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Abstract: Up to date methods and approaches in face identification field heavily depend on facial 
characteristics; such as location of eyes, length of nose and mouth. Ambient lightings have much influenced the 
visibility of these facial characteristics; where the visibility varies significantly with inconsistent external light 
source. In this paper, we present an extended framework for face identification based on thermal information 
extracted from facial images acquired from a Raytheon Palm-IR-Pro and Raytheon L-3 Thermal-Eye 2000AS 
sensored lense for themal images and Panasonic WV-CP234 for visible images. The inspiration initiating to this 
research is to engage in extracting significant facial characteristics from the acquired bio-thermal distribution 
information within a face, which differs from current facial characteristics that are visible over the skin. 
Encouraging results are produced which demonstrates the high capability of Hu’s classical moment invariants as 
a feature in thermal based face identification and introducing new ways for classical methods to be further 
utilized in theoretical and empirical research area. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 
 

Analysis and identification of facial images 
acquired from a real and non-ideal imaging system 
within the visible spectrum still holds many 
complications since the appearance of faces in 
concern varies dramatically due to incident angle and 
light variation, facial expressions, head pose, and 
image quality. Despite the fact that many advance 
research have shown dramatic progress in visible 
spectrum imagery, problems due to the nature of the 
approach used in visible spectrum is still an open 
issue. Images acquired from visible spectrum are 

formed primarily due to reflection and due to this; it 
is difficult to process because of the high dependency 
on incident angle and lighting variation from external 
light source. 

As an option to avoid dependency on incident 
angle and lighting variation from external light 
source, a review done in [1] suggests the employment 
of thermal spectrum imagery. Thermal infrared (IR) 
imagery is basically based on heat emission. Since 
thermal IR imagery is independent to external light 
source, problems encountered in visible spectrum-
based systems do not exists in thermal IR imagery. 
This was proven by works done in [2] and [3]. Due to 
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this, thermal imagery is commonly used for vision in 
dark and poorly lit environments. Recently, 
multimodal fusion (thermal and visible spectrum 
imagery) emerges as paramount method employed 
for facial identification. Fusion between thermal and 
visible spectrum imagery was primarily done with 
one common objective: to create a robust system with 
supports from thermal images for visible images 
obtain in a poorly lit environment. The utilization of 
thermal images in this context neglects the true 
potential of thermal information distributed within a 
given image. One of the advantages that were 
overlooked in fusion systems is the distribution of 
heat energy or thermal energy within a given face, 
which differs between individuals, even for identical 
twins. In thermal spectrum imagery, heat radiation 
captured through an IR imagery camera depicts a heat 
map based on heat radiated from blood vessels under 
the face skin. Thus, individuals having different 
distribution of blood vessels under the face skin 
produce different heat maps. Therefore, thermal 
energy distributed within a face has high potential as 
features that can be used for identification purposes. 
This has been proven by works done in [4]. 

In [4], thermal energy had been interpreted as 
values that represent blood vessels under the face 
skin. The obtained thermal distribution is closely 
related to the distribution of blood vessels under the 
face skin. The features extracted are used to form a 
unique thermal faceprint. Distance transform is used 
to obtain an invariant representation for face 
identification. This work tremendously achieved  
86 percent of rank 1 recognition for the University of 
Houston database. Motivated by the potential shown 
in work [4], research on the capabilities of thermal 
energy distribution as features for identification had 
been conducted.  

In [5], geometric moment invariants were utilized 
for object identification. To the best of our 
knowledge, moment invariants are mostly used for 
objects and hand-writing identifications. Therefore, 
we ventured the use of Hu’s moment invariants for 
face identification. The Canny and Sobel edge 
detector was employed in [5] for segmentation prior 
to the calculation of geometric moment invariants. 
The first four of Hu’s moment invariants were 
extracted as features from each image. This work [5] 
achieved 90 % in correct identification rate with 
Sobel edge detector, while, by employing the Canny 
edge detector approach, it could only achieved up to 
70 % in correct identification rate. 

Motivated by works done in [4] and also inspired 
by the implementation of Hu’s classical moment 
invariants for object classification done in [5], this 
paper presents the extension of the implementation of 
moment invariants (with respect to centroid point 
obtained from each pose of the registered datasets) 
for thermal-based face identification system. Due to 
independency towards facial features; such as length 
of eyes, nose, and mouth, the proposed approach has 
the potential to be implemented for identification of 
other body parts; such as arms, abdomens, and legs. 

The proposed system initially filters the background 
scenery by implementing seeded region growing 
method. Later, before the decomposition stage (as 
done in previous work [6]), anisotropic diffusion is 
employed to decrease the effect of noise within the 
face image. Following this, it decomposes a filtered 
infrared image into 4 thermal regions via 3-valued 
threshold method. Nevertheless, region with the 
lowest thermal value is omitted from further 
processes. This is to ensure that the background 
scenery is not taken into consideration. Thereafter, 
the first moment invariant, I1, from Hu’s classical 
moment invariants were computed from each 
decomposed layers (with respect to centroid point 
obtained from each pose of the registered datasets) 
which constituted the feature database. Due to the 
increasing amount of registered images (frontal 
profiles, mid-profiles and left and right profiles), we 
introduce a customized yet simple pose estimator. 
The pose estimator utilizes information obtain 
previously in the pre-processes stage. With this, 
additional steps or algorithm for common pose 
estimation is avoided. Minimum distance 
measurement is employed for classification between 
Hu’s first moment invariants for stored and tests 
images. This is similar to template matching method. 
Further throughout this paper, it can be seen that the 
proposed approach did not involve any training phase 
at the time this paper was written. This is an 
advantage within the proposed system, where, for 
example, a system needs to be constructed with 
insufficient amount of data provided by the prospect 
user. Thus, the amount of data received is 
incompetent to construct a system with training phase 
that requires a lot of data for training.  

The outline of this paper is as follows: Section 2 
demonstrates the application of our proposed 
approach. Experimental results are discussed in 
section 3. In section 4, conclusions are drawn. 
Finally, references are presented at the end of  
this paper. 
 
 
2. Methodology 
 

Acquired facial image normally contains 
background scenery. If the entire image is taken into 
consideration for feature extraction, it may affect the 
performance of the system. Therefore, we employed 
seeded region growing method to remove the 
background scenery. This is done alongside with 
other conventional image pre-processes; such as 
histogram equalization and image normalization, 
prior to the proposed method. Fig. 1 shows the 
flowchart for methods employed in the proposed 
system. 

The following subsections demonstrate the 
application of anisotropic diffusion for noise 
reduction, followed by a brief overview on 3-valued 
threshold for thermal region decomposition and Hu’s 
classical moment invariants (with respect to centroid 
point obtained from each pose of the registered 
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datasets) which was employed in previous work. 
Later, we introduce a simple yet customized pose 
estimator based on centroid point’s natural behavior. 
Lastly, a brief overview on minimum distance 
measurement for classification will be given. 
 
 

 
 

Fig. 1. Flowchart of the proposed system. 
 
 
2.1. Anisotropic Diffusion 
 

Anisotropic diffusion filter is formulated as a 
process that enhances object boundaries by 
performing intra-region as opposed to inter-region 
smoothing. It is normally used to remove noise from 
digital images without blurring edges. This is ideal 
for removing noise and indiscriminate blur edges. For 
face images, it helps to reduce the noise formed due 
to facial hairs. This process can be described with the 
following equation: 
 

 ( , )
( ( , , ) ( , )),

I x t
c x y t I x t

t


  


 (1) 

 
In our case, I is the thermal IR image, c(x,y,t) is 

called the diffusion function. This diffusion function 
controls the rate of diffusion and is usually chosen as 

a function of the image gradient so as to preserve 
edges in the image. 

Anisotropic diffusion filter for discrete cases can 
be expressed as follows: 
 

1
It+1(x,y)=It+ *[cN,t(x,y) IN,t(x,y)

4

              +cS,t(x,y) IS,t(x,y)+cE,t(x,y) IE,t(x,y)

              +cW,t(x,y) IW,t(x,y)]



 

 ,

(2) 

 
The four diffusion coefficients and gradients in 

equation (2) represent four directions; north, east, 
south, and west, with respect to the pixel location 
(x,y). Each diffusion coefficient and the 
corresponding gradient are calculated in the same 
manner as shown in the following equation: 
 

 2- , ( , )
c , (x,y)= exp ( )2

I N t x y
N t

k


, (3) 

 
where , ( , ) ( , 1) - ( , )N t t tI x y I x y I x y  . 

Fig. 2(b) shows the result of applying anisotropic 
diffusion to the segmented facial region shown  
in Fig. 2(a). 
 
 

  
 

(a)                 (b) 
 

Fig. 2. (a) Segmented facial region (seeded region 
growing); (b) Image after anisotropic diffusion. 

 
 
2.2. Overview On Image Decomposition 
 

In previous work [6], multi-threshold method (in 
our case is 3-valued threshold method) was employed 
to decompose input image into several input images 
(with respect to specified thermal range) for a non-
holistically analysis approach.  

As aforementioned, heat radiation captured 
through an IR imagery camera depicts a heat map 
based on heat radiated from blood vessels under the 
face skin. Fig. 3 shows an example of blood vessels 
and veins under the face skin (courtesy of Visuals 
Unlimited Inc.), which contributed to heat radiation 
captured through an IR imagery camera. Lesser veins 
and blood vessels are visible in most convex area of 
the face; such as the forehead, the cheekbones, the 
nose area, and also the chin area. These areas are 
expected to radiate less heat, thus being the coldest 
area on a face. The inner corner of the eye sockets 
has a very dense blood vessels and veins connection. 
Furthermore, in an actual scene, an eyeball too has 
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very dense blood vessels connectivity; therefore, a 
high heat radiation is to be expected in these areas. 
Elsewhere is considered to have a mid heat radiation 
due to the sparsely distributed blood vessels and 
veins connections. Naturally, the distribution of blood 
vessels and veins differ between individuals, even for 
identical twins, thus producing different heat maps.  
 
 

 
 

Fig. 3. Graphical demonstration of blood vessels and veins 
network under the face skin (Courtesy of Visuals  

Unlimited, Inc.). 
 
 

As previously clarified, each heat maps captured 
(IR images) can be grouped into three categories; 
high heat, mid heat, and low heat radiation regions. 
For this purpose, we have employed the multi-
threshold method for image decomposition to 
decompose the input image into several images, 
which consists of a range of heat radiation per image.  

The general definition of threshold is represented 
by the following equation: 
 

 255,    ( , )
( , )

0,        ( , )

f x y T
g x y

f x y T










, (4) 

 
where f(x,y) represents the input pixel, g(x,y) 
represents the output pixel, and T represents the 
threshold value. By inserting three threshold values 
rather than one threshold value, the 3-valued 
threshold equation can be derived from equation (4) 
as follows: 
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, (5) 

 
where T1, T2, and T3 represent the three threshold 
values whereas L1, L2, L3, and L4 represent the label 
for each generated thermal regions. As a result, four 
thermal regions (four binary formatted images) are 
generated. In order to obtain these thermal regions, 
values for T1, T2, and T3 are selected based on the 
results acquired from the preliminary experiments 
conducted in [7]. Referring to works done in [7], an 
initial value for T1, T2, and T3 is randomly selected 

within the range stated in [8] where the temperatures 
at all pixels are mapped between 0 and 255. Mapped 
temperatures between 200 and 225 is said to be 
common temperature on face, and mapped 
temperature between 175 – 200 and 225 – 255 are 
said to be normal temperature on cheeks and 
maximum temperature on face, respectively. Since 
the area for maximum mapped temperature on face is 
small and sparsely located within a face, this would 
cause the system to identify these areas as noise. 
Therefore, we selected T3 to have the initial value of 
200; the minimum value for the combination of 
mapped temperatures for common and maximum 
temperature on face. 

As aforementioned, mapped temperatures 
between 175 and 200 is said to be normal 
temperatures on cheeks. With manual tuning done in 
[7], we discovered that the mapped temperatures 
between approximately 140 and 200 comprehend 
temperatures on convex surfaces of a face; such as 
nose, cheeks, and forehead. Hence, the initial value 
for T2 is set to 140. By employing the same manual 
tuning technique used in [7], T1 is initially set to 
approximately 80, where this value affirms with 
values stated in [8] (mapped temperature value 
between 0 and 100 normally indicates the 
background scenery). For maximum assurance that 
the background scenery is not taken into 
consideration, the lowest valued region (coldest 
region, L1) is omitted from further processes. This 
makes L2 the coldest region given within a face. An 
example of the resulted decomposed image is shown 
in Fig. 4. 
 
 

 
 

(a)               (b) 
 

 
 

(c)               (d) 
 

Fig. 4. Images produced by the decomposition algorithm. 
(a) Source image. (b) Low heat region. (c) Mid heat region. 

(d) High heat region. 
 
 
2.3. Overview on Hu’s Moment Invariants 
 

Originally, Hu’s set of classical moment 
invariants consists of the famous seven rotation 
invariants from second and third order moments. 
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Followings are examples of the first four of Hu’s 
moment invariants: 
 

 1 ,20 02
2 2

2 ( ) 4 ,1120 02
2 2

( 3 ) (3 ) ,3 30 12 21 03
2 2

( ) ( )4 30 12 21 03

 

  

   

   

  

   

    

    

, (6) 

 
Having in mind that thermal energy distributed 

within a face region are physical densities distributed 
throughout the face area, we calculated the moment 
of inertia or impact of the distributed physical density 
with respect to centroid point obtained from each 
pose of the registered datasets. For this we have 
implemented and utilize only the first set of Hu’s 
classical moment invariants, where it is said to be 
proportional to moment of inertia around the image’s 
centroid. As aforementioned, in our case, image’s 
centroid in this context refers to the centroid point 
obtained from each pose of the registered datasets. 

Followings are the derivation of Hu’s  
first moment invariant corresponding to our  
proposed method: 
 

 1 20 02    , (7) 
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where x and y are centroid point coordinate 
(obtained from each pose in the registered datasets) 
for x-axis and y-axis, respectively, while raw image 
moment, Mij with pixel intensity, I(x,y) are calculated 
as follows: 
 

 ( , )
ji

Mij x y I x y
x y
  , (10) 

 
for i,j=0, 1, and 2. 
 
 
2.4. Pose Estimator 
 

Since our previous approach [6] encountered 
identification problems for images containing faces 
with angular deviation more than 45 degrees to the 

left and right, we extended the capacity of registered 
images from one registered image to 5 registered 
images (front profile, mid profiles, left and right 
profiles). This is shown in Fig. 5. Due to manifold 
poses available in the registered dataset, a pose 
estimator is needed prior to classifications process. 
Up to date, many advance pose estimator are 
available for employment, nevertheless, we 
constructed our own pose estimator that utilizes 
previously obtained information to avoid additional 
module for the pose estimator itself.  
 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 5.  (a) Image used for registered database in [6]. 
(b) Images used for registered database in current  

proposed approach. 
 
 

Based on centroid point behavior, we have 
constructed a customized yet simple pose estimator to 
be employed together with our proposed approach. 
Generally, centroid point in a discrete mass can be 
defined as follows: 
 

 m riiC
mi





, (11) 

 
where ri and mi are particle positions and mass, 
respectively. For a binary formatted image, the 
numerator’s particle position, ri, is substituted with 
pixel’s coordinate and mass, mi, is substituted with 
pixel’s intensity. For the denominator, ∑mi is 
substituted with the total number of pixels with the 
intensity of 1. The derived equation is as follows: 
 

 ( )
( )

I xiC x
pixel





, (12) 

 
 ( )

( )
I yiC y
pixel





, (13) 

 
where C(x) and C(y) are coordinates for x-axis and y-
axis, respectively. Therefore, the actual location of 
centroid point for a binary formatted image emerges 
as (C(x), C(y)). Note that, intensity, I, holds a value 
of 1 or 0 for binary formatted images and 0 – 255 for 
a gray-scaled image. 
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In physics, centroid point can be defined as an 
imaginary point in a body of concern where, for 
convenience in certain calculations, the total weight 
of the body may be thought to be concentrated. In 
other words, centroid point is the mean location of all 
mass density in a substance. By interpreting 
intensities in images as physical densities, the 
location of centroid point tends to be allocated near 
towards or in the high-density region. This principle 
is shown in Fig. 6. 
 
 

 
 

Fig. 6. Characteristics of centroid point. 
 
 

The amount of radiation emitted by an object 
increases with temperature; therefore, thermography 
allows one to see variations in temperature within a 
face. Temperatures within a face can easily be 
clustered into 3 major cluster; convex surfaces, non-
convex surfaces, and normal flat surfaces. The 
convex area (consists of cheeks, nose, and sometimes 
the forehead) plays an important role in our proposed 
pose estimator. If an image of a face is to be 
considered as a flat plane with different weights 
which represents each grayscale valued pixels, the 
convex surface will encompasses low-weighted 
weights, whereas the combination of all region will 
contain a bigger total of weights since more weights 
are assigned for higher temperature region. Referring 
to Fig. 6, it can clearly be seen that the area with 
more weights affects the location of centroid point. 
As a result from centroid point behavior analysis, we 
have utilized the centroid point from the convex area 
(coldest region) in the proposed pose estimator. Pose 
is estimated by comparing the location of centroid 
point obtained from whole image to centroid point 
obtained from the convex area, as shown in Fig. 7. 
Noted that only the x-axis values are taken into 
consideration. Since pose is estimated for left and 
right profiles, the y-axis values are considered a 
constant value, where changes in the y-axis value do 
not affect the pose alignment. 
 
 
2.5. Overview on Minimum Distance 

Measurement for Classification 
 

Sequentially after pose is estimated, we employ 
the minimum distance measurement method between 
the stored and test values of Hu’s first moment 
invariants obtained from each corresponding thermal 
region for classification purposes. The general 
definition of minimum distance measurement, x, via 
Euclidean Distance between two points, P and Q, is 
shown in equation (14). 

 
   2 2

1 1 2 2x p q p q    , (14) 

 
 

 
 

(a)                                    (b) 
 

Fig. 7.  Samples of centroid point used for pose estimation. 
(a) This column contains centroid point from whole image. 
(b) This column contains centroid point from convex region 

(low heat region). 
 
 

In our case, since only two values are being 
compared; therefore equation (14) is redefined as 
follows: 
 

 
 2x r t  , (15) 

 
where r and t are values of Hu’s first moment 
invariants for registered and test images, respectively. 
 
 
3. Empirical Results 
 

OTCBVS IRIS IR facial database were used to 
validate the effectiveness of our proposed approach. 
Fig. 8 shows examples of registered and test images 
selected from this dataset. All calculations were done 
with Matlab 7.0 Student Version on a 1.8 GHz 
Centrino Duo processor with 1 GB RAM. 

We conducted two experiments on the OTCBVS 
IRIS IR facial database to evaluate the performance 
of the proposed face identification method. We have 
used 4 test images (2 images with angular deviation 
within -45 degrees to 45 degrees, and 2 images with 
angular deviation exceed the previous angular degree 
range) for 5 registered images (front profile, mid 
profiles, and left and right profiles). Each image is 
decomposed into 4 thermal regions where the lowest 
(coldest) thermal region is not taken into 
consideration. 

In the first experiment, we implemented the 
original Hu’s first moment invariant, Φ1, in the 
proposed system. In the second experiment, we 
employed the proposed approach; the first moment 
invariant (with respect to centroid point obtained 
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from each pose of the registered datasets) in the 
system. The performance for both experiments is 
shown in Fig. 9. The CMC curve in Fig. 9 shows that 
rank 1 identification for the first experiment is 
approximately 79.16 percent, and rank 2 
identification is approximately 95.83 percent. Rank 1 
identification for the second experiment achieved 
approximately 87.5 percent, and rank 2 identification 
reached approximately 95.83 percent. This is to be 
expected, since our customized pose estimator only 
achieved approximately 90 percent of correct  
pose estimation. 
 
 

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 8. (a) Samples of registered image dataset. (b) Samples 
of test image dataset. 
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Fig. 9.  Comparison between Hu’s original moment 
invariants and our proposed approach. 

 
 

We have compared the identification performance 
of our approach with works done in [4]. The 
comparison of performance between these two 
approaches is shown in Fig. 10. Referring to Fig. 10, 
the CMC curves shows that rank 1 identification for 
our approach is approximately 87.5 percent, which 
exceeds the performance for work done in [4] 
(approximately 83.5 %). Albeit our approach 
demonstrates encouraging performance, the 
robustness of this approach degrades when health 

issues are being addressed (fever, flu, etc…). At the 
moment, this matter is considered as the operational 
limit for this approach. Furthermore, it is suggested 
that further refined tuning should be made to enhance 
our customized pose estimator. 
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Fig. 10. CMC curves of our approach and works  
done in (4). 

 
 
4. Conclusion 
 

In this paper, we extended our previous approach 
done in [6] by employing anisotropic diffusion prior 
to the decomposition process and expanded the 
capacity of registered dataset by regarding frontal 
profiles, mid profiles, and left and right profiles as 
registered images. Due to the extension of registered 
dataset, we introduced a customized yet simple pose 
estimator primarily formed from thermal distribution 
analysis and centroid point characteristics. In this 
research, we are exploring the identification 
capability within the physiological thermal spectrum 
imagery. In other words, analysis is done based on 
the information obtained from distribution of bio-
thermal energy physically, without facial features 
dependency. Our approach was tested on OTCBVS 
IRIS IR facial database which is publicly available 
for download at www.cse.ohio-state.edu/otcbvs-
bench/. Classifications are done by employing a 
minimum distance measurement method between the 
acquired moment invariant from test and registered 
IR images. As with most methods and approaches, 
this approach also has some operational limitations. 
As such, images used in this approach are obtained 
from individuals with no illnesses since illnesses; 
such as fevers and influenzas, may affect the thermal 
distribution. Empirical results obtained shows 
encouraging performance, where possibilities exist 
for future improvement by more intensive analysis. 
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