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Abstract: Machine vision solutions are becoming a standard for quality inspection in several 
manufacturing industries. In the processed-food industry where the appearance attributes of the 
product are essential to customer’s satisfaction, visual inspection can be reliably achieved with 
machine vision. But such systems often involve the extraction of a larger number of features than those 
actually needed to ensure proper quality control, making the process less efficient and difficult to tune. 
This work experiments with several feature selection techniques in order to reduce the number of 
attributes analyzed by a real-time vision-based food inspection system. Identifying and removing as 
much irrelevant and redundant information as possible reduces the dimensionality of the data and 
allows classification algorithms to operate faster. In some cases, accuracy on classification can even be 
improved. Filter-based and wrapper-based feature selectors are experimentally evaluated on different 
bakery products to identify the best performing approaches. Copyright © 2009 IFSA. 
 
Keywords: Machine vision, food inspection, quality control, feature selection, machine learning. 
 
 
 
1. Introduction 
 
As for several other manufacturing sectors, the food industry has been trying to automate the quality 
control processes in order to decrease production costs and increase the quality and uniformity of the 
production. Machine vision-based systems are of particular interest when it comes to measuring the 
superficial characteristics of a product for classification purposes. Most of the external quality 
attributes of a product can be inspected visually before the packaging line and items that do not satisfy 
the set standards are automatically rejected. Such machine vision systems have been used over a wide 
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variety of inspection applications in the food manufacturing industry including meat, fruits and 
vegetables, bakery products, and prepared consumer foods [1, 2, 3]. 
 
Machine learning is at the core of several vision-based inspection systems. But in most applications, 
the exact set of features that are critical for the quality control is difficult to determine. It is therefore 
difficult and time-consuming to determine on which features to focus the system’s attention when 
configuring the inspection system in order to sustain a high production rate with a maximum of 
reliability. One intuitive solution is to include all features that could possibly be relevant and let the 
learning algorithm decide which features are in fact worthwhile [4]. A more structured way is to 
identify the relevant features by means of rigorous feature selection techniques and make the 
inspection system concentrate only over a feature space of a reduced dimension. Such feature selection 
techniques are often categorized as filters or wrappers. In the filter approach, the feature selector is 
independent of any learning algorithm and serves as a filter to sieve the irrelevant and/or redundant 
attributes. The wrapper feature selectors are rather integrated with a learning algorithm to actively 
determine the relevant attributes for that particular learning algorithm. 
 
The motivation for this research work is to evaluate the effectiveness of some state-of-the-art feature 
selection techniques for an application on real-time vision-based food inspection systems that operate 
on several types of bakery products such as hamburger buns, tortillas, and bread loaves. The 
development of an automated process for the determination of the most relevant features that can also 
automatically adapt its selection to the type of products being inspected represents a major evolution 
over the current technology where inspection parameters are mostly set through trial and error 
procedures. It makes the configuration and maintenance of inspection systems more straightforward, 
even for new products, while improving the uniformity of the production and reducing the costs of 
system’s configuration. 
 
In the following sections, the mechanisms of four filter-based and wrapper-based feature selectors are 
introduced. Next the industrial food system used and the samples of food products are detailed. 
Finally, an experimental evaluation of the feature selection techniques applied on real datasets 
generated with the existing real-time vision-based food inspection system is conducted and their 
overall performance is analyzed. 
 
 
2. Feature Selection Techniques 
 
As mentioned previously, filter and wrapper approaches are examined for the application considered. 
Three different filter-based techniques are detailed: a correlation-based, a consistency-based, and the 
RELIEF feature selection methods respectively. A wrapper-based technique is also examined for three 
target learning schemes. Also, section 2.5 presents the strategy applied for searching the most relevant 
features among the initial unconstrained set. 
 
 
2.1. Correlation-based Feature Selection 
 
Correlation-based feature selection (CFS), introduced by Hall [5, 6], evaluates subsets of attributes 
rather than individual attributes. Hall’s rationale for this technique is based on the hypothesis that “a 
good feature subset is one that contains features highly correlated with (predictive of) the class, yet 
uncorrelated with (not predictive of) each other” [5]. The first part of this hypothesis is inspired by 
Gennari et al. [7] who stated that features are relevant if their values vary systematically with category 
membership.  This statement has been formalized by Kohavi and John [8] who formulated that a 
feature Vi is said to be relevant for a class C if and only if there exists some vi and c for which 
( ) 0i iP V v= >  such that: 



Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 86-103 

 88

 
( ) ( )P C c V v P C ci i= = ≠ =  (1)

 
Theoretical and empirical evidence encourages removing redundant information along with irrelevant 
features [8, 9, 10]. A feature is considered redundant if it is highly correlated with one or more other 
features. CFS uses the following heuristic evaluation to rank feature subsets: 
 

( )1
qrcfMerits

q q q rff
=

+ −
 (2)

 
where sMerit  is the heuristic “merit” of a feature subset S containing q features, cfr  is the average 

feature-class correlation, and ffr  is the average feature-feature correlation. The numerator can be 
interpreted as an indication of how predictive a group of features is. As for q fixed and greater than 1, 
the feature-class correlation average cfr  will be relatively large if the group of features is correlated 
with the class and small otherwise. Therefore the numerator allows discriminating irrelevant features. 
On the other hand, the denominator discriminates redundant features because in case of redundant 
attributes (respectively non redundant), the feature-feature correlation average ffr will be large (small), 
which implies a larger (smaller) denominator, and therefore a smaller (larger) sMerit . The correlation 
between features is computed using symmetrical uncertainty (SU): 
 

=SU  
( ) ( ) ( )

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

−+
×

XHYH

YXHXHYH ,
0.2  (3)

 
where H(Y) is the entropy of a discrete feature Y and H(X, Y) is the entropy of a discrete feature X after 
observing Y. H(Y) and H(X, Y) are respectively given by: 
 

( ) ( ) ( )( )∑
∈

−=
Yy

ypypYH 2log  (4)

 
( ) ( ) ( ) ( )( )∑∑

∈∈

−=
YyXx

xypxypxpXYH |log|| 2  (5)

 
 
In Hall’s work, experiments conducted on 36 datasets [5, 6] demonstrated that CFS reduces the 
number of features by more than half for 70% of the discrete class datasets, while also enhancing 
accuracy on most of the datasets for various machine learning algorithms. The time complexity of CFS 

is  ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
2

2 NNMO  for M training instances of a dataset containing N attributes. 

 
 
2.2. Consistency-based Feature Selection 
 
In consistency-based feature selection, training instances are projected onto the subset of attributes and 
then the consistency of the subset is evaluated. It is therefore common practice to use a consistency-
based subset evaluator in conjunction with a search algorithm that looks for the smallest subset with 
consistency. Liu and Setiono proposed an inconsistency evaluation criterion [11].  Two instances are 
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considered inconsistent if they match except for their class labels. The inconsistency criterion is 
computed as follows: (1) suppose there are r possible class labels, label1, label2,…, labelr, in a certain 
dataset which contains N instances; (2) suppose there are J distinct combinations of attribute values for 
a subset s of attributes (without considering the class labels of the instances); (3) suppose that Di is the 
number of occurrences (or matching instances without considering the class labels of the instances) of 
the ith combination of attribute values; (4) suppose that among the Di instances, c1 instances belong to 
class label label1, c2 instances belong to label2, …, and cr instances belong to class label labelr, such 
that c1 + c2 + … + cr = Di , and let Mi = max{ c1 , c2 , … , cr }. Then the inconsistency count is given 
by: 
 

ncyinconsiste  ( )iMiDcount −=  (6)
 
In other words, for matching instances (without considering the class labels of the instances) in a 
subset s of attributes, the more the class labels match, the less inconsistent (or the more consistent) is 
the subset s with respect to the class. The inconsistency rate of an attribute subset s is given by the sum 
of all inconsistency counts divided by the total number of instances: 
 

N

J

i iMiD

sncyinconsiste
∑
=

−
= 1  

(7)

 
Hall’s experiments [6] showed consistency-based feature selection to be able to remove up to 92% of 
the attributes of some datasets while still improving the accuracy of classification. Moreover, the 
consistency criterion is relatively easy to implement in this framework. On the other hand, several 
search strategies can be used to look for the smallest most consistent subset of attributes. 
 
 
2.3. RELIEF Feature Selection 
 
The RELIEF attribute selection technique uses general characteristics of the data to evaluate attributes 
and operates independently of any learning algorithm. RELIEF was first introduced by Kira and 
Rendell [12] as a means of estimating the “quality” of attributes with and without dependencies among 
them. RELIEF is an instance-based attribute ranking scheme that works by randomly sampling an 
instance from the data and then locating its nearest neighbors from the same and opposite classes. The 
neighbor from the same class is named nearest hit and the one from the opposite class is called nearest 
miss. The values of the attributes of the nearest neighbors are compared to the sampled instance and 
used to update relevance scores for each attribute. As a matter of fact, the RELIEF’s estimate W[A] of 
attribute A is an approximation of the following difference of probabilities: 
 

W[A] = P(different value of A|nearest instance from different class) 
     - P(different value of A|nearest instance from same class) (8)

 
where P(X|Y) is the conditional probability of some event X, given the occurrence of some other event 
Y. The rationale of the RELIEF algorithm is that useful attributes should differentiate between 
instances from different classes and have the same value for instances from the same class. 
 
The original version of RELIEF is limited to only two-class problems, which led Kononenko [13] to 
extend the original RELIEF to deal with noisy, incomplete, and multi-class datasets. The first 
enhancement that Kononenko addressed was to increase the reliability of probability approximation by 
searching the k-nearest hits/misses instead of only one near hit/miss, where k is a positive integer such 
that k > 1. The enhanced version, called RELIEF-F, finds nearest neighbors from each class different 
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than the current sampled instance and averages their contribution for updating estimates W[A], and 
finally weights the average with prior probability of each class as follows [14]: 
 

set all weights W[A] := 0.0; 
for i  := 1 to m do 
 begin 
  randomly select an instance R; 
          find k nearest hits Hj; 
  for each class C ≠ class(R) do 
      find k nearest misses Mj(C) 
   for A := 1 to NumberOfAttributes do 
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 End 
 
 
where NumberOfAttributes is the total number of attributes in the original dataset, and diff(Attribute, 
Instance1, Instance2) computes the difference between the values of Attribute for two instances. For 
discrete attributes, the difference is either 1 (the values are different) or 0 (the values are the same). For 
continuous attributes the difference is the actual difference normalized to the interval [0, 1].  The same 
function diff(.) is used for calculating the distance between instances to find the nearest neighbors. The 
expression “continuous attributes” refers here to features that can be measured on a continuum or 
scale, and can have almost any numeric value, as opposed to discrete data like good or bad, on or off, 
etc, where the attribute can take a value within a limited set of values. In the algorithm of RELIEF-F 
above, m is a user specified number of instances. Kononenko [13] notes that the higher the value of m, 
the more reliable the estimates of RELIEF-F are, but increasing m also increases running time. For the 
purpose of the experiments presented here, the number of instances sampled m is set to 250 and the 
number of nearest neighbors k is set to 10 as suggested by the experiments of Kononenko in [13]. 
Kononenko’s experiments on both artificial and real world data showed RELIEF to be a good 
candidate for selecting relevant features out of imperfect data. 
 
 
2.4. Wrapper Feature Selection 
 
A wrapper feature selection approach uses a machine learning algorithm as a black box, therefore 
needing only the interface of the induction algorithm. In fact, knowledge of the learning algorithm 
itself is not necessary [8]. The wrapper feature selector repeatedly searches for a “good” feature subset 
by using the induction algorithm as part of the evaluation function. In [8], Kohavi and John suggest 
using five-fold cross validation accuracy evaluation function for feature selection. This accuracy 
evaluation function is repeated multiple times. In t-fold cross-validation, where t is a positive integer, 
the data is randomly split into t mutually exclusive subsets (the folds) of approximately equal size as 
illustrated in Fig. 1 for t = 3. 
 
The learner is trained and tested t times, each time with (t-1) training folds and one different test fold. 
For instance for t=3 as illustrated in Fig. 1, the training set {1, 2, 3} is divided into three training 
set/test set groups {1, 2}/{3}, {1, 3}/{2}, and {2, 3}/{1}. The induction algorithm is then trained three 
times with each of the three training sets {1, 2}, {1, 3} and {2, 3}, but only using a subset of the 
features. The feature subset is proposed by the feature search engine. Each one of the three training 
sets produces a certain classifier represented by “c” in Fig. 1. Each classifier “c” is tested using the 
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remaining test set: the classifier from training set {1, 2} is tested using test set {3}, the classifier from 
{1, 3} tested using {2}, and the classifier from {2, 3} tested using {1}. The overall accuracy is then 
averaged over the t folds and if the standard deviation of the accuracy estimate is above 1% and t 
iterations of the cross validations have not been executed; then another cross-validation is run. The 
accuracy estimation time is the product of the induction algorithm running time and the cross-
validation time. A complexity penalty was added to the evaluation function in such a way that the 
smaller of two feature subsets that have the same estimated accuracy is always picked. 
 
 

 
 

Fig. 1. Example of 3-fold cross-validation. 
 
 
2.5. Feature Search Engine 
 
Feature selection algorithms employ several search strategies which can be grouped into two main 
categories: exhaustive search and heuristic search. Each category of search can generally be further 
broken down into forward selection and backward elimination. Forward selection starts with no 
variables and adds them one by one, at each step adding the one that decreases the error the most, until 
any further addition does not significantly decrease the error (or increase it only slightly). On the 
contrary, backward elimination starts with all the variables and removes them one by one, at each step 
removing the one that decreases the error the most, until any further removal increases the error 
significantly.  
 
Exhaustive search explores all possible subsets of M features chosen from N attributes (where 
typically M ≤ N) in order to theoretically find the optimal solution. However, exhaustive search is 
generally impractical when the number of attributes in the original dataset is relatively large. As a 
matter of fact, there exist 2a possible subsets of a attributes. Therefore, in most implementations of 
exhaustive search algorithms, at some operator defined stopping point, the subset of features with the 
highest score discovered up to that point is selected as the satisfactory feature subset. Instead of 
exploring all possible subsets of features, heuristic search algorithms on the other hand ignore whether 
the solution to the problem can be proven to be correct, but usually produce a good solution or solve a 
simpler problem that contains, or intersects with, the solution of the more complex problem. Heuristics 
are typically used when there is no known way of finding an optimal solution, or when it is desirable to 
give up finding the optimal solution for an improvement in run time. 
 
A heuristic search algorithm, known as best first, was used with the CFS, the Consistency-based subset 
evaluation, and the wrapper techniques presented here. Best-first search is a search algorithm which 
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explores a graph by expanding the most promising node chosen according to some heuristic evaluation 
rule. Kohavi and John [8] conducted an evaluative comparison between hill climbing and best first 
search algorithms and concluded that the latter was generally a more thorough technique. The principle 
of best-first search heuristic optimization is described as follows: 
 
1. Begin with the OPEN list containing the start state, the CLOSED list empty,  

and BEST  start state. 
2. Let subset s = arg max e(x) (get the state from OPEN with the highest evaluation). 
3. Remove s from OPEN and add to CLOSED. 
4. If e(s) ≥ e(BEST); then BEST  s. 
5. For each child t of s that is not in the OPEN or CLOSED list, evaluate and add to OPEN. 
6. If BEST changed in the last p expansions, goto 2. 
7. Return BEST. 
 
In the algorithm above, the function e(.) is the heuristic evaluation of the feature subset. The heuristic 
evaluation used depends on the goal of the application. Nonetheless, the idea is always to select the 
subset which maximizes the heuristic evaluation function. For instance, in the case of CFS, this 
heuristic evaluation function is computed using Equation (2). In the case of consistency-based feature 
selection, the heuristic evaluation is (1 – inconsistencyS) where inconsistencyS is given by Equation (7). 
In the case of feature wrappers, the heuristic evaluation used is the actual estimated accuracy of the 
induced classifier. In all our implementations, the number of expansions p for the best first search 
algorithm was set to five. 
 
 
3. Food Inspection System and Product Datasets 
 
3.1. Industrial Vision-Based Food Inspection Setup 
 
The vision-based food inspection system used for our experimentation is a technology developed and 
manufactured by Dipix Technologies Inc. that automates visual identification and classification of 
bakery products such as buns, cookies, tortillas, and pizzas. Fig. 2a presents a conceptual view of the 
system. The inspection station is equipped with a conveyor belt which moves the bakery products from 
the output of the oven to the rejection and packaging systems in an industrial setting. One camera is 
mounted above the conveyor belt and produces real-time line scans of the top view of products while 
they move with the conveyor belt. Two fluorescent lamps continuously illuminate the field of view of 
the overhead camera to ensure uniform lighting across the entire width of the conveyor. A laser light 
strip is also projected vertically on the conveyor belt and a second camera equipped with an optical 
filter fitted to the laser wavelength is mounted in diagonal to collect an image that reveals the profile 
information on every single product. Fig. 2b shows the actual system used for our experiments. 
 
The profile data captured by the diagonal camera is marked with a time stamp which allows real-time 
image processing algorithms to combine the height information with the overhead data collected by the 
line scan camera for every single product that passes under the inspection head, assuming constant 
speed of the conveyor belt. From the resulting tridimensional and color model of every product under 
inspection, a large number of parametric features characterizing the items under inspection are 
estimated. Depending on the product, up to 200 features can be extracted. Examples of such features 
include color information, topping coverage, heights, diameters, slopes, lengths, surface area, 
circularity, and volume. The system analyzes the features of every product and then orders rejection of 
the product if it is classified as defective; or orders acceptation if the product is judged acceptable, that 
is within the preset standards. 
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a) 
 

b) 
 

Fig. 2. Food inspection station: a) conceptual structure, and b) actual experimental system. 
 
 
For the purpose of our experimentation, new modules were developed and embedded into the existing 
visual food inspection system to record on disk all extracted features on every item and for each 
category of products tested. When available the original system’s decision (“accept” or “reject”) was 
also recorded for every item to provide a comparison basis against which the classification with a 
reduced set of features can be monitored to evaluate the performance of the proposed feature reduction 
techniques [15]. 
 
 
3.2. Product Datasets 
 
The bakery products over which experimentation was conducted belong to two categories. The first 
one corresponds to products (called “known” products) for which the system already had a 
classification rule defined and implemented. In that case, both the raw feature measurements and the 
decision of the system were recorded. The second category contains products (called “unknown” 
products) for which the system was not set to permit the correct classification of the products under 
inspection. These mainly correspond to a new type of products to inspect for which the system was 
never used. In this situation, an operator was asked to present the samples in two successive rounds. 
During the first round, the operator passes a set of product samples considered as “acceptable” to a 
typical customer on the conveyor belt. During the second round, sample products considered as 
“unacceptable” are passed on the conveyor belt. In both rounds, the inspection system extracts all the 
features from all the presented samples and tags each item as “acceptable” or “unacceptable” 
respectively. 
 
For the category of “known” products, experiments were conducted on two bakery products that have 
been inspected for several years by the vision-based food inspection system available: burger buns and 
tortillas as illustrated in Fig. 3. Seeded buns were selected as they contain more features and more 
complexity than regular unseeded ones. Buns and tortillas both have “irregular” shapes as none of 
them consistently exhibits a perfectly defined geometrical shape. For both the buns and the tortillas 
datasets, 82 continuous features are extracted per product item, plus one Boolean feature representing 
the decision to reject or accept the item. These datasets were collected on two different industrial 
production lines and each contains 3287 product items. 
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a) b) 

 
Fig. 3. Sample of products with known inspection presets: a) seeded burger buns, b) tortillas. 

 
 
For the category of “unknown” products, a substantially different type of bun was selected to ensure a 
complete decoupling from the pre-tuned inspection machine. Ciabatta breads with a triangular shape 
and a non-uniform height, seen in Fig. 4a, were selected as they were never processed by the 
inspection system used. This extra dataset was generated in the laboratory using the machine shown in 
Fig. 2b. Because there was no predefined classifier available in this case, the samples were 
subjectively divided into an “acceptable” and an “unacceptable” batches. If not already apparent, 
defects were manually created on the ciabatta buns belonging to the “unacceptable” batch. Defects can 
take the form of holes, colors corresponding to overbaked buns, packing plastic pieces that made their 
way onto the buns, broken buns or weirdly shaped buns (not triangular), as shown in Fig. 4b. In this 
case, 160 samples containing approximately 50% “acceptable” and 50% “unacceptable” ciabatta buns 
were inspected. The same 82 features were extracted per sample as with the seeded buns and tortillas, 
along with the predefined Boolean class attribute (“accept” or “reject”).  
 
 

  
 

a) 
 

b) 
 
Fig. 4. Sample of products without known inspection presets: a) acceptable products, b) unacceptable products. 

 
 
Prior to feature selection, the data extracted from those samples are randomized. Randomizing data, 
that is changing their order of presentation in the datasets, is particularly important in the case where 
the inspected products were inspected in two rounds (“acceptable” then “unacceptable” products), 
because in a real production line the defects usually come in an unordered manner. Therefore, this 
factor should not impact on the analysis of feature selection and dimensionality reduction. The 
recorded continuous valued features are also discretized using a supervised discretization technique 
introduced by Fayyad and Irani [16] which combines an entropy-based splitting criterion with a 
minimum description length stopping criterion [14]. 
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4. Experimental Evaluation 
 
4.1. Dimensionality Reduction on Samples of Different Products 
 
The features extracted by the inspection system along with the related Boolean decision are 
successively used as input to the different feature selection approaches described in section 2. Table 1 
and Table 2 show the number of features selected for tortillas and seeded buns respectively, sorted in 
ascending order of the number of features selected by the different dimensionality reduction 
techniques. The feature wrappers are trained with three target learning algorithms: Naïve Bayes, C4.5 
decision tree and Multi-Layer Perceptron (MLP). Those three learning schemes are summarized in 
Section 4.2. 
 
For the tortillas dataset, the C4.5 wrapper algorithm offers maximum reduction of the feature space 
dimension by selecting only 4 features out of 82, followed equally by the CFS feature selector and the 
MLP wrapper that both select 5 features. The RELIEF algorithm is last on the list as it keeps up to  
33 attributes out of 82. For the buns dataset, the C4.5 wrapper also provides maximum reduction with 
2 features selected, followed by the consistency-based subset evaluation (5 out of 82). The Naïve 
Bayes wrapper and the MLP wrapper both found 6 attributes to be relevant to their respective learning 
algorithms. RELIEF is again the one rejecting the least attributes. 
 
 

Table 1. Feature space reduction performance on the tortillas dataset. 
 

 Number of features 
selected 

Number of features 
rejected 

Feature rejection ratio 
(%) 

C4.5 wrapper 4 78 95.12 
CFS 5 77 93.90 
MLP wrapper 5 77 93.90 
NB wrapper 7 75 91.46 
Consistency 10 72 87.80 
RELIEF 33 49 59.76 

 
 

Table 2. Feature space reduction performance on the seeded buns dataset. 
 

 Number of features 
selected 

Number of features 
rejected 

Feature rejection ratio 
(%) 

C4.5 wrapper 2 80 97.56 
Consistency 5 77 93.90 
MLP wrapper 6 76 92.68 
NB wrapper 6 76 92.68 
CFS 7 75 91.46 
RELIEF 59 23 28.04 

 
 
For the buns and the tortillas datasets, the C4.5 wrapper, the MLP wrapper, the Naïve Bayesian 
wrapper, CFS and the consistency-based subset evaluation tend to consider 10 or less features out of 
82 as relevant to qualify the product, whereas RELIEF seems to be cautious by keeping many more 
features. The fact that only positive differences of probability were kept in the RELIEF 
implementation implies that weakly relevant features are very likely to be preserved. Kohavi and John 
also mentioned that the RELIEF algorithm tends to keep most of the relevant features of a dataset even 
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if they are redundant and if only a fraction of them is necessary for the concept description [8]. 
Moreover, wrapper feature selection techniques globally tend to select fewer features than filter-based 
feature selectors. This could be explained by the fact that wrappers are meant to optimize the feature 
selection for a particular given algorithm with which they interact during the attribute selection 
process. One interesting point is the fact that all feature subsets selected by any of the feature selectors, 
except RELIEF, are all also selected by RELIEF for the seeded buns dataset. 
 
When considering the “unknown” category of products for which the classification of the samples is 
done subjectively by a human operator before extracting the features using the vision-based food 
inspection system, the same information is presented to the different feature selection approaches. 
Table 3 shows the number of features selected for the triangular ciabatta buns, sorted in ascending 
order of the number of features selected. 
 
 

Table 3. Feature space reduction performance on the ciabatta buns dataset. 
 

 Number of features 
selected 

Number of features 
rejected 

Feature rejection ratio 
(%) 

C4.5 wrapper 4 78 95.12 
NB wrapper 4 78 95.12 
MLP wrapper 9 73 89.02 
Consistency 9 73 89.02 
CFS 14 68 82.93 
RELIEF 36 46 56.10 

 
 
As with the other types of products, the feature wrappers keep the least attributes: C4.5 wrapper and 
Naïve Bayes wrapper share the first rank by selecting only 4.88% of the features (4 out of 82); 
followed by the MLP wrapper which selects 9 attributes (10.98%). The consistency-based subset 
selector also selects 9 features out of 82. RELIEF ends up again the one removing the least attributes 
by keeping 36 features. RELIEF is preceded by CFS which judges 14 features (17.07%) to be relevant 
and non redundant. All the features selected by the different techniques are either also selected by 
RELIEF, or have a maximum of two features which are not selected by RELIEF. Except RELIEF, all 
the attribute subset selectors kept less than 15 features (18.29% of all features) for all the experimented 
datasets. 
 
These experiments with three datasets of products with different characteristics point out that feature 
wrappers generally achieve better results than filters due to the fact that they are tuned to the specific 
interaction between an induction algorithm and its training data. However, they tend to be much 
slower than feature filters because they must interact with an induction algorithm, as will be detailed in 
the following section. 
 
 
4.2. Classification Accuracy with Reduced Feature Space 
 
In spite of the observations made in the previous section, the number of attributes selected as relevant 
by the different feature selectors should be interpreted with caution. For artificial datasets, it is pretty 
straightforward to evaluate the performance of a feature selection algorithm. However, for real world 
datasets such as the ones reported in this work, it is not necessarily clear what the relevant features are. 
Therefore, whether the selected features are relevant or not can only be determined indirectly, by 
observing the effects of feature space dimensionality reduction over the performance of a learning 
algorithm. In fact, although a dataset with fewer features could be preferred for production rate 
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enhancement, the accuracy of prediction with the reduced datasets remains of capital importance for 
proper classification of the products as acceptable or not to the customer. 
 
In order to better guide the compromise that must be found between prediction accuracy and 
dimension reduction of the dataset for industrial quality inspection applications, the study was 
extended to involve three different machine learning techniques: Naïve Bayes (a probabilistic learner), 
C4.5 (a decision tree learner) and Multi-Layer Perceptron (MLP, a neural networks learner). The 
Naïve Bayes algorithm assumes that features are conditionally independent given their label and 
computes the posterior probability of each class given the feature values present in the class, and 
assigns the instance to the class with the highest probability [17][18]. C4.5 is an algorithm which 
builds a decision tree top-down by recursively finding the best single feature test to conduct at the root 
node of the tree [19]. The MLP is a hierarchical structure of several perceptrons with weighted 
interconnections able to capture complex input/output relationships from training data [20]. For 
wrapper-based feature selectors an interaction with the learning algorithm is already required during 
feature selection. 
 
The holdout and cross-validation methods [21] are considered to evaluate the accuracy of the 
prediction (as “accept” or “reject”) on the class of the sample products. The accuracy represents the 
percentage of products that were classified from the reduced set of features in the exact same way as 
the original classification of the system, without feature reduction. The holdout method, also called test 
sample estimation, separates the data into two mutually exclusive subsets: the training set and the test 
set, or holdout set. As the name of the sets indicates, the training set is used for the training phase, and 
the test set is used later to evaluate performance. In t-fold cross-validation, the data is randomly split 
into t mutually exclusive subsets (the folds) of approximately equal size as explained in section 2.4. 
For the present evaluation, 10-fold cross-validation was used for model selection as suggested by 
Kohavi in [21], and the cross-validation was repeated 10 times with different random seeds. Holdout 
was repeated 100 times on the datasets and the overall accuracy was averaged. 
 
Note that Kohavi and John [8] suggest only five fold cross validation for feature reduction purposes 
where the interest is to identify relevant and non redundant features. Their experiments showed that 
five-fold cross validation gives satisfactory results. The other reason is the fact that during feature 
selection, cross-validation is applied to every feature subset proposed by the feature search algorithm 
until a satisfactory subset is found, with respect to the defined stopping criterion; therefore having a 
relatively small number of folds accelerates the process without sacrificing a lot of quality. On the 
other hand, during model selection where the focus is more to find a reliable classifier rather than to 
find a subset of relevant and non redundant features, the cross-validation is done only on one feature-
reduced subset (or the full set of features if no dimensionality reduction has been accomplished). In 
this later case, increasing the number of folds to 10 in the t-fold cross validation only moderately 
impacts running time. 
 
It is worth mentioning that the continuous features generated by the inspection system are discretized 
only for feature selection purposes. After feature selection, the reduced datasets are extracted from the 
original continuous datasets and then passed to the learning algorithms for accuracy estimation. The 
same train/test sets and the same folds were used for all learning schemes in order to establish a 
common base for comparison. 
 
Fig. 5 and Fig. 6 show the accuracy estimation on the class prediction with the different feature 
selection techniques for the tortillas dataset, evaluated using the three learning schemes. On both 
figures “Tortilla” represents the original full dataset which did not undergo any feature selection and 
the vertical bars at the edge of the columns represent the standard deviation. Fig. 5 shows the result of 
10 repetitions of the 10-fold cross-validation, and Fig. 6 presents the result of 100 repetitions of the 
holdout accuracy test.  
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Fig. 5. Ten repetitions of the 10-fold cross-validation accuracy estimation for the tortillas dataset. 
 
 

 
 

Fig. 6. One hundred repetitions of the holdout accuracy estimation for the tortillas dataset. 
 

 
For all feature selectors, the C4.5 learning scheme globally gives the highest accuracy and the lowest 
standard deviation at the same time, followed closely by the MLP learner and far beyond by the Naïve 
Bayes learner. Holdout and cross-validation gave comparable results in terms of accuracy and standard 
deviation. It is important to note that in the experiments presented, both cross-validation and holdout 
use 90% of the data for training and 10% for test. For 10-fold cross-validation, the full original tortillas 
dataset had an accuracy of 99.39% with a standard deviation of 0.47% using the C4.5 learning scheme. 
Consistency-based subset evaluation gave a slightly better accuracy (99.44%) than the full dataset. The 
RELIEF feature selector is the second best by having the same accuracy estimation as the original 
dataset, followed by the C4.5 wrapper and the correlation-based feature selector with an accuracy of 
respectively 0.03% and 0.04% below that of the full dataset. The holdout tests gave approximately the 
same order by ranking consistency and RELIEF equally accurate to the original full dataset (accuracy 
of 99.37%), followed by CFS and C4.5 wrapper achieving an equal accuracy of 0.01% inferior to that 
of the original dataset. The standard deviation for all feature-reduced datasets are all between 0.39% 
and 0.47% and are considered not high enough to impact the interpretation of the results. 
 
Fig. 7 shows the results of 10 repetitions of 10-fold cross-validation for the seeded buns dataset. The 
holdout test results are not presented here as they are similar to the cross-validation results. C4.5 is 
once again the learning scheme giving globally the best accuracy estimation, followed by the MLP and 
the Naïve Bayes respectively. The original full buns dataset has an accuracy of approximately 99.81% 
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with a standard deviation of 0.25% and none of the reduced dataset is able to achieve a better accuracy. 
However, the consistency-based subset evaluation and the C4.5 wrapper closely follow the original 
full buns dataset by both achieving an estimated accuracy only 0.58% inferior to that of the full 
dataset. RELIEF occupies the third place and CFS the fourth with accuracy less than 1% lower than 
that of the full buns dataset. 
 
 

 

 
Fig. 7. Ten repetitions of the10-fold cross-validation accuracy estimation for the buns dataset. 

 
 
The fact that the Naïve Bayes classifier gives lower accuracy estimations compared to the C4.5 and the 
Multi-Layer Perceptron can be attributed to the assumption that the algorithm makes about features 
being conditionally independent. In fact, several of the features in the dataset are correlated, for 
example features such as the mean diameter of an approximately circular product and its surface area 
are clearly correlated. MLP was able to capture a certain rule for the classification of the products 
considered because of the structure inherent to the MLP which allows capturing complex input/output 
relationships. C4.5 giving very high classification accuracy can be explained by the fact that the 
vision-based food inspection system inherently uses a decision structure very close to a decision tree.  
 
For the “unknown” products, Fig. 8 and Fig. 9 respectively show the results of 10 repetitions of 10-
fold cross-validation accuracy estimation and the results of 100 repetitions of holdout accuracy 
estimation for the ciabatta buns. Unlike the “known” products where C4.5 seems to generally perform 
better than the MLP and the Naïve Bayes learning schemes, results on “unknown” products do not 
unanimously exhibit the best learning scheme independently of the used feature selection. 
Nevertheless, both cross-validation and holdout tests results show that the accuracy of almost all the 
reduced datasets is greater or equal to the accuracy obtained with the full dataset. 
 
For all three learning algorithms, the ciabatta buns dataset that was reduced with a wrapper feature 
selection gave the greatest cross-validation accuracy estimation: 86% for the Naïve Bayes wrapper, 
86.63% for the C4.5 wrapper and 83.38% for the MLP wrapper, which correspond respectively to 
9.33%, 12.57% and 4.19% estimated accuracy enhancements compared to that of the full dataset. This 
conclusion also holds for the holdout accuracy estimation with 8.93% enhancement using the Naïve 
Bayes wrapper, 5.71% for the C4.5 wrapper and 2.82% for the MLP wrapper. For both the C4.5 and 
the MLP learning schemes, the consistency-based attribute subset filter occupies the second rank with 
respect to the estimated accuracy from a reduced feature space, followed by CFS. For the Naïve Bayes 
Learner, CFS is the second best choice and the consistency-based filter the third choice. Recalling that 
Naïve Bayes assumes conditional independence between attributes, one could argue that the removal 
of correlated attributes by CFS improves the performance of Naïve Bayes. RELIEF is the last choice 
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for all three candidate machine learning schemes. However, it is noticeable in Fig. 8 and Fig. 9 that 
even though RELIEF performs the least in terms of estimated classification accuracy, the feature 
subset selected by RELIEF still provides better accuracy than when all the features are considered, for 
a product for which the inspection system is not finely tuned.  
 
 

 
 

Fig. 8. Ten repetitions of the10-fold cross-validation accuracy estimation for the ciabatta buns dataset. 
 
 

 
 

Fig. 9. One hundred repetitions of the holdout accuracy estimation for the ciabatta buns dataset. 
 
 
Globally, the advantage of a consistency-based subset evaluation is undisputed accuracy-wise for both 
the buns and the tortillas datasets. Considering the number of attributes retained by the different 
feature selectors, consistency-based subset evaluation acquires another advantage over RELIEF by 
proposing only 10 attributes versus 33 for the tortillas dataset and 5 versus 59 for the seeded buns 
dataset. One might explain the success of consistency-based subset evaluation and RELIEF techniques 
by their ability to capture attribute interactions. CFS also gives reasonably good results, especially 
when the relatively small number of features selected by this filter is considered. In the case 
considered here, several features in the dataset are correlated and CFS appears to be able to identify 
these correlations. The C4.5 wrapper has a net advantage with respect to the number of features 
selected. Wrappers also tend to give better classification results than filters in general. But this benefit 
is compromised by the time it takes to train wrappers, which can reach several minutes rather than only 
a few seconds with filter-based selectors, due to the repetitive interaction with the learning schemes. 
 
For the ciabatta buns, the Naïve Bayes wrapper, C4.5 wrapper and MLP wrapper outperformed all the 
other feature selectors. The fact that the reference training samples have been subjectively classified by 
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a human operator reduces the chances of ciabatta buns dataset’s classifier to be confidently represented 
by a single structure independently of the applied feature selector. Consequently, the performance of 
the feature selectors depended more on the target learning scheme, which explains the exceptional 
performance of feature wrappers for this category of products. Consistency-based subset evaluation 
would be the second best candidate, followed by CFS and RELIEF. The order of performance of all 
the evaluated feature selectors for the ciabatta buns with respect to estimated classification accuracy 
actually coincides with the order of feature space reduction presented in Table 3. That is the feature 
selector retaining the lower number of attributes is also the one achieving the best classification 
accuracy estimates. This provides a good direction for actual implementation of optimized 
classification systems that can adapt automatically to new products. 
 
According to these experiments, feature wrappers and consistency-based subset evaluation appear to 
be the best suited feature selector for application on a real-time vision-based food inspection system, 
provided that the products under classification are similar to the ones analyzed here. Feature wrappers 
unfortunately come at the expense of longer training time. RELIEF is the next best candidate on two 
third of the experimented datasets in terms of classification accuracy and training time, but tends to 
keep a lot more features than needed. In fact, not only does consistency-based subset evaluation on two 
out of three datasets outperform all the other feature selectors’ accuracy for the C4.5 algorithm, but it 
also generally gives a better accuracy for all the learning schemes we experimented with and for 
almost all the datasets. This work demonstrated that instead of analyzing and interpreting 82 features 
for every product under classification in-real time, the vision-based food inspection system can now 
focus on less than 15 features and produce classification accuracy similar or even better than with the 
full 82 features. Reducing the number of features extracted and analyzed in real-time reduces the time 
taken for processing a single product and therefore allows the food inspection system to support higher 
production rates.  It is however necessary to emphasize that having training data that cover as many 
cases as possible is a definite key in helping the algorithms generalize. Therefore particular caution in 
choosing the data samples shall be applied to prevent poor generalization of the learner. 
 
 
5. Conclusions 
 
This paper investigated and evaluated the application of four feature selection techniques for 
parametric space reduction in a real-time vision-based food inspection system. Three machine learning 
algorithms were used to evaluate and compare the accuracy of the classification from the extracted 
features with and without feature selection. Experimental results on seeded buns and tortillas 
demonstrated that consistency-based subset evaluation outperforms all other feature selectors in terms 
of classification accuracy, and is also very competitive in terms of the number of selected attributes. 
Experiments on another dataset composed of products manually classified as acceptable or defective 
also placed consistency-based subset evaluation as the second candidate after feature wrappers. 
Wrapper approaches tend to give excellent classification accuracy results, especially with the C4.5 
decision tree inducer, but take a longer time to train. The RELIEF technique also revealed good 
performance, but has the disadvantage of keeping more features than the other selectors, which might 
impede production rates in an industrial setting. CFS performed better than RELIEF on one third of the 
experimented datasets. 
 
Most of the feature-reduced datasets provided by the attribute selectors gave an estimated 
classification accuracy very close to the accuracy achieved with the full datasets, and even higher 
when extracted with either the consistency-based subset evaluation technique or the feature wrappers 
with a target learning algorithm. Apart from the RELIEF algorithm, all feature selectors reduced the 
feature space dimensionality by more than 80%. This evaluation with realistic datasets extracted from 
bakery products demonstrates the relevance of integrating feature selectors into the vision-based food 
inspection system. With this solution, the system can readily focus on fewer features that get 
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automatically identified according to the characteristics of the product being inspected. Moreover, it 
still provides inspection decisions and classification of a comparable reliability as with the full set of 
measured features while allowing for a higher rate of production. 
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