
Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 198

SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss

© 2014 by IFSA Publishing, S. L.
http://www.sensorsportal.com

A Context-aware Workflow Framework
and Modeling Language

Pengfei WANG, * Huifang LI, Baihai ZHANG

School of Automation, Beijing Institute of Technology,
5 South Zhongguancun Street, Haidian District, Beijing, 100081, China

Tel.: +86-10-68914352
E-mail: 10906034@bit.edu.cn, wpf999@yeah.net

Received: 6 May 2014 /Accepted: 30 June 2014 /Published: 31 July 2014

Abstract: In the pervasive and mobile computing environment, workflow and context information are closely
linked, workflow management system have to interact with a variety of sensors. Therefore, the design and
development context-aware workflow applications become complex and difficult to migrate to other platforms.
In order to simplify the development of context-aware workflow applications and enhance its portability, a new
context-aware workflow framework is proposed in this paper. This framework introduced into the context-aware
middleware. Context-aware middleware shielding the various bottom sensors work details for the application
and make the workflow applications focus on using high-level context, so as to realize the intelligent workflow
management. This framework also introduced into ontology based modeling language for context-aware
workflow. Case study shows that our proposed modeling language has good adaptability, and can be used to
easily describe any sophisticated context-aware workflows. Copyright © 2014 IFSA Publishing, S. L.

Keywords: Context-aware computing, Context-aware workflow, Framework, Modeling language, Web
ontology language.

1. Introduction

In the context-aware computing fields, context is
any information that can be used to characterize the
situation of entities (i.e., whether a person, place or
object) that are considered relevant to the interaction
between a user and an application, including the user
and the application themselves [1]. Context
information may include, but are not limited to
location, time, user status, network bandwidth,
weather conditions. A system is context-aware if it
uses context to provide relevant information and/or
services to the user, where relevancy depends on the
user’s task [1]. In other words, a context-aware
application can adapt its behaviors according to the
context that is gathered from various types of sensors.

Workflow is automation of a business process, in
whole or part, during which documents, information
or tasks are passed from one participant to another for
action, according to a set of procedural rules [2].
Workflow technology has been widely used in office
automation system in past decades, but this powerful
technology cannot adapt some new fields such as
mobile Internet, smart factory, smart home, because
the traditional workflow management system did not
give full consideration to the integration of context
information that is essential to the new fields. In
order to manage and control context sensitive
business process, context-aware workflow
management system is needed.

Context-aware workflow management system
(CWfMS) is based on context-aware computing, and

http://www.sensorsportal.com/HTML/DIGEST/P_2245.htm

http://www.sensorsportal.com/

Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 199

integrates sensor networks and context-aware
middleware. CWfMS can perceive, identify, analyze,
understand contextual information, and execute
workflow intelligently based on context.

Due to inherent complexity of context-aware
applications, CWfMS needs to access various types
of sensors, and handles a variety of complex context
information. Therefore establishing a good system
framework is the key to successfully build CWfMS.
Although some context-aware workflow management
system frameworks have been proposed [3-10], but
they only considered the design used in specific
areas, thus there is no a generic framework for
context-aware workflow management system.

In order to solve the above problems and simplify
CWfMS design and development, we propose a
general framework of CWfMS based on middleware.
Different from traditional workflow management
system, CWfMS includes context-aware platform
that utilizes middleware to shield differences of
sensors and achieves induction and fusion from low-
level context to high-level context, providing uniform
context information interface for workflow engine.

The rest of the paper is organized as follows:
Section 2 briefly presents related work of context-
aware workflow management system and workflow
modeling problem, Section 3 presents the framework
of CWfMS which is based on context-aware
computing, Section 4 propose a context-aware
workflow modeling language based on OWL (Web
Ontology Language), Section 5 introduces the
technologies related to the implementation of
CWfMS, Section 6 gives the example of proposed
context-aware workflow modeling language, and
Section 7 concludes the paper.

2. Related Works

There are some researches about the context-
aware workflow management system. CAWE [3-5] is
architecture of context-aware workflow system and it
is applied in medical domain. CAWE is composed of
several main components: Context-Aware Workflow
Manager, Context Manager Service and device-
dependent User Interface (UI). The Context-Aware
Workflow Manager runs a workflow engine on the
process specification which defines the business logic
of the composed application. The Context Manager
Service provides the contextual information during
the execution of the application. The device-
dependent UI component retrieves the context
information needed to adapt the UI pages from the
Context Manager Service.

In [6] a layered system model has been
introduced, which proposed a three layered model of
context-aware workflow system. There are three
layers in the model: context provisioning layer
(CPL), context integration layer (CIL) and smart
workflow layer (SWL). The CPL is responsible for
managing the context information. The CIL uses the
generic interface provided by the CPL to integrate

information into high-level representations and
access patterns. The SWL realizes the smart
workflows.

A context-aware workflow system for smart home
has been proposed in [7]. The system uses contexts in
a workflow service scenario as conditions of service
execution, and dynamically derives service transition
according to a user’s situation information generated
from real environments. The architecture of system
composed of context-aware scenario editor, context-
aware workflow engine and context processor. The
uWDL (ubiquitous Workflow Description Language)
[8] is used to describe workflow service scenario in
the system.

In [9, 10], a context model and a context-aware
workflow management algorithm CAWM has been
presented for pervasive campus navigation.
Advantageous to the existing workflow management
technologies, CAWM algorithm can adjust workflow
execution behaviors based on current context
information. CAWM is able to guide campus users
intelligently and transparently. CAWM manages
workflows in the event-driven way, including atomic
and composite events. They defined five types of
atomic events: context change event, method call
event, state transition event, (absolute and relative)
time event and user-defined event. The composite
events are composed of the atomic events or lower-
level composite events, using the composite operators
with specified priorities. They also modeled the
workflow management algorithm and analyzed its
correctness through Petri nets.

3. The Framework of CWfMS

3.1. System Components

Fig. 1 shows our proposed framework of context-
aware workflow management system. It consists of
the following collaborative components:

• Sensors subsystem: Sensor in the paper means
all kinds of physical and logical sensor by which
Context provisioning platform can get the context in-
formation of the real world.

• Context provisioning platform subsystem:
Context provisioning platform is server-side software
that collects, processes and manages context
information which will be used by workflow
execution engine.

• Workflow execution engine: Server-side
software that interprets and runs the workflow
model, interacts with the workflow client GUI, calls
the external applications which realize the
business functions.

• Workflow execution database: to store the real-
time data and history data that generated in workflow
execution period.

• Workflow simulation engine: Server-side
software system that implements the simulation of
workflow model.

Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 200

Fig. 1. The framework of CWfMS.

• Workflow simulation database: to store the huge
data that is generated in workflow simulation period.

• Workflow designer: desktop software that
defines workflow model which is represented by
XML document and will be sent to workflow
execution engine or workflow simulation engine for
execution or simulation.

• Workflow administration tool: desktop or
mobile software that monitors and administrates the
status of workflow execution engine.

• Analysis platform: to analysis the performance
of workflow. Analysis platform can provide with four
type of analysis function: performance analysis based
on simulation data, performance analysis based on
history data, real-time analysis and synthetic analysis
based on simulation and history data.

3.2. Context Provisioning Platform

The Context Provisioning Platform (CPP) is
important to context-aware workflow management
system, because the CPP collects, represents and
processes context information. Fig. 2 shows the detail
of context provisioning platform. It consists of the
following components:

• Sensor access layer: It integrates all sorts of
sensor drive or access interface, accesses to a variety
of physical sensors and logic sensor, upward in a
unified data format to send data. Sensor access layer
of existence, make upper module need not care about
lower sensor technical details, thus shielding of the
bottom of the sensor differences, make the system
have good scalability.

• Context filter: Due to various reasons (such as
sensor failures, data transmission error, etc.), the

original context data may be wrong or conflict
situations. For example, sensor submitted indoor
temperature if greater than 60 degrees Celsius, can
generally considered illegal data, need to be filtered
out. Context filter receiving sensor access layer send
data to eliminate error data and conflict data, and
then submitted to the context reasoning machine.

Physical sensors

Context inference engine

Context knowledge

Context API

Context filter layer

Context model &
rule database

Sensor Access Layer

Applications

Model and rule
management

interface

Logical Sensors

Fig. 2. Context provisioning platform.

• Inference machine: It is the core part of the CPP.
According to the context model and inference rules,

Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 201

the inference machine performs reasoning operation,
to low-level context as input and high-level context
as output. New high-level context will be saved to the
context knowledge database, inference required
context model and inference rules also saved in the
context model database. For example, in some
application, the application needs to sense the user 's
room, and the sensor can only provide the user's
position coordinate data, the inference machine map
position coordinate to the room number, position
coordinates is low-level context, the room number is
the high-level context.

• Context model database: to store inference rules
and context models that are represented by ontology
model language.

• Context knowledge database: to store low-level
context and high-level context. High-level context
can be used by workflow execution engine and
workflow client GUI.

• Context application program interface (Context
API): a set of API that is called by external
applications which often use context to make a
decision or trigger an event. Workflow execution
engine gets interested in context in-formation by
calling context API. There are two modes for calling
Context API: context query and context event. For
context query, workflow execution engine submitted
a query to the context API, which query context
knowledge database and return the result to the
workflow execution engine. For context event, since
the context API scan the context knowledge database,
found to be subscribed to upper context update (i.e.
the occurrence of a particular context events),
will notify workflow execution engine in
callback function.

3.3. Using Context in Workflow

In CWfMS, there are 4 kinds of schemas of
context information used in context-aware workflow.

Schema 1: Transition condition. It is a basic
working mode. When a workflow instance is
executing, workflow engine that uses context to
control workflow routing determines workflow
transition according to the user location, network
bandwidth, user's social state, etc.

Schema 2: Workflow resource allocation. In a
task node of the workflow, the actor is called
resource (operator, application, machinery and
equipment, etc). The status of resource is considered
as context. The performance of workflow
management system can be greatly enhanced
according to the context based resource allocation.
For instance, resource can be allocated according to
the operator's state (idle/busy) and the context-aware
system evaluates the operator's busyness degree
according to the related sensors in intelligent space
and the workflow engine pushes tasks according to
the degree, and the tasks can be reallocated to the
idle operators.

Schema 3: Workflow instance starting. When an
event occurs in the context, workflow instance is
started according to the predefined rules. For
example, in a smart warehouse, when the stock of
one instrument falls below its threshold, then the
context-aware system will trigger a corresponding
inventory inefficiency event. Driven by this event,
workflow engine will automatically start a purchase
process and notify related staff to purchase
the instruments.

Schema 4: Workflow exception handling.
Workflow exception means that activity failure
and/or workflow failure caused by outer exception of
workflow, system exception of workflow, and
activity execution exception, which causes the
workflow does not work normally according to the
predefined workflow model. Workflow management
system can handle the exceptions when the process is
executing according to context, thereby enhances its
exception handling ability of workflow.

4. Context-aware Workflow Model
Language

4.1. OWL Language

OWL (Web Ontology Language) [11] is an
ontology modeling language recommended by W3C.
OWL language has the following characteristics:

1) Major language elements of OWL language are
class, property, individual among which property
is categorized into object property and
datatype property.

2) Class in OWL that is essentially a set concept,
is different from the class in the program design
languages. Class of OWL includes subClass and
superClass and any class is its own subclass and
superclass. In fact, we can consider subclass as subset
and superclass as superset. In OWL, two classes,
Thing and Nothing, are predefined. The thing class
can be seen as a universal set and nothing can be seen
as empty set.

3) In OWL, the concept property is also different
from that of programming language. The object
property in OWL is a binary relation over two sets,
but "datatype property" equals to the concept
property in programming language.

4) Property domain and range (which can be
seemed as two classes) of an object in OWL can be
user defined.

5) Datatype property in OWL associates an object
with its data.

6) Individual in OWL equals to the elements in
a set.

4.2. Advantages of Modeling with OWL

1) OWL can fully describe and express context
information in workflow. Context is complex and

Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 202

includes many types of information such as
computing context, user context, physical context,
time context and social context, etc., so it seems
better to use OWL to model the context
and relationships.

2) OWL language is an international standard,
and is hardware, operation system and programming
language independent that can be interchanged and
shared among different software systems.

3) OWL language supports logic reasoning that
becomes especially important when modeling.
Context-aware server or context-aware middleware
need to collect, filter, aggregate and reason over the
original data, so using OWL to model context can be
convenient to inference machine.

4.3. Meta-model of Context-Aware Workflow

Workflow meta-model is the model that defines
the workflow semantic model constructs and rules. In
this paper, we use OWL to model context-aware
workflow, action nodes and router nodes, actor,
execution time, place and other contexts. These
modeling elements are defined as classes in OWL
language using inheritance (each class derived from
its super class).

Class Node is defined as the superclass of all
nodes, Class TaskNode is defined as the superclass of
all task nodes, Class RouteNode is defined as the
superclass of all route nodes. Subclasses of class
Node include class StartNode, EndNode, TaskNode
and RouteNode. Subclasses of class TaskNode
include class ApplicationTask, HumanTask and
SubWorkflow. Subclasses of class RouteNode
contain class ForkBegin, ForkEnd, SwitchBegin,
SwitchEnd, LoopBegin and LoopEnd.

Class Agent is defined as the activity executor in
workflow and derivates subclass Application and
Person denoting automatic task executor and
manual executor.

We define activity execution time class as Time,
and place class as Location. Two subclasses
Coordinate and Place are derived from Location,
denoting the location described by the geographical
coordinates and place expressed with natural
language respectively. All classes in the meta-model
are inherited from the root class Thing, their
inheritance relation is shown in Fig. 3.

4.4. Process Model Elements

Process model elements include startNode,
endNode, taskNode, routerNode. StartNode denotes
the beginning of a process, endNode is the ending of
the process, taskNode denotes all kinds of process
activities, routerNode implements the control
function of the processes. Node is defined as a node
class from which the other classes are derived.

The beginning node is denoted as StartNode and
is defined by OWL as follows:

<owl:Class rdf:ID= "StartNode" >
<rdfs:subClassOf rdf:resource= "#Node" />

</owl:Class>
The endNode denotes ending of the process,

defined with OWL as:
<owl:Class rdf:ID = "EndNode" >

<rdfs:subClassOf rdf:resource= "#Node" />
</owl:Class>

Fig. 3. Meta-model of context-aware workflow.

TaskNode denotes a task in a process. TaskNode
contains three subclasses: HumanTask node,
ApplicationTask node, and SubWorkflow node.
Tasks are classfied into atomic tasks and compound
tasks. Atomic task cannot be divided into the smaller
tasks which can be categorized into human tasks and
automatic tasks. Compound tasks are composed of
simple/compound tasks connected by some control
logic such as serial, parallel, selection, etc.
Compound task is defined as a subprocess node.
Subprocess node can realize modularity and reuse.
Process block repeated in some processes can be
defined as subprocess, so process modeller can reuse
these subprocesses to enhance the modelling
efficiency and avoid some repeated labors.
TaskNode, ApplicationTask, and HumanTask are
defined with OWL as follows:
<owl:Class rdf:ID= "TaskNode" >

<rdfs:subClassOf rdf:resource= "#Node" />
</owl:Class>
<owl:Class rdf:ID= "ApplicationTask" >

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#TaskNode" />

Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 203

</owl:Class>
<owl:Class rdf:ID= "HumanTask" >

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#TaskNode" />

</owl:Class>
<owl:Class rdf:ID= "SubWorkflow" >

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#TaskNode" />

</owl:Class>
RouteNode is used to denote the process logic

between process nodes such as parallel, selection and
loop. Parallel tasks start its execution from a parallel
node and are synchronize by a command node
to finish its execution. For parallel task, we use
parallel start node and end node to denote such
executing relationship.

Selection is a basic structure in the process. We
use SwitchBegin and SwitchEnd to denote
the selection.

Loop is also a basic structure in the process. We
use LoopBegin and LoopEnd to denote the beginning
and the end of the loop.

Definitions of RouteNode, ForkBegine, ForkEnd,
SwitchBegin, SwitchEnd, LoopBegin and LoopEnd
using OWL are as follows:
<owl:Class rdf:ID= "RouteNode" >

<rdfs:subClassOf rdf:resource= "#Node" />
</owl:Class>
<owl:Class rdf:ID= "ForkBegin" >

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#RouteNode" />

</owl:Class>
<owl:Class rdf:ID= "ForkEnd" >

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#RouteNode" />

</owl:Class>
<owl:Class rdf:ID= "SwitchBegin" >

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#RouteNode"/>

</owl:Class>
<owl:Class rdf:ID=SwitchEnd>

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#RouteNode"/>

</owl:Class>
<owl:Class rdf:ID=LoopBegin>

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#RouteNode"/>

</owl:Class>
<owl:Class rdf:ID=LoopEnd>

<rdfs:subClassOf rdf:resource= "#Node" />
<rdfs:subClassOf rdf:resource= "#RouteNode"/>

</owl:Class>
In OWL language, binary relation from one class

to another class can be defined using
owl:ObjectProperty. To specify process description,
object property is defined as a transition to denote the
connections between nodes.
<owl:ObjectProperty rdf:about= "transition" >

<rdfs:domain rdf:resource= "#Node" />
<rdfs:range rdf:resource= "#Node" />

</owl:ObjectProperty>

4.5. Context Model Elements

Context modeling elements include place, time,
actor and other context information. We
use "objectPropery" in OWL language to
describe context.

Task execution time is defined as ExecuteAt with
OWL as:
<owl:ObjectProperty rdf:about= "ExecuteAt" >

<rdfs:domain rdf:resource= "#TaskNode" />
<rdfs:range rdf:resource= "#Time" />

</owl:ObjectProperty>
Note that TaskNode is the task node and Time is

the time class.
Task execution place is defined as ExecuteIn in

OWL as:
<owl:ObjectProperty rdf:about= "ExecuteIn" >

<rdfs:domain rdf:resource= "#TaskNode" />
<rdfs:range rdf:resource= "#Location" />

</owl:ObjectProperty>
Note that TaskNode is the task node and Location

is the geographical location class.
Relation between tasks and actors is defined as

ExecueBy by OWL:
<owl:ObjectProperty rdf:about= "ExecuteBy" >

<rdfs:domain rdf:resource= "#TaskNode" />
<rdfs:range rdf:resource= "#Agent" />

</owl:ObjectProperty>
Here Agent is the actor class.
Besides the above three typical contexts, users

can define their own object property in accordance
with OWL grammar to correlate context with object.
User defined object property can greatly enhance the
descriptiveness and scalability of our proposed
modeling approach so as to make use of any context
to model workflow.

We use constraint mechanisms and boolean
combination of class in OWL to express context. In
OWL, boolean combination mechanisms include
'complement', 'and', 'or' operations of class. In
context-aware workflow models, the context
information is used as the constraint condition of a
node class and the node is described as a subclass
with the above constraint conditions.

5. System Implementation

We adopt jBPM 4.3 (open-source software for
building workflow application) [12] to realize the
workflow engine. jBPM was developed by jboss
community and was written in Java. In Perspective of
software engineer, jBMP is suite of Java API which
can define, create, manipulate and manage
the workflow.

The context provisioning platform (CPP) is a key
subsystem of context-aware workflow system and the
core of context provisioning platform is inference
machine which maps low-level context information
to high-level context. Because we use OWL to model
the context information, Jena (an open source Java

Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 204

framework for building Semantic Web and Linked
Data applications) [13] can help us to develop the
context provisioning platform. Jena was developed
by HP Labs Semantic Web Programme and provides
a suite of API for RDF and OWL processing and
includes a rule-based inference engine. The context
knowledge database and context model database can
be deployed into MySQL DBMS. Context program
application interface (Context API) is written in Java
and by which workflow engine can get high
level context.

Other components including workflow
administration tool, workflow designer tool,
workflow simulation engine and analysis platform
are also written in Java. The applications that are
called by workflow engine can be written in any
program language and can be wrapped in Web
service or Web API. The workflow client GUI is
represented by JSP and Servlet and the Java EE
container is Tomcat which is popular software for
Java web development.

6. Modeling Example

We use simplified machine maintenance in an
intelligent factory to illustrate our context-aware
workflow model. In an intelligent factory, main parts

of the machine to process the product will gradually
wear out. When degree of wear grows over some
threshold, the Tool needs to be replaced. In this
scenario, location of the machine, wear degree of
Tool, location of the people to replace the tool,
location of Tool are context information. Location of
these objects is tracked by RFID tags and Tool wear
degree is monitored by sensors. When Tool is to be
replaced, we firstly check whether there are spare
Tool parts in the factory, and if there are spare parts,
Tool will be replaced by the nearest operator
according to context information such as machine
location, location of operator, location of Tool etc. Or
else, spare parts of Tool stock subflow are initiated
and Tool will not be replaced until the spare parts are
stocked. After Tool is replaced, the machine
maintenance process instance is completed. With
ontology tool Protégé [14], context-aware workflow
model of the above process is illustrated in Fig. 4.

As can be seen from Fig. 5, there are 8 nodes in
this workflow. "start" is the beginning node,
''Tool_expiry_detection" is an automatic task node,
"Spares_check_SwitchBegin" and "Spares_check_
SwitchEnd" are switch node which form a switch
selection structure together, "Purchase_spares" is a
sub-process node, "Replace_tool" is a human task
node, and "end" is the termination node.

Fig. 4. Smart factory machine maintenance workflow modeling using Protégé.

Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 205

Fig. 5. Machine maintenance workflow diagram.

Execution of this process is as follows:
The process begins from the "start" node, then

proceeds to the "Tool_expiry_detection" node which
is an automatic task node to recurrently and
frequently check wear degree of Tool: when the wear
degree is below the threshold, the detection process is
circled, when the wear degree is over the threshold
process quits the detection process and reports the
Tool status and moves forward to the following
switch nodes.

"Spares_check_SwitchBegin" node does
conditional selection and confirms spare parts
location according to RFID tag data. If there are
spare parts in the factory, the process goes to
"Spares_check_SwitchEnd" node, otherwise goes to
"Purchase_spares" sub-process.
"Spares_check_SwitchBegin" node corresponds to
context information utilization schema 1 that uses
context information to select the switch.
"Purchase_spares" sub-process corresponds to
context information utilization schema 3 that initiates
process instance with context information.

"Spares_check_SwitchEnd" node is to make the
process structure better. When process reaches this
node, the process should move to the following node,
namely the "Replace_tool" node.

The "Replace_tool" node is a human task node.
Operator first fetches the spare parts and then goes
back to the machine to replace the old Tool with the
spare part. In the factory, tasks need to be assigned to
the operator according to the context information.
Context-aware workflow engine assigns operator

according to context information such as machine
location, location of spare parts, operator status with
intelligent optimization algorithms. The
"Replace_tool" node corresponds to context
information utilization schema 2 that assigns
workflow tasks according context information.

After the "Replace_tool", the process move to the
"end" node and the machine maintenance process
is finished.

7. Conclusions

In the pervasive computing and mobile computing
environment, business process and context
information are closely linked, context-aware
workflow management has become an important
demand. Context-aware workflow technology makes
intelligent management of business process possible
in the ubiquitous computing and mobile computing
environment. But it is lack of standard context-aware
workflow reference model, go against context-aware
workflow product standardization and
interoperability.

For this reason, this paper proposes novel context-
aware workflow management system framework. In
the framework, CWfMS is different from the
traditional workflow management system and it
introduced into the context-aware middleware.
Context-aware middleware shielding the various
bottom sensors work details for the application and
directly provide high-level context information,
simplified the upper application development, make
the workflow applications focus on using high-level
context, so as to realize the intelligent
workflow management.

In this paper, a context-aware workflow modeling
language based on OWL language is proposed. This
language uses the ontology of OWL language that
can describe the complex context in the process.
Modeling elements include process elements and
context elements described with OWL class and its
properties. This approach has the following
advantages: 1) it can express complex contexts and
context information can be explicitly expressed in the
process model; 2) it has good language structure. To
understand and model easily, parallel route, select
route and loop route all need a starting node and an
ending node in pairs. 3) it is platform independent.
Because OWL language is an international standard
modeling language, model sharing and interoperation
can be easily established in different systems and
software platforms.

The context-aware workflow management system
can be applied in many fields, e.g. smart factory,
smart medical care, smart agriculture and so on.
Along with the ubiquitous computing, mobile
Internet, wireless sensor networks technology
popularization, context-aware workflow technology
will achieve even greater development, and will meet
more and more complex business process
management requirements.

Sensors & Transducers, Vol. 175, Issue 7, July 2014, pp. 198-206

 206

Acknowledgements

The authors are grateful to the anonymous
referees for their valuable comments and suggestions
to improve the presentation of this paper. This work
was supported in part by a grant from the National
Natural Science Foundation of China
(No. 61211130359)

References

[1]. A. K. Dey, Understanding and using context,

Personal and Ubiquitous Computing, Vol. 5, Issue 1,
2001, pp. 4-7.

[2]. Workflow Management Coalition, Terminology &
Glossary, Technical Report, The Workflow
Management Coalition (WfMC), February 1999.

[3]. L. Ardissono, R. Furnari, A. Goy, and G. Petrone, et
al, Context-aware workflow management, Lecture
Notes in Computer Science, Vol. 4607, 2007,
pp. 47-52.

[4]. L. Ardissono, R. Furnari, A. Goy, and G. Petrone, et
al, A framework for the management of context-
aware workflow systems, in Proceedings of the 3rd
International Conference on Web Information
Systems and Technologies, March 2007, pp. 80-87.

[5]. L. Ardissono, A. D. Leva, G. Petrone, and M.
Segnan, et al, Adaptive medical workflow
management for a context-dependent home
healthcare assistance service, Electronic Notes in

Theoretical Computer Science, Vol. 146, Issue 1,
2006, pp. 59-68.

[6]. M. Wieland, P. Kaczmarczyk, and D. Nicklas,
Context integration for smart workflows, in
Proceedings of the 6th Annual IEEE International
Conference on Pervasive Computing and
Communications, March 2008, pp. 239-242.

[7]. Y. Cho, J. Choi, and J. Choi, A context-aware
workflow system for a smart home, in Proceedings of
the 2nd International Conference on Convergent
Information Technology, November, 2007,
pp. 95-100.

[8]. J. Han, Y. Cho and J. Choi, A workflow language
based on structural context model for ubiquitous
computing, in Proceedings of the International
Conference on Embedded and Ubiquitous
Computing, December 2005, pp. 879-889.

[9]. F. Tang, M. Guo, and M. Dong, et al, Towards
context-aware workflow management for ubiquitous
computing, in Proceedings of the International
Conference on Embedded Software and Systems,
January 2008, pp. 221-228.

[10]. F. Tang, I. You, M. Guo, and S. Guo, Context-aware
workflow management for intelligent navigation
applications in pervasive environments, Intelligent
Automation and Soft Computing, Vol. 16, Issue 4,
2010, pp. 605-619.

[11]. OWL Web Ontology Language Guide
(http://www.w3.org/TR/2004/REC-owl-guide-
20040210/).

[12]. jBPM Web Site (http://jbpm.jboss.org/).
[13]. Jena Toolkit Web Site (http://jena.apache.org/).
[14]. Protégé Web Site (http://protege.stanford.edu/).

2014 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved.
(http://www.sensorsportal.com)

http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm

