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Abstract: Nowadays, piezoelectric lateral electric field excited resonators are frequently used for development 
of various acoustic sensors. But, the adequate theory of such resonators is absent. In this paper, the numerical 
method of calculation of characteristics of the acoustic oscillations in the piezoelectric lateral electric field 
excited resonators is developed. The developed method is based on the finite element analysis and allows 
computing the distribution of the components of the mechanical displacement in the piezoelectric plate and 
electric potential in the piezoelectric plate and surrounding vacuum at arbitrary frequency of the exciting field. 
This method allows setting various boundary conditions on various parts of a plate surface, including a 
condition of mechanical damping of oscillations. This allows calculating the frequency dependence of the real 
and imaginary parts of the electrical impedance/admittance of the resonator. We analyzed a piezoelectric lateral 
electric field excited resonator, which is based on a 0.5 mm-thick X-cut lithium niobate plate. Two 
infinitesimally thin metallic electrodes with width of 5 mm were deposited on top side of the plate. The 
electrodes were deposited in such a way that the lateral field was oriented along the crystallographic Y-axis. 
Calculations of electric impedance were carried out for various values of a gap in range 1 - 3 mm between 
electrodes. These results are in quantitative agreement with experimental data. A brief description of 
experimental set up is also presented. Copyright © 2015 IFSA Publishing, S. L. 
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1. Introduction 

 

At present time researchers pay particular attention 
to the piezoelectric lateral electric field excited 
resonators because of development of various 
acoustoelectrical sensors. One of the main problems of 
the design of such devices is the suppression of 
undesirable acoustic oscillations and ensuring a high 
Q-factor of the resonator. Currently, this problem is 
solved experimentally by selection the optimal shape 
of the electrodes [1-2] or choosing the area of 

coverage of the damping coating [3-4]. However, such 
methods require a creation of a large amount of 
experimental samples. Researchers can theoretically 
estimate the efficiency of such resonators using the 
Christoffel - Bechmann method, which allows 
computing the electromechanical coupling coefficient 
for bulk waves excited by a lateral electric field [3-4]. 
However, this method does not take into account the 
finite aperture of the excited waves. Therefore, the 
problem of more accurate theoretical calculation of 
characteristics and efficiency of such resonators is 
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considered as urgent. In our previous work we 
introduce the numerical model of these resonators [5]. 

In this paper, we present a more detailed 
description of method for calculating the acoustic 
oscillations and the accompanying electric field in 
resonator representing a thin plate of a piezoelectric 
material with two rectangular electrodes on one side. 
The developed method is based on the finite element 
analysis and allows us to find the distribution of 
components of the mechanical displacement in the 
piezoelectric plate and electric potential in the 
piezoelectric plate and its surrounding vacuum at a 
certain oscillation frequency of the exciting field. 
This method takes into account the different 
boundary conditions on different areas of the 
resonator surface, and in particular, the mechanical 
damping of the parasitic oscillations, which was used 
in [1-2]. 

In Section 2, we give the description of the 
numerical model of resonator. In Section 3, we 
describe the experimental set up. In Section 4, we 
make the comparison of theoretical and experimental 
frequency dependencies of real and imaginary parts 
of electrical impedance of lateral electric field 
excited resonator. Finally, Section 5 presents the 
conclusions and the future research. 

 
 

2. The Description of Numerical Model 
 
In this paper, we consider a piezoelectric plate 

limited in x and y directions (Fig. 1). There are 
different boundary conditions on different parts of 
plate surface. Value of time-varying electric potential 
is given on an infinitely thin electrodes e1 and e2. 
The gap between electrodes is equal G. Special 
mechanical boundary conditions are specified on 
areas d1 and d2. The rest of plate surface is assumed 
mechanically and electrically free. In the z direction, 
the plate and electrodes assumed to be unlimited. 
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Fig. 1. The geometry of the problem. 
 
 
So, we need to find a distribution of mechanical 

displacements within the plate, as well as the electric 
potential distribution inside the plate and in the 
surrounding vacuum.  

As known, these distributions must satisfy inside 
the plate the motion equations: 
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and the Laplace equation for piezomedium: 
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Outside the plate, the distribution of electric 

potential should obey the Laplace equation  
for vacuum: 
 

2
0 0ε ϕ− ∇ = , (3) 

 
where, ρ is the piezomedium density, cijkl, eijk, and εij 
are the tensors of elastic, piezoelectric and dielectric 
piezomedium constants, ε0 is the dielectric 
permittivity of vacuum, ui is the mechanical 
displacement component, φ is the electric potential, 
and indices i, j, k, l = 1..3, so x1 = x, x2 = y, x3 = z. 

Exciting electrical field is variable and is changed 
according harmonic law with frequency ω. Solution 
would be also harmonic because there are no other 
sources of excitation of oscillations and the problem 
is linear. Moreover the variable values are 
independent of coordinate z. This means that the 
following relations are valid: 
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where I is the imaginary unit, and mechanical 
displacement and electrical potential can be 
presented in the following form: 
 

( , , , ) ( , ) exp( )

( , , , ) ( , ) exp( )
i iu x y z t u x y I t

x y z t x y I t

ω
ϕ ϕ ω

= 
= 

 (4) 

 
and, consequently, Eqs. (1-3) would be written as: 
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where indices i, l = 1...3 and j, k = 1, 2. Thus, this 
problem is reduced to the following system of 
differential equations [6]: 
 

( , ) 0iL u fϕ − = , (8) 

 
where L is the differential operator and f is the 
unknown magnitude. So, the problem is to find 
(complex) values, i.e. magnitudes and phases of  
ui(x, y) and ϕ(x, y) that satisfy Eqs. (5-7) with a given 
ω. One would solve this problem using the method of 
finite elements by deducing equations for elements 
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with the help of Galerkin's method. As shown in [6], 
the utilization of Galerkin's method combined with 
the method of finite elements results in the following 
system of equations: 
 

( )( , ) 0iW L u f dβ ϕ − =
R

R , (9) 

 
where R is the two-dimensional area, where solution 
must be obtained, and Wβ is the system of basis 
(weight) functions. In order to account for the 
electric field distribution in space around the 
resonator, we surround the piezoceramic plate with 
some large-radius circular area and assume ϕ = 0 at 
the boundary of this area (Fig. 2).  
 
 

 
 

Fig. 2. General view of the R area divided  
into triangular elements. 

 
 

For each element E corresponding to a triangle 
with vertices (Xp, Yp)-(Xq, Yq)-(Xr, Yr), the function of 
element will be as follows 
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where p, q, r denote nodes forming element E, and A 
is the area of element E. 

Substituting Eqs. (5-7) into Eq. (9) will  
yield the following system of equations which  
must be obeyed inside every element E from R inside 
the plate: 
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and in vacuum outside the plate: 
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where T is the  transposition operation,  
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- are the interpolation polynomials for a two-
dimensional triangle element E. The application of 
Galerkin's method requires the highest order of 
derivatives in Eqs. (11-13) to be not greater than by a 
unity above the order of continuity of the 
interpolation ratios used. That is why Eqs. (11-13) 
should contain derivatives of the order not higher 
than the first one. The application of procedure of 
lowering the order of derivations by integration by 
parts [6] will provide equations containing only 
unknown quantities and their first derivatives in  
the plate: 
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and in vacuum: 
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where B and nj are the boundary of element and 
external normal to the boundary.  

In order to ensure the unique solution of the 
equations system (14-16) we need to use boundary 
conditions. As for electrical boundary conditions 
they are standard for such types of problems [6]. At 
the boundary between the piezoplate and vacuum, 
excluding regions e1 and e2, electrical boundary 
conditions consist in the continuity of electric 
potential and electric inductions components normal 
to the boundary: 

 
,p v p v

j j j jD n D nϕ ϕ= = , (17) 

 
where quantities with index p relate to the plate and 
those with v refer to vacuum. On the outside 
boundary Г of the region R the potential is equal 
zero and on two electrodes it is assigned  
as following: 

 

1 2
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ϕ ϕ ϕ

Γ
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Mechanical boundary conditions are more 

difficult to formulate. A portion of the plate surface 
above the electrodes and around them was coated 
with absorbing varnish in the course of experiments 
with lateral field [1-2]. This was achieved to suppress 
undesired modes of oscillations of the plate and to 
increase the resonator's Q-factor. To reflect this fact 
in the theoretical model of resonator the mechanical 
boundary conditions were formulated as follows. The 
boundary condition at the surface of the piezoplate 
excluding regions d1 and d2 lies in the absence of 
normal components of mechanical stress and namely: 

 
0ij jT n = (19) 

 
The boundary condition in regions d1 and d2 

where damping coating is applied is written  
as follows: 

 

ij j ij jT n i Z uω= , (20) 

 
where Tij, nj, Zij and uj are the tensor of mechanical 
stresses of the piezoplate, normal to the surface, 
acoustic impedance of the coating and mechanical 
shift, respectively. This condition was obtained as 
generalization of the known relation [7] in the 
following form: 
 

p Zv= , (21) 
 
where p and v are the acoustic pressure and 
oscillation rate, respectively, for boundaries between 
gas and liquid media and anisotropic solids. For 
Zij→0 this condition goes into the condition of free 
surface Tijnj=0 and for Zij→∞ this condition goes into 
the condition of rigidly fixed surface uj=0. In the case 
under study Zij=Zδij, where Z is the acoustic 
impedance of varnish. 

3. The Description of Experimental Setup 
 

In order to compare the theoretical results with 
experimental data, the lateral electric field excited 
resonator on X-cut lithium niobate plate was made 
[2]. The scheme of this resonator is presented in 
Fig. 3. The shear dimensions and thickness of plate 
were equal 18×18 mm and 0.5 mm, respectively. 
Two 200 nm – thick aluminum rectangular electrodes 
with dimensions of 5×10 mm were deposited on one 
side of the plate through a special mask in vacuum. 
The electrodes were deposited in such a way that the 
lateral field was oriented along the crystallographic 
Y-axis (Fig. 3). This field component excited a 
longitudinal acoustic wave re-reflected between the 
plate sides with the largest electromechanical 
coupling coefficient [1]. The gap G between 
electrodes was equal to 1 mm. The area around the 
electrodes and part of electrodes with width of 3 mm 
were coated with a damping layer of absorbing 
varnish with thickness of about 0.2 mm.  

The frequency dependences of the real and 
imaginary parts of electric impedance of resonator 
were measured using the LCR meter (4285A, Agilent 
Technologies Inc.). These dependences for pointed 
above resonator are presented in Figs. 5-7 by  
dashed lines. 
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Fig. 3. The side (a) and top (b) views of the resonator 
with the lateral exciting electric field: X – cut lithium 
niobate plate - 1, electrodes - 2, and absorbing coating - 3. 

 
 

4. The Comparison of the Theoretical 
and Experimental Results 
 
In accordance with experiment, the calculation 

was performed for the case when the thickness h and 
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width w of the plate were equal to 0.5 mm and 
18 mm, respectively (Fig. 1). On the upper surface of 
the plate, two electrodes e1 and e2 were deposited. 
The lateral electric field was oriented along the 
crystallographic Y-axis. The width of each electrode 
e1 and e2 was equal to 5 mm with the gap G between 
them in range 1 - 3 mm in different experiments. The 
width of damping regions d1 and d2 was of 5 mm 
and the regions of overlap (d1 - e1) and (d2 - e2) 
were fixed to 3 mm. 

Since the above-described method of calculation 
allows us to find the distribution of all variables and 
their derivatives for any given frequency, it was 
possible to build electrical impedance depending on 
the frequency of this resonator and compare them 
with experiment. So, we calculated the distribution of 
the acoustic field and the electric potential in the 
range f = 6-7 MHz. It is clearly seen in Fig. 4 that the 
maximum amplitude of the acoustic vibrations are 
located in the gap between the electrodes. These 
oscillations correspond to the longitudinal bulk 
acoustic wave propagating in the vertical direction 
between the boundaries of the plate. This wave is the 
cause of deep resonance on frequency dependence of 
the electrical impedance [1-2] shown on Figs. 5-7. 

 
 

 
 

Fig. 4. Distribution of the components of mechanical 
displacement and electric potential in resonator excited  

by electric field at frequency 6.55 MHz. 
 
 

The theoretical value of the impedance is 
calculated in accordance with the formula: 

 

2 1( ) /Z Jϕ ϕ= − , (22) 
 

where φ2 – φ1 is the potential difference between 
electrodes, J is the displacement current: 
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This integral is taken over the both top and 

bottom surfaces of the electrode. The calculated 
frequency dependencies of real and imaginary parts 
of electrical impedance are presented by solid lines in 
Figs. 5-7. The material constants of lithium niobate 
were taken from [8]. 
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Fig. 5. Theoretical and experimental value of the real (a) 
and imaginary (b) components of the electrical impedance 
of the resonator with a 1 mm gap between the electrodes. 
Solid line is theory, dashed line is experiment. 
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Fig. 6. Theoretical and experimental value of the real (a) 
and imaginary (b) components of the electrical impedance 
of the resonator with a 2 mm gap between the electrodes. 
Solid line is theory, dashed line is experiment. 
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Fig. 7. Theoretical and experimental values of the  real (a) 
and imaginary (b) components of the electrical impedance 
of the resonator with a 3 mm gap between the electrodes. 
Solid line is theory, dashed line is experiment. 

 
 

One can see from Figs. 5-7 that a good agreement 
exists between theoretical and experimental 
dependencies. Therefore, the difference between 
values of resonant frequency does not exceed 
15 kHz. A slightly bigger distinction in absolute 
values of X is explained by the parasitic electric 
capacity of the device, which has not been 
considered in calculation. Moreover, the used 
material constants taken from [8] may differ from 
actual ones in the range ±5 % (standard error for 
modern technology of crystal growing process). 

 
 

5. Conclusions 
 

The obtained results have shown the adequacy of 
the developed method for the characteristics 

calculation for resonators excited by a lateral electric 
field. These results will be used in future to develop 
sensors of fluid properties. 
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