
Sensors & Transducers, Vol. 162 , Issue 1, January 2014, pp. 124-130

 124

SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss

© 2014 by IFSA Publishing, S. L.
http://www.sensorsportal.com

CAN Tree Routing for Content-Addressable Network

Zhongtao LI, Torben WEIS
University Duisburg-Essen, Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften

Fachgebiet Verteilte Systeme Duisburg, 47048, Germany
Tel.: 0049-17638215891

E-mail: li.zhongtao@hotmail.com

Received: 5 November 2013 /Accepted: 9 January 2014 /Published: 31 January 2014

Abstract: We propose a novel topology to improve the routing performance of Content-Addressable Network
overlays while minimizing the maintenance overhead during nodes churn. The key idea of our approach is to
establish a P2P tree structure (CAN tree) by means of equipping each node with a few long links towards some
distant nodes. The long links enhance routing flexibility and robustness against failures. Nodes automatically
adapt routing table to cope with network change. The routing complexity is O(log n), which is much better than
a uniform greedy routing, while each node maintains two long links in average.
Copyright © 2014 IFSA Publishing, S. L.

Keywords: CAN Tree, CAN, CANS, P2P routing, CAN routing.

1. Introduction

The structured approach of P2P architectures are
based on analogous designs, while their search and
management strategies differ. Ring-based approaches
such as Pastry [2], and Chord [3] all use similar
search algorithms such as binary ordered B*-tree.
Content Addressable Networks (CAN) bases on the
geometric space [1, 4].

The original routing of CAN has the lowest
efficiency among the aforementioned structured Peer-
to-Peer systems. Routing hops of Chord is  nO log

in average for a Chord circle with n participating
nodes. In Pastry with n nodes, the destination is
reached in)(log

2
nb hops. CAN can forward

messages using only immediate-links. Hence, greedy
routing [1] is not very efficient, particularly in large
scale dynamic CAN; and CAN routing complexity is
 dndO /1 in a d-dimensional key space.

We know the average routing path length i.e., the
number of nodes traversed during routing, from CAN

simulator [1]. Fig. 1 illustrates the average routing
path length in each case for dimensions 2 to 5.
Because increasing the number of dimensions implies
that each node has more neighbors, and each node
has more potential next hop nodes [1]. The results
indicate that the routing efficiency is low especially
for low dimensions. In order to reduce the routing
latency in CAN, the original CAN proposes to
increase the number of immediate neighbors per node
via enhancing dimensions. Unfortunately, our
Content Addressable Network for Simulation
(CANS) [5] is utilized to simulate “city traffic” and
MMVE. “City traffic” and MMVE require a 2-
dimensional or 3-dimensional space. Hence we need
an efficient routing solution in low dimensions.

Long links have been extensively utilized by
many other P2P protocols to improve routing
performance such as Chord [3], Pastry [2]. Moreover,
we have eCAN [7], LDP [8], SCAN [9], and RCAN
[10] (see 2. Related Work), which have also adopted
long links for the same purpose of improving routing
functionality but in different ways [10]. They are
built on top of the conventional CAN overlay.

Article number P_1758

Sensors & Transducers, Vol. 162 , Issue 1, January 2014, pp. 124-130

 125

Fig. 1. Effect of dimensions on path length [1].

Our scheme is also based on long links. However,
we concentrate on a novel routing via establishing
search tree infrastructure in CAN in order to improve
its routing performance and enhance fault-tolerance.
Meanwhile, both of long links and node churn
maintenance overhead should be minimized.

2. Related Work

Content-Addressable Network (CAN) is proposed
in [1]. It is based on geometric design, and achieves
 dndO /1 routing performance with  dO routing

state per node. Recently some research works
concentrated on improving lookup efficiency in
CAN. Their common essence is via additional long
links to reduce the routing latency and enhance
fault tolerance.

In “Building Low-maintenance Expressways for
P2P Systems” [7], they proposed “eCAN”, which is
designed for efficient routing via expressways in
CAN. eCAN routing performance can achieve
 nO log . Expressways are established by snapshot.

Cartesian key space is divided into topology areas of
different spans called “expressway zones”.
Expressway zones are hierarchical. Low level
expressway zone is resident of high level’s
expressway zone. Each node owns a CAN zone and
is also a resident of the expressway zones. Hence,
any message needs to be propagated to upper level.
The construction of eCAN may have direct impact on
the routing flexibility, scalability and fault-tolerance
[7]. eCAN is closely related to our work. Because it
builds expressway according to snapshot, eCAN can
not immediately adjust itself according to network
changing. Subsequently, snapshot generates extra
overhead except long links.

“Long distance pointers” (LDP) [8] introduced
distinct method to establish long links via randomly
choosing nodes in CAN. LDP number is a fixed
parameter, which does not change with the nodes
number. Hence, it does not guarantee that LDP

evenly distributes across the key space. The authors
proposed also an improved scheme “sub-space
pointers” (SSP). After splitting the Cartesian key
space into virtual sub-spaces, each node establishes
long links to random nodes in each virtual sub-space.

In RCAN [10], each node establishes some sets of
long links, each of which is established along one
dimension. Long link forwards to distances inverse of
power of 2 from the originating node [10]. It achieves
 nO log maintenance overhead after node churn.

Moreover, the average number of long links per node
is n

dd log in a d-dimensional RCAN.

3. Zone-code and CAN Tree

Instead of greedy routing, we route in a tree
network. The key idea is to establish a P2P tree
(CAN tree) [5] via long links. Each node of CAN is a
node of the CAN tree. Since each node only connects
with its parent and child nodes in the tree network, it
needs more information to choose the routing target
node. For this purpose, we introduce the zone-code.

We have proposed the zone-code in “Using Zone
Code to Manage a Content-Addressable Network for
Distributed Simulations” [6]. It’s a binary string. A
zone-code records the splitting history of its
corresponding zone. We can obtain the zone-code
Fig. 2(a) by traversing the partition tree Fig. 2(b).

(a) CAN

(b) Partition tree

Fig. 2. CAN and partition tree.

Sensors & Transducers, Vol. 162 , Issue 1, January 2014, pp. 124-130

 126

The partition tree is a binary tree and records the
reassignment process. In order to obtain a zone-code,
we perform a traversal from root to leaf in the
partition tree. It’s analogous to Hoffman code [11].
Going left is a 0, going right is a 1. A zone-code is
only completed when a leaf node is reached [6].
Fig. 2(b) illustrates how to establish zone-codes via
the partition tree. Combining all our insights, we
deduced the following observation.

Fact 1: The zone-code is a prefix code.
In practice, we don’t need the partition tree to

generate a zone-code. When a node p shares its half
zone to a new node c, node c copies p’s zone-code.
And then node p and c append “0” and “1”
respectively. Let p denote the zone-code of node p.
Then, after node c joining, the new zone-code of

node p is)0,(p and the zone-code of c is)1,(p .

Hence, zone-code grows simultaneous with zone
splitting. The more splits, the longer zone-code
becomes [6]. Combining all our insights, we deduced
the following observation.

Fact 2: In partition tree, the zone-code of node p
is the prefix of zone-codes of all nodes in the sub-tree
rooted at node p.

For example, the node marked with shade in
Fig. 2(b) has zone-code (0,1). Thus, the zone-codes
of nodes in the sub-tree have a common prefix (0,1).

By Fact 2, we can route in the partition tree.
However, the internal nodes in the partition tree do
no longer exist, but were split at some previous time.
The children of a node are the two nodes into which
their parent node was split. Thus, we cannot establish
this partition tree via long links in practice. We need
the CAN tree to realize the long links.

CAN tree is a variation of the partition tree. Both
of them are representations of the zone splitting
process. There are some duplicate nodes that have the
same name but different zone-codes in the partition
tree Fig. 2(b). If we merge duplicate nodes into one
node that is parent of duplicate nodes’ child nodes, it
becomes CAN tree (Fig. 3). CAN tree is not a binary
tree, but each node exists in CAN tree. Thus, we can
implement high efficient routing in CAN tree.

Fig. 3. CAN tree.

We build the CAN tree via parent-child long
links. When a new node c forwarded JOIN request
and node p shares half its zone with node c, node c

becomes the child of node p. All “parent-child”
relations constitute a distributed CAN tree. In order
to route, each node must store its original zone-code

* and current zone-code  . Therefore, when a new
node c joins in CAN and obtains zone from node p,
node p and c must act as follows (Fig. 4):
1. Node p splits its allocated zone in half, retaining

half and handing the other half to node c.
2. Node p becomes parent of node c. Both of them

augment long links to establish a “parent-child”
relation in the CAN tree.

3. Node c copies p’s current zone-code ( p).
And then, node p and c append “0” and “1”
respectively, i.e. new)0,( p and)1,( c .

4. Node c sets)1,(*  c , Node p is not a new node,

hence *p does not change.

(a) Before joining

(b) After joining

Fig. 4. New peer c joins CAN.

Let *p denote the original zone-code of node p.
*p is the first zone-code of node p, and *p is

constant. If node p shared its zone to a new node,
pp  !* . For example in Fig. 3,)0,0,1,0(3  and

)1,0(*3  . *p is the prefix of p . Consequently,
*p is also the prefix of zone-code of children of

node p. Combining all our insights, we deduced the
following observation.

Fact 3: In CAN tree, a node p has the original
zone-code *p . The *p is the prefix of zone-codes
of nodes in the sub-tree rooted at node p.

For example in Fig. 3, the *3 is the prefix of
zone-code of all nodes in sub-tree rooted at node 3.
The *1 is null, it’s the prefix of any zone-code of
nodes in the CAN tree. Since a new node obtains its
zone-code via copying and extending the zone-code
of its parent, we deduce the following:

Fact 4: If *p of node p is the prefix of the c of
node c, node c is in the sub-tree rooted at node p.

Let *p denote the original zone-code of current

node p and d is the zone-code of the destination
node d. Consequently, our routing scheme is that
node p checks whether its *p is prefix of d . If it

Sensors & Transducers, Vol. 162 , Issue 1, January 2014, pp. 124-130

 127

is, node p forwards the message to its child which
shares the longest common prefix with d . If not,
node d is not in the sub-tree rooted at node p and then
node p forwards the message to its parent node.

Fig. 3 illustrates the routing from node 5 to
node 7. If the destination node is not in the sub-tree
rooted at current node, we expand the searching sub-
tree until it covers the destination node. Afterwards,
we shrink the searching sub-tree until the current
node is the destination. If the destination node is in
the sub-tree rooted at current node, we only shrink
the searching region. During shrinking, the

destination node is always in the sub-tree rooted at
the current node. Thus, the routing must eventually
terminate successfully.

4. Routing Table

The routing table consists of the short links
toward the neighbors and the long links toward the
parent and child nodes in the CAN tree, and the
original zone-code * (Fig. 5).

Fig. 5 (a). Routing tables: node 1.

Fig. 5 (b). Routing tables: node 2.

Fig. 5 (c). Routing tables: node 3.

Fig. 5 (d). Routing tables: node 4.

Fig. 5 (e). Routing tables: node 5.

Fig. 5 (f). Routing tables: node 6.

Fig. 5 (j). Routing tables: node 7.

Fig. 5 (h). Routing tables: node 8.

Sensors & Transducers, Vol. 162 , Issue 1, January 2014, pp. 124-130

 128

In this section, we propose the detail of how to
establish and maintain the routing table. The routing
procedure is addressed in the next section.
CAN maintains short links by exchanging heartbeat
messages between immediate neighbors. For d-
dimensional CAN, a node maintains  dO neighbors

in average. This is analogous to original CAN.
Long links are a part of CAN tree. It’s central to

our scheme. They are established during new nodes
joining. When a new node joins in CAN via
Bootstrapping [12][13], an existing node splits its
zone into two sub-zones, retaining one and handing
the other to the new node [1]. This is same with
original CAN. However, the two nodes are parent-
child relationship in CAN tree. We establish long
links between them, i.e. they augment a long link set
in its routing table respectively. They are distant
neighbors. The entry of routing table is consisted of
distant neighbor information, e.g. node ID, IP
address, and zone-code  (Fig. 5).

We will discuss the system responsiveness during
network churn in other paper.

5. Routing Mechanism

If a node has the zone-code d of a destination
node, it can exactly choose the next hop via its
routing table. Fig. 6 illustrates the flow diagram of
routing. If current node c is not the destination node,
it checks whether its original zone-code *c is a

prefix of d . If it is, it forwards the message to the
distant node that shares the longest common prefix
zone-code with d . If not, it forwards the message to
its parent node. Since the root node has no parent in
CAN tree, it always forwards the message to its child,
which shares the longest prefix with d . As
expressed Fact 4 in section 3, the routing must
eventually terminate successfully.

Fig. 6. Flow diagram.

For example, node 5 ()1,1(5  and)1,1(*5 ) in

Fig. 3 forwards a message to node 7 ()1,0,1,0(7 ).

The routing table is in Fig. 5. The routing is
as follows:
1. Node 5 is not the destination. Since)1,1(*5  is

not the prefix of)1,0,1,0(7  , node 5 forwards

the message to its parent node 2.

2. Node 2 is not the destination. Since)1(*2  is

not the prefix of)1,0,1,0(7  , node 2 forwards

the message to its parent node 1.
3. Node 1 is not the destination. Since it is root

node, i t forwards the message to the child node 3
whose)0,0,1,0(3  shares the longest common

prefix zone-code with)1,0,1,0(7  .

4. Node 3 is not the destination. Since)1,0(*3  is

the prefix of the)1,0,1,0(7  , node 3 forwards

the message to child node 7 which is the
destination. Thus, routing is finished.

6. Evaluation

Our solution did not re-design CAN routing, but
extended it. Via long links, routing is optimized
several features simultaneously: small routing path,
more routing flexibility and fault-tolerance. The
routing procedure always converges, since each step
forwards the message to a node which shares a longer
prefix than the last step, each step moves closer to
the destination.

CAN tree routing is based on a tree. Hence the
complexity depends on the tree structure. In order to
demonstrate the effectiveness of our design in terms
of routing performance, we have implemented a
CAN tree routing scheme in C# and conducted a set
of experiments via distinct schemes on networks with
up to 16000 nodes. We run CAN tree routing against
original CAN greedy and RCAN routing to offer
comparative measurements. These measures include
essentially: path length to cope with different
network size, path length distribution, and number of
long links per node.

Sensors & Transducers, Vol. 162 , Issue 1, January 2014, pp. 124-130

 129

Fig. 7(a) and Fig. 7(b) plot respectively the
average and the maximum path length with respect to
network size. The path length is measured by the
number of hops traversed during each lookup request.
Fig. 7 illustrates that both the average and maximum
path length in CAN tree routing are better than in
other routing, and both of them are perfectly
asymptotic to the logarithm of nods. Path length of
greedy routing (Fig. 7) increases much faster.

(a) Average path length

(b) Maximun path length

Fig. 7. Path length with increasing network size

Fig. 8 illustrates the path lengths distribution of

routing in CAN with 16000 nodes. The path length
distribution of greedy routing is much better than in
other routing.

Except first node, every new node needs two long
links to join in CAN tree. Each parent node needs one
long link pointing to its child; and child nodes need
one long link pointing to its parent. Hence, number of
long links is   21 n , and average long links can be

calculated as:

 
n

n
Laverage

21 


2
2)1(limlim






 n

n
n

L
n average

Thus, each node maintains two long links in

average.

Fig. 8. Path length distribution.

7. Conclusion and Future Works

We proposed in this paper CAN tree routing, a
novel routing scheme based on CAN tree to
overcome the weakness of routing in CAN. CAN
with CAN tree routing is a completely decentralized
system. CAN tree infrastructure gracefully adapts
itself to cope with any changes in the network. As a
pure peer-to-peer system, nodes assume equal
responsibility. System maintains nodes’ routing states
with minimizing cost even in the presence of high
rate of churn. The critical contribution is to equip
each node with long links that extremely enhance
routing efficiency. The amount of long links per node
is independent of the network size. The system can
scale by several orders of magnitude without loss
of efficiency.

Our routing scheme has more links than original
CAN, which causes a tiny overhead to maintain long
links. It’s proved that the number of long links per
node is 2 in average. However, it also shows the
small extension leads to significant improvements on
routing performance.

We are also investigating the issue of load
balancing in the present scheme. Our ongoing work
includes the investigation of advanced mechanisms
for load balancing to improve the system
responsiveness during network churn.

References

[1]. Sylvia Ratnasamy, Paul Francis, Mark Handley,

Richard Karp, Scott Shenker, A scalable content
addressable network, in Proceedings of the ACM
International Conference on Applications,

Sensors & Transducers, Vol. 162 , Issue 1, January 2014, pp. 124-130

 130

Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM’ 01), San
Diego, California, USA, 27-31 August 2001,
pp. 161-172.

[2]. A. Rowstron and P. Druschel, Pastry: scalable,
distributed object location and routing for large-scale
peer-to-peer systems, in Proceedings of the
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Springer,
Heidelberg, Germany, November 2001, pp. 329–350.

[3]. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, Chord: a scalable peer-to-peer
lookup service for internet applications, in
Proceedings of the ACM Conference (SIGCOMM
'01), 2001, pp. 149–160.

[4]. Ralf Steinmetz and Klaus Wehrle, Peer-to-peer
systems and applications, Springer, 2005.

[5]. Zhongtao Li, Torben Weis, Content-addressable
network for distributed simulations, in Proceedings
of the International Conference on Communications,
Mobility, and Computing (CMC’2012), May 2012.

[6]. Zhongtao Li, Torben Weis, Using zone code to
manage a content-addressable network for distributed
simulations, in Proceedings of the IEEE 14th
International Conference on Communication
Technology (ICCT’ 2012), November 2012.

[7]. Z. Xu, Z. Zhang, Building low-maintenance
expressways for P2P systems, Technical Report
HPL-2002-41 41, HP Laboratories, Palo Alto, 2002.

[8]. O. D. Sahin, D. Agrawal, A. E. Abbadi, Techniques
for efficient routing and load balancing in content-

addressable networks, in Proceedings of the 5th IEEE
International Conference on Peer-to-Peer Computing
(P2P’2005), Washington, DC, USA, 2005,
pp. 67–74.

[9]. X. Sun, SCAN: a small-world structured P2P overlay
for multi-dimensional queries, in Proceedings of the
16th International Conference on World Wide Web
(WWW’ 07), ACM, New York, 2007, pp. 1191–1192.

[10]. D. Boukhelef, and H. Kitagawa, Multi-ring
infrastructure for content addressable networks, in
Proceedings of the 16th International Conference on
Cooperative Information Systems (CoopIS '08),
Monterrey, Mexico, November 12-14, 2008, Lecture
Notes in Computer Science, Vol. 5331, Springer
Berlin, Heidelberg, 2008, pp. 193-211.

[11]. David A. Huffman, A method for the construction of
minimum-redundancy codes, in Proceedings of the
IRE, 1952.

[12]. M. Knoll, A. Wacker, G. Schiele, and T. Weis,
Decentralized bootstrapping in pervasive
applications, in Proceedings of the 5th Annual IEEE
International Conference on Pervasive Computing
and Communications Workshops (PerComW' 07),
2007, pp. 589-592.

[13]. M. Knoll, A. Wacker, G. Schiele, and T. Weis,
Bootstrapping in peer-to-peer systems, in
Proceedings of the 14th International Conference on
Parallel and Distributed Systems (ICPADS’2008),
Melbourne, Victoria, Australia, December
8-10, 2008.

2014 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved.
(http://www.sensorsportal.com)

