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Abstract: We propose a novel topology to improve the routing performance of Content-Addressable Network 
overlays while minimizing the maintenance overhead during nodes churn. The key idea of our approach is to 
establish a P2P tree structure (CAN tree) by means of equipping each node with a few long links towards some 
distant nodes. The long links enhance routing flexibility and robustness against failures. Nodes automatically 
adapt routing table to cope with network change. The routing complexity is O(log n), which is much better than 
a uniform greedy routing, while each node maintains two long links in average. 
Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 
 

The structured approach of P2P architectures are 
based on analogous designs, while their search and 
management strategies differ. Ring-based approaches 
such as Pastry [2], and Chord [3] all use similar 
search algorithms such as binary ordered B*-tree. 
Content Addressable Networks (CAN) bases on the 
geometric space [1, 4]. 

The original routing of CAN has the lowest 
efficiency among the aforementioned structured Peer-
to-Peer systems. Routing hops of Chord is  nO log  

in average for a Chord circle with n participating 
nodes. In Pastry with n nodes, the destination is 
reached in )(log

2
nb  hops. CAN can forward 

messages using only immediate-links. Hence, greedy 
routing [1] is not very efficient, particularly in large 
scale dynamic CAN; and CAN routing complexity is 
 dndO /1  in a d-dimensional key space. 

We know the average routing path length i.e., the 
number of nodes traversed during routing, from CAN 

simulator [1]. Fig. 1 illustrates the average routing 
path length in each case for dimensions 2 to 5. 
Because increasing the number of dimensions implies 
that each node has more neighbors, and each node 
has more potential next hop nodes [1]. The results 
indicate that the routing efficiency is low especially 
for low dimensions. In order to reduce the routing 
latency in CAN, the original CAN proposes to 
increase the number of immediate neighbors per node 
via enhancing dimensions. Unfortunately, our 
Content Addressable Network for Simulation 
(CANS) [5] is utilized to simulate “city traffic” and 
MMVE. “City traffic” and MMVE require a 2-
dimensional or 3-dimensional space. Hence we need 
an efficient routing solution in low dimensions. 

Long links have been extensively utilized by 
many other P2P protocols to improve routing 
performance such as Chord [3], Pastry [2]. Moreover, 
we have eCAN [7], LDP [8], SCAN [9], and RCAN 
[10] (see 2. Related Work), which have also adopted 
long links for the same purpose of improving routing 
functionality but in different ways [10]. They are 
built on top of the conventional CAN overlay. 
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Fig. 1. Effect of dimensions on path length [1]. 
 
 

Our scheme is also based on long links. However, 
we concentrate on a novel routing via establishing 
search tree infrastructure in CAN in order to improve 
its routing performance and enhance fault-tolerance. 
Meanwhile, both of long links and node churn 
maintenance overhead should be minimized. 
 
 
2. Related Work 
 

Content-Addressable Network (CAN) is proposed 
in [1]. It is based on geometric design, and achieves 
 dndO /1  routing performance with  dO  routing 

state per node. Recently some research works 
concentrated on improving lookup efficiency in 
CAN. Their common essence is via additional long 
links to reduce the routing latency and enhance  
fault tolerance. 

In “Building Low-maintenance Expressways for 
P2P Systems” [7], they proposed “eCAN”, which is 
designed for efficient routing via expressways in 
CAN. eCAN routing performance can achieve 
 nO log . Expressways are established by snapshot. 

Cartesian key space is divided into topology areas of 
different spans called “expressway zones”. 
Expressway zones are hierarchical. Low level 
expressway zone is resident of high level’s 
expressway zone. Each node owns a CAN zone and 
is also a resident of the expressway zones. Hence, 
any message needs to be propagated to upper level. 
The construction of eCAN may have direct impact on 
the routing flexibility, scalability and fault-tolerance 
[7]. eCAN is closely related to our work. Because it 
builds expressway according to snapshot, eCAN can 
not immediately adjust itself according to network 
changing. Subsequently, snapshot generates extra 
overhead except long links. 

“Long distance pointers” (LDP) [8] introduced 
distinct method to establish long links via randomly 
choosing nodes in CAN. LDP number is a fixed 
parameter, which does not change with the nodes 
number. Hence, it does not guarantee that LDP 

evenly distributes across the key space. The authors 
proposed also an improved scheme “sub-space 
pointers” (SSP). After splitting the Cartesian key 
space into virtual sub-spaces, each node establishes 
long links to random nodes in each virtual sub-space. 

In RCAN [10], each node establishes some sets of 
long links, each of which is established along one 
dimension. Long link forwards to distances inverse of 
power of 2 from the originating node [10]. It achieves 
 nO log  maintenance overhead after node churn. 

Moreover, the average number of long links per node 
is n

dd log  in a d-dimensional RCAN. 

 
 
3. Zone-code and CAN Tree 
 

Instead of greedy routing, we route in a tree 
network. The key idea is to establish a P2P tree 
(CAN tree) [5] via long links. Each node of CAN is a 
node of the CAN tree. Since each node only connects 
with its parent and child nodes in the tree network, it 
needs more information to choose the routing target 
node. For this purpose, we introduce the zone-code. 

We have proposed the zone-code in “Using Zone 
Code to Manage a Content-Addressable Network for 
Distributed Simulations” [6]. It’s a binary string. A 
zone-code records the splitting history of its 
corresponding zone. We can obtain the zone-code 
Fig. 2(a) by traversing the partition tree Fig. 2(b). 

 
 

 
 

(a) CAN 
 
 

 
 

(b) Partition tree 
 

Fig. 2. CAN and partition tree. 



Sensors & Transducers, Vol. 162 , Issue 1, January 2014, pp. 124-130 

 126 

The partition tree is a binary tree and records the 
reassignment process. In order to obtain a zone-code, 
we perform a traversal from root to leaf in the 
partition tree. It’s analogous to Hoffman code [11]. 
Going left is a 0, going right is a 1. A zone-code is 
only completed when a leaf node is reached [6]. 
Fig. 2(b) illustrates how to establish zone-codes via 
the partition tree. Combining all our insights, we 
deduced the following observation. 

Fact 1: The zone-code is a prefix code. 
In practice, we don’t need the partition tree to 

generate a zone-code. When a node p shares its half 
zone to a new node c, node c copies p’s zone-code. 
And then node p and c append “0” and “1” 
respectively. Let p  denote the zone-code of node p. 
Then, after node c joining, the new zone-code of 

node p is )0,( p  and the zone-code of c is )1,( p . 

Hence, zone-code grows simultaneous with zone 
splitting. The more splits, the longer zone-code 
becomes [6]. Combining all our insights, we deduced 
the following observation. 

Fact 2: In partition tree, the zone-code of node p 
is the prefix of zone-codes of all nodes in the sub-tree 
rooted at node p. 

For example, the node marked with shade in 
Fig. 2(b) has zone-code (0,1). Thus, the zone-codes 
of nodes in the sub-tree have a common prefix (0,1). 

By Fact 2, we can route in the partition tree. 
However, the internal nodes in the partition tree do 
no longer exist, but were split at some previous time. 
The children of a node are the two nodes into which 
their parent node was split. Thus, we cannot establish 
this partition tree via long links in practice. We need 
the CAN tree to realize the long links. 

CAN tree is a variation of the partition tree. Both 
of them are representations of the zone splitting 
process. There are some duplicate nodes that have the 
same name but different zone-codes in the partition 
tree Fig. 2(b). If we merge duplicate nodes into one 
node that is parent of duplicate nodes’ child nodes, it 
becomes CAN tree (Fig. 3). CAN tree is not a binary 
tree, but each node exists in CAN tree. Thus, we can 
implement high efficient routing in CAN tree. 
 
 

 
 

Fig. 3. CAN tree. 
 
 

We build the CAN tree via parent-child long 
links. When a new node c forwarded JOIN request 
and node p shares half its zone with node c, node c 

becomes the child of node p. All “parent-child” 
relations constitute a distributed CAN tree. In order 
to route, each node must store its original zone-code 

*  and current zone-code  . Therefore, when a new 
node c joins in CAN and obtains zone from node p, 
node p and c must act as follows (Fig. 4): 
1. Node p splits its allocated zone in half, retaining 

half and handing the other half to node c. 
2. Node p becomes parent of node c. Both of them 

augment long links to establish a “parent-child” 
relation in the CAN tree. 

3. Node c copies p’s current zone-code (  p ). 
And then, node p and c append “0” and “1” 
respectively, i.e. new )0,( p  and )1,( c . 

4. Node c sets )1,(*  c , Node p is not a new node, 

hence *p does not change. 

 

 

 
 

(a) Before joining 

 
 

(b) After joining 
 

Fig. 4. New peer c joins CAN. 

 

 

Let *p  denote the original zone-code of node p. 
*p  is the first zone-code of node p, and *p  is 

constant. If node p shared its zone to a new node, 
pp  !* . For example in Fig. 3, )0,0,1,0(3   and 

)1,0(*3  . *p is the prefix of p . Consequently, 
*p  is also the prefix of zone-code of children of 

node p. Combining all our insights, we deduced the 
following observation.  

Fact 3: In CAN tree, a node p has the original 
zone-code *p . The *p  is the prefix of zone-codes 
of nodes in the sub-tree rooted at node p.  

For example in Fig. 3, the *3  is the prefix of 
zone-code of all nodes in sub-tree rooted at node 3. 
The *1  is null, it’s the prefix of any zone-code of 
nodes in the CAN tree. Since a new node obtains its 
zone-code via copying and extending the zone-code 
of its parent, we deduce the following: 

Fact 4: If *p  of node p is the prefix of the c  of 
node c, node c is in the sub-tree rooted at node p. 

Let *p  denote the original zone-code of current 

node p and d  is the zone-code of the destination 
node d. Consequently, our routing scheme is that 
node p checks whether its *p  is prefix of d . If it 
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is, node p forwards the message to its child which 
shares the longest common prefix with d . If not, 
node d is not in the sub-tree rooted at node p and then 
node p forwards the message to its parent node.  

Fig. 3 illustrates the routing from node 5 to 
node 7. If the destination node is not in the sub-tree 
rooted at current node, we expand the searching sub-
tree until it covers the destination node. Afterwards, 
we shrink the searching sub-tree until the current 
node is the destination. If the destination node is in 
the sub-tree rooted at current node, we only shrink 
the searching region. During shrinking, the 

destination node is always in the sub-tree rooted at 
the current node. Thus, the routing must eventually 
terminate successfully.  

 
 

4. Routing Table 
 

The routing table consists of the short links 
toward the neighbors and the long links toward the 
parent and child nodes in the CAN tree, and the 
original zone-code *  (Fig. 5).  

 
 

 
 

Fig. 5 (a). Routing tables: node 1.

 
 

Fig. 5 (b). Routing tables: node 2. 
 
 

 
 

Fig. 5 (c). Routing tables: node 3. 

 

 
 

Fig. 5 (d). Routing tables: node 4. 
 
 

 
 

Fig. 5 (e). Routing tables: node 5. 

 

 
 

Fig. 5 (f). Routing tables: node 6. 
 
 

 
 

Fig. 5 (j). Routing tables: node 7. 

 

 
 

Fig. 5 (h). Routing tables: node 8. 
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In this section, we propose the detail of how to 
establish and maintain the routing table. The routing 
procedure is addressed in the next section. 
CAN maintains short links by exchanging heartbeat 
messages between immediate neighbors. For d-
dimensional CAN, a node maintains  dO  neighbors 

in average. This is analogous to original CAN. 
Long links are a part of CAN tree. It’s central to 

our scheme. They are established during new nodes 
joining. When a new node joins in CAN via 
Bootstrapping [12][13], an existing node splits its 
zone into two sub-zones, retaining one and handing 
the other to the new node [1]. This is same with 
original CAN. However, the two nodes are parent-
child relationship in CAN tree. We establish long 
links between them, i.e. they augment a long link set 
in its routing table respectively. They are distant 
neighbors. The entry of routing table is consisted of 
distant neighbor information, e.g. node ID, IP 
address, and zone-code   (Fig. 5).  

We will discuss the system responsiveness during 
network churn in other paper. 
 
 
5. Routing Mechanism 
 

If a node has the zone-code d  of a destination 
node, it can exactly choose the next hop via its 
routing table. Fig. 6 illustrates the flow diagram of 
routing. If current node c is not the destination node, 
it checks whether its original zone-code *c  is a 

prefix of d . If it is, it forwards the message to the 
distant node that shares the longest common prefix 
zone-code with d . If not, it forwards the message to 
its parent node. Since the root node has no parent in 
CAN tree, it always forwards the message to its child, 
which shares the longest prefix with d . As 
expressed Fact 4 in section 3, the routing must 
eventually terminate successfully. 

 
 

 
 

Fig. 6. Flow diagram. 
 
 

For example, node 5 ( )1,1(5   and )1,1(*5  ) in 

Fig. 3 forwards a message to node 7 ( )1,0,1,0(7  ). 

The routing table is in Fig. 5. The routing is  
as follows: 
1. Node 5 is not the destination. Since )1,1(*5   is 

not the prefix of )1,0,1,0(7  , node 5 forwards 

the message to its parent node 2. 

2. Node 2 is not the destination. Since )1(*2   is 

not the prefix of )1,0,1,0(7  , node 2 forwards 

the message to its parent node 1. 
3. Node 1 is not the destination. Since it is root 

node, i t forwards the message to the child node 3 
whose )0,0,1,0(3   shares the longest common 

prefix zone-code with )1,0,1,0(7  . 

4. Node 3 is not the destination. Since )1,0(*3   is 

the prefix of the )1,0,1,0(7  , node 3 forwards 

the message to child node 7 which is the 
destination. Thus, routing is finished. 

 

6. Evaluation 
 

Our solution did not re-design CAN routing, but 
extended it. Via long links, routing is optimized 
several features simultaneously: small routing path, 
more routing flexibility and fault-tolerance. The 
routing procedure always converges, since each step 
forwards the message to a node which shares a longer 
prefix than the last step, each step moves closer to  
the destination. 

CAN tree routing is based on a tree. Hence the 
complexity depends on the tree structure. In order to 
demonstrate the effectiveness of our design in terms 
of routing performance, we have implemented a 
CAN tree routing scheme in C# and conducted a set 
of experiments via distinct schemes on networks with 
up to 16000 nodes. We run CAN tree routing against 
original CAN greedy and RCAN routing to offer 
comparative measurements. These measures include 
essentially: path length to cope with different 
network size, path length distribution, and number of 
long links per node. 
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Fig. 7(a) and Fig. 7(b) plot respectively the 
average and the maximum path length with respect to 
network size. The path length is measured by the 
number of hops traversed during each lookup request. 
Fig. 7 illustrates that both the average and maximum 
path length in CAN tree routing are better than in 
other routing, and both of them are perfectly 
asymptotic to the logarithm of nods. Path length of 
greedy routing (Fig. 7) increases much faster. 

 

 

 
 

(a) Average path length 
 

 
 

(b) Maximun path length 
 

Fig. 7. Path length with increasing network size 

 

 
Fig. 8 illustrates the path lengths distribution of 

routing in CAN with 16000 nodes. The path length 
distribution of greedy routing is much better than in 
other routing.  

Except first node, every new node needs two long 
links to join in CAN tree. Each parent node needs one 
long link pointing to its child; and child nodes need 
one long link pointing to its parent. Hence, number of 
long links is   21 n , and average long links can be 

calculated as: 
 

 
n

n
Laverage

21 


 

2
2)1(limlim






 n

n
n

L
n average

 

 
Thus, each node maintains two long links in 

average.  
 
 

 
 

Fig. 8. Path length distribution. 
 
 
7. Conclusion and Future Works 
 

We proposed in this paper CAN tree routing, a 
novel routing scheme based on CAN tree to 
overcome the weakness of routing in CAN. CAN 
with CAN tree routing is a completely decentralized 
system. CAN tree infrastructure gracefully adapts 
itself to cope with any changes in the network. As a 
pure peer-to-peer system, nodes assume equal 
responsibility. System maintains nodes’ routing states 
with minimizing cost even in the presence of high 
rate of churn. The critical contribution is to equip 
each node with long links that extremely enhance 
routing efficiency. The amount of long links per node 
is independent of the network size. The system can 
scale by several orders of magnitude without loss  
of efficiency. 

Our routing scheme has more links than original 
CAN, which causes a tiny overhead to maintain long 
links. It’s proved that the number of long links per 
node is 2 in average. However, it also shows the 
small extension leads to significant improvements on 
routing performance. 

We are also investigating the issue of load 
balancing in the present scheme. Our ongoing work 
includes the investigation of advanced mechanisms 
for load balancing to improve the system 
responsiveness during network churn. 
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