTML/DIGEST/Submission.htm Authors must follow the instructions very carefully when submitting their manuscripts. Manuscript must be send electronically in both: MS Word 2003 for Windows (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com
Modern Sensors, Transducers and Sensor Networks is the first book from the Advances in Sensors: Reviews book Series. It contains a dozen collected sensor-related state-of-the-art reviews written by 31 internationally recognized experts from academia and industry.

Built upon the series Advances in Sensors: Reviews - a premier sensor review source, the Modern Sensors, Transducers and Sensor Networks presents an overview of highlights in the field. Coverage includes current developments in sensing nanomaterials, technologies, MEMS sensor design, synthesis, modeling and applications of sensors, transducers and wireless sensor networks, signal detection and advanced signal processing, as well as new sensing principles and methods of measurements.

Modern Sensors, Transducers and Sensor Networks is intended for anyone who wants to cover a comprehensive range of topics in the field of sensors paradigms and developments. It provides guidance for technology solution developers from academia, research institutions, and industry, providing them with a broader perspective of sensor science and industry.

Order online: http://sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors.htm

www.sensorsportal.com