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Abstract: For the radiating capacity of curtain antenna array, this paper constructs a three-line-four-column 
curtain antenna array using cage antenna as the antenna array element and obtains a normalizing 3D radiation 
patterns through conducting simulation with MATLAB. Meanwhile, the relationships between the antenna 
spacing and the largest directivity coefficient, as well as the communication frequency and largest directivity 
coefficient are analyzed in this paper. It turns out that the max value will generate when the antenna spacing is 
around 18 m and the best communication effect will be achieved when the communication frequency is about 
12.4 MHz. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 

 

Antenna array is a specialized antenna that is 
made up of more than two antenna units through 
regular or random permutation and with proper 
stimulus to get the predetermined radiation 
characteristic. The transmission and receiving of 
antenna array is regarded as the linear synthesis of all 
transmission and receiving antenna elements. As for 
transmitting antenna, some simple radiant points like 
point source, symmetrical dipole source are common 
radiant points constructing antenna array. In order to 
obtain the best directionality of radiant energy, they 
constitute the array based on some small parameters 
like wireless feed current, spacing and electrical 
length in the format of a straight line or other more 

complex format. The antenna array can adjust 
radiation and receiving direction according to 
requirements, which is the charming of the  
antenna array.  

Thus, adaptive antenna array in radar and 
intelligent array used in modern mobile 
communication are produced.  

Compared to traditional single antenna, antenna 
array boosts lots of advantages, such as more flexible 
beam control, stronger interference rejection 
capability and higher spatial resolving power. As the 
rapid development of super-large scale, high speed 
integrated circuit and monolithic microwave 
integrated circuits, various kinds of advanced array 
signal processing system can be realized to provide a 
project implementation platform for array signal 
processing and theory. 
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2. Basic Theory 
 
2.1. Finite Dipole 
 

Since finite dipole can be regarded as a cascade of 
countless small dipoles, superposition principle can 
be employed to evaluate. Using the countless small 
dipoles whose superposition length of is dz  as the 
integration, the result is: 
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The dipole is center-fed and the current must stop 

on both sides, so dipole current can be well 
represented by normal line selection approximation, 
as the expansion of the existing transmission- 
line current.  

Therefore, the expression of current is 
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When the current value is submitted into the 

formula, the approximate far electronic field is: 
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2.2. Basic Theory of Antenna 
 

The binary array is the most basic antenna array, 
easy to be analyzed. Similar with other larger antenna 
arrays, binary array also owns the general 
performance, which is the basis to understand the 
phase relation of two adjacent antenna arrays at the 
same time. The spacing of two vertical polarization 
infinitesimal dipoles placed along the y  axis is d ; 

the distance between the field point and the origin is 
r , accordance with r d . Assumption can be made 
that the distance vector 1r , r  and 2r  is almost 
parallel to each other.  

So the approximation is: 
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Fig. 1. Two vertical polarization infinitesimal dipoles. 

 
 

Continuing to assume: the phase of array element 

1r  is / 2 , which means its phase current is 2
0

j
I e




; 

the phase of array element is / 2 , which, in other 

words, indicates its phase current is 2
0

j
I e



. Far field 

can be achieved after the superposition of the array 
elements of these two dipoles. 
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Of the above formula,   represents the phase 

difference of two adjacent phase elements; L  is the 
length of dipole;   means the angle from z axis 
measurement in spherical coordinate; d  is the 
element spacing.  

Further simplifying the formula (7): 
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E  can be divided into two parts. Element factor 

is the far field equation of a dipole antenna, and 
meanwhile, array factor is the pattern function related 
to array geometry.  

The far distance of antenna array consisting of 
same elements can always be decomposed into the 
product of Element Factor and Array Factor. 
Multiplying EF by AF shows that antenna pattern 
possesses multiplicative property. Thereupon, the far 
field direction of any antenna array can be expressed 
as (AF)×(EF). AF is determined by element 
geometry, element spacing and the phase of  
each element.  
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Radiation intensity can be regarded as power 
density after distance normalization and be  
expressed as:  
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The normalization radiation intensity can be 
obtained after plunging formula (8) into formula (9):  
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When / 0.5, 0d    , formula (10) 
construction can be adopted to explain the product of 
radiation pattern. As it is shown in Fig. 2(a) is the 
power radiation pattern of a single dipole array 
element; Fig. 2(b) refers to the power radiation 
pattern of a single array factor; Fig. 2(c) means the 
product of the both.  
 
 

 
 

Fig. 2. (a) Power radiation pattern of dipole;  
(b) Power radiation pattern of array factor; 

(c) General radiation pattern. 
 
 

The most important theory that binary array tries 
to prove is: one array factor can be separated from 
another; as long as all array elements are the same, 
the array factor of all array can be calculated 
individually, and is irrelevant to the chose array 
element.  
 
 

3. Curtain Antenna Array Model 
 

3.1. Cage Antenna 
 

Curtain antenna array uses cage antenna as the 
array element. A hollow cylinder is made with multi-

conductors to replace the antenna of a single 
conductor with making, as it is shown in Fig. 3. Its 
directivity is similar to symmetrical dipole of a 
general conductor, which can be treated as an equal 
part of dipole antenna. 

 

 

 
 

Fig. 3. Schematic figure of cage antenna. 

 

 
3.2. Curtain Array Factor 
 

Fig. 4 is a schematic figure of curtain array in the 
y-z plane. If there are N  and M  elements 
respectively on z axis and y axis, a curtain array of 
N M  is thus formed.  

 

 

 
 

Fig. 4. Structure model of curtain array. 

 
 

The following curtain antenna array factor  
can be realized with the radiation pattern 
multiplication principle: 
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Among it, ,x y   is the delay of beam 

transferring to phase, which can be presented as 
following:  
 

0 0 0cos , sin sinz z y ykd kd         (12)

 
The array factor that normalizes AF can be re-

expressed as: 



Sensors & Transducers, Vol. 163 , Issue 1, January 2014, pp. 9-14 

 12

( 1)( cos )

1

( 1)( sin sin )

1

1
z z

y y

N
j n kd

NM
n

M
j m kd

m

AF e
NM

e

 

  

  



  



 





 (13) 

 
 
3.3. Power Density and Radiation Intensity 
 

The far field radiation intensity of curtain array is: 
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Power density is:  
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Among it,  
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The power density 1
2r  makes the far field 

radiation pattern is irrelevant to distance. After 
normalization, the normalized radiation intensity is:  
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3.4. Directivity Factor  
 

The directivity factor and the maximum 
directivity factor of curtain antenna array is:  
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Through working out the maximum value of 

directivity factor, the maximum directivity factor of 
curtain array can be obtained:  

0 2 23

0 0

4

sin NM

D
AF d d

 



  

 

 (19) 

 
 

4. Simulation Analysis 
 

Simulation parameters are set as follows: 
communication frequency is 12.4 MHz; received 
power is 1 KW each feed point; the length of antenna 
is set as 20 m; and the antenna is in three-line-four-
column array, with the line spacing of 10 m, turning 
to elevation angle 0° and azimuth angle 0°.  

Parameter of measured point：testing elevation 
angle is 0° and the testing azimuth angle is 0°; the 
distance is 1000 m.  

With simulations under the environment of 
MATLAB, the field strength of antenna array at the 
measured point can be obtained is 1.92206 V/m and 
power intensity is 0.004899 W/m2.  

Using MATLAB, the three-dimensional radiation 
intensity figure of curtain antenna array is  
(see Fig. 5). 
 
 

 
 

Fig. 5. Normalized 3D radiation pattern (0° elevation  
and 0° azimuth angle). 

 
 

The rest of the parameters remain the same; the 
relation curve of the simulated curtain array antenna 
distance and its maximum directivity factor is shown 
in following Fig. 6:  
 
 

 
 

Fig. 6. Relation curve of antenna distance and the 
maximum directivity factor. 
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As is shown in the above figure: the relation 
curve between antenna distance and the maximum 
directivity factor is nonlinear, but in a very complex 
curve. However, it is obvious in the figure that when 
the antenna distance is around 18 m, the maximum 
value of relation curve will arise.  

By referring to Fig. 7, after changing the antenna 
distance to 18 m, then the following 3D radiation 
intensity figure will be achieved:  
 
 

 
 

Fig. 7. Curtain array normalized 3D radiation pattern  
(18 m as the distance). 

 
 

With the parameters of the antenna and antenna 
array (18 m) unchanged, the following waveform is 
obtained by using MATLAB simulation to analyze 
the directivity of each communication frequency. 

From the Fig. 8, it is apparent that different 
frequencies have divergent communication. With the 
current set parameters, the best communication effect 
can be achieved at about 12.4 MHz.  
 
 

 
 

Fig. 8. Relation curve between communication frequency 
and the maximum directivity factor. 

 
 

As the antenna can adjust the direction, the Fig. 9 
after setting the elevation to 45° and azimuth angle 0° 
will be realized. Obviously, the antenna main lobe is 
changed to point at the turning location.  

 
 

Fig. 9. Normalized 3D radiation pattern  
(45° elevation and 0° azimuth angle). 

 
 
5. Conclusions  
 

This paper researches on curtain antenna array 
through modeling the array signal and analyzes the 
influences of antenna array distance, communication 
frequency on array signal via simulation. As it only 
conducts some superficial researches, further 
researches should be carried out to address some 
relative complex problems, such as the mutual 
couplings between antennas, other types of antenna 
arrays, influences of communication channel, etc.  
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