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Abstract: In this work the condition of metallic structures are classified based on the acquired sensor 
data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates 
with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as 
diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly 
used as features and preprocessing is not needed for the dam age detection. Since the time sequence of 
the extracted S0 has a high dimension, principal component estimation is applied to reduce its 
dimension before entering NN (neural network) training for classification. An LVQ (learning vector 
quantization) NN is used to classify the conditions as healthy or damaged. A number of FEM (finite 
element modeling) results are taken as inputs to the NN for training, since the simulated S0 waves 
agree well with the experimental results on real plates. The performance of the classification is then 
validated by using these testing results. Copyright © 2012 IFSA. 
 
Keywords: Active sensing network, Damage classification, Feature extraction, Lamb wave, Principal 
component analysis. 
 
 
 
1. Introduction 
 
To reduce the cost of maintenance, SHM (structural health monitoring) has been proposed as an 
alternative approach to replace traditional time-consuming inspection for maintenance. The wave 
propagation method for structural health monitoring has been demonstrated to be effective in detecting 
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debonding in composites and cracks in metallic structures. And early detection of such damages due to 
cyclic loads and environmental corrosion is critical for preventing catastrophic failure and prolonging 
the life of aircraft structures. Therefore, in this work, wave propagation method based on surface-
mounted piezoelectric sensor arrays is adopted to monitor cracks at riveted holes. 
 
In general, the structural health monitoring system consists of two major parts: hardware and software. 
The hardware includes the distributed sensor network and the data acquisition system. In this work, the 
active sensing network with actuators excited by known diagnosis signals is adopted. And the software 
part for diagnosis includes signal analysis for sensitive feature extraction and intelligent algorithms for 
damage interpretation and classification, which actually result in the physical condition of a given 
structure from the raw sensor measurements. Our research reported in this paper is concentrated on 
feature extraction and structure condition classification. 
 
Neural network methods are widely used to solve classification problem, since when properly trained 
they easily map the extracted feature space to structure condition space. Designing an effective neural 
network has always been a challenging task. In [1], a three-layer propabilistic neural network is 
applied to classify the sensor data into several categories relative to the damage location in the circular 
plates using resonance frequency shifts of E/M (electro/mechanical) impedance as damage features. In 
[2], a backpropagation neural network is trained to categorize cracks according to their lengths using 
FE modeling data for scattering of ultrasound by the cracks emanating from rivet holes in a thin 
aluminum plate. An impedance-based damage detection combined with a back propagation neural 
network is developed in [3] to locate and identify the structure damages. In [4], with independent 
component analysis for vibration features, a multi-layer perceptron neural network, trained using an 
error back propagation algorithm, is able to detect the undamaged and damaged states with very good 
accuracy and repeatability. 
 
Lamb wave [5, 10] is much more sensitive to structure damages than other structural responses such as 
modal shape, natural frequency, etc., and the artificial neural network technique based on Lamb wave 
testing is able to lead to precise identification of the damages. In [6], the authors developed an 
identification technique for debonding in adhesively bonded joints using Lamb wave signals 
interpreted by neural network training. In [7], different crack lengths at four locations in a PVC 
sandwich panel were numerically simulated and the percentage shifts in structural energy were used to 
train a backpropagation neural network. Good identification precision was achieved for another 
numerically simulated damage case, while poor precision was attained using measurement signals. In 
[8], the so-called DDFs (digital damage fingerprints) are extracted from the spectrographic 
characteristics of Lamb wave signals and serve as damage features. Various numerical simulation 
results are employed to train the neural network and then experimentally validated by identifying 
cylinder through-holes and delamination in the composite laminates. In most of these papers, the 
artificial neural network employs the method of supervised feedforward backpropagation. 
 
This paper presents a method based on neural network for the classification of an aluminum plate with 
and without crack damage at riveted holes. The time-domain sensor signals are directly used as 
damage features without preprocessing, and key features having reduced data size are extracted after 
principal component estimation. The estimated key features are then considered as the input to the 
neural network, which is trained according to the learning vector quantization method. The neural 
network training mainly uses FEM data of Lamb wave propagation in the active sensor network 
system, and the classification performance is evaluated through the validation using the experimental 
testing data. 
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2. Active Sensing System for Structure Crack Detection 
 
The aluminum plate with riveted holes illustrated in Fig. 1 is studied for crack detection using the 
active sensing system, which consists of sensors denoted as s1, s2,, s7, and actuators denoted as a1, 
a4, and a7. The cracks at the hole are indicated in Fig. 1 with length l. The actuators excited by the 
diagnosis signal, which is the windowed sinewave burst as shown in Fig. 2, transmit the signal to the 
sensors. The received signal by the sensor contains the information about the integrity of the structure 
between the actuator and the sensor, and will be used to detect any crack occurrence by investigating 
any change in the received signal. Based on the analysis of the sensor signals, information can be 
retrieved concerning the extent of the damage and used to assess and classify the health condition of 
the structure. In this work, we take actuator a4 as one case which is excited by the diagnosis signal in 
Fig. 2. It is mentioned that the distance between the sensor, the actuator and the hole, and the 
diagnostic signal frequency are determined with the help of analytical and numerical simulation, which 
is detailed in the accompanying paper [15]. 
 
 

l

30mm

s1 s2 s3 s7

a7a1

s4 s5 s6

a4

=8mm

500mm

500mm

60mm

60mm

1.6mm thickness

Hole #1 Hole #7#4… …

 
 

Fig. 1. Active sensing system for an aluminum plate with riveted holes with cracks. 
 
 

The experimental testing setup consists of an Arbitrary Wave Generator (AWG) 2041, PZT driver, 
sensor signal amplifiers, and a programmable GAGE Compuscope 82G card connected to a PC 
running Labwindows/CVI. The actuation and the sensor signals are amplified by high bandwidth 
amplifiers. The data acquisition subsystem includes a PCI interface controlled with the PC running 
Labwindows/CVI, and the data are saved in PC through the GAGE card. The schematic diagram of the 
experimental setup is shown in Fig. 3. 
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Fig. 2. 400 kHz sinewave burst injected to the actuator. 
 
 

 
 

Fig. 3. Schematic diagram of experimental setup. 
 
 

Experimental testing on real plates has been conducted. Circular transducers working as sensors and 
actuators are mounted to the surface of the plate using epoxy. The sensor signal is collected via the 
data acquisition card with 20 MHz sampling rate. As one example, the experimental sensor signals for 
the pristine plate are displayed in Fig. 4. We also take the plate with cracks l = 6 mm at hole #4 and  
l =2 mm at hole #1 as another example for comparison. Fig. 5 shows the testing results, where the 
differences of S0 waves from those in Fig. 4 for the pristine plate are observable, e.g., the peak value is 
reduced, especially for s1 and s4. In next sections, we shall made use of these differences to detect the 
damage via feature extraction and condition classification. 
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Fig. 4. Experimental sensor signals for the pristine plate. 
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Fig. 5. Experimental sensor signals for the plate with cracks l=6mm at hole #4 and l=2mm at hole #1. 
 
 
The classification architecture being used is shown in Fig. 6. The key steps involved in the 
methodology are 1) S0 wave extraction or feature extraction, 2) Estimation of principal components,  
3) Structure condition classification using a neural network. The first step of the methodology involves 
the extraction of S0 wave. The time sequences of S0 waves from several sensors are used as inputs to 
the stage of principal component estimation. This step directly uses the time-domain signal of the 
sensors, which reduces the processing time for the sensor signals. The second step given in the 
proposed approach involves the dimension reduction of the sensor signal using Principal Component 
Estimation. The traditional method of singular value decomposition is used. The last and the main step 
of classifying structure conditions are obtained from the methodology of neural network. The neural 
network is based on LVQ nets. The LVQ network is trained using Kohonen learning rule to classify 
structure conditions. 
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Fig. 6. Classification architecture. 
 
 

3. Feature Extraction 
 
To facilitate the NN training which needs sufficient sensor data, numerical data are desired to replace 
testing data from specimens in order to increase cost efficiency. For this purpose, verification of the 
numerical sensor signals is necessary to prove that they are reliable. Details about the simulation of the 
wave propagation for the system in Fig. 1 are seen in [15]. 
 
To normalize the simulation and the experiment data, a scaling is needed and can be determined 
according to the sensor data for the pristine plate. Fig. 7 shows the simulation result of sensor signals 
for the pristine plate. Similarly to the experimental result in Fig. 4, S0 wave is obviously fetched by the 
sensors. Also, for the plate with cracks l =6 mm at hole #4 and l =2 mm at hole #1, Fig. 8 shows its 
simulation results. It is noticed that S0 waves agree well in amplitude between the simulated and the 
experimental results, while a time shift is seen, which is due to the time shift of the excitation signals. 
Since the excitation signal is known, the time shift of the sensor signals is easily removed. After a 
thorough examination to 10 specimens, we believe that the FEM simulation can guarantee the 
reliability of S0 wave, which implies that the simulated S0 waves are believable and thus can be used 
to replace real testing data for the structure condition classification. So in the next section the features 
from the FEM results together with some of the experiment data will be used in the neural network 
training for damage classification. 
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Fig. 7. Simulated sensor signals for the pristine plate. 
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Fig. 8. Simulated sensor signals for the plate with cracks l=6 mm at hole #4 and l=2 mm at hole #1. 
 
 

Next, we shall systematically analyze the relationship of the S0 wave with the crack length based on 
the simulated sensor data. With different crack lengths, the maximum amplitude of S0 wave of each 
sensor signal is plotted in Fig. 9. As expected, sensor s4 is most sensitive to crack at hole #4, which is 
seen from Fig. 9 as the curve corresponding to s4 drops most significantly even for a small crack  
l =2 mm. Other sensors s2 and s3 are sensitive to bigger cracks, while s1 signal does not change much 
and thus it is not able to detect the crack at hole #4. 
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Fig. 9. Maximum amplitude of S0 wave versus crack length for crack at hole #4. 
 
 
As for cracks located respectively at holes #3, #2 and #1, the S0 wave maximum amplitude versus 
different crack lengths is displayed in Figs. 10-12. In Fig. 10, s3 and s2 are most sensitive to cracks, 
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and s1 is also possibly useful to detect crack. In Fig. 11 for the crack at hole #2, s1 and s2 are able to 
detect it. However, in Fig. 12 for crack at hole #1, none of the four sensors is capable of detecting the 
crack. This implies that excitation to an actuator closer to it is required. 
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Fig. 10. Maximum amplitude of S0 wave versus crack length for crack at hole #3. 
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Fig. 11. Maximum amplitude of S0 wave versus crack length for crack at hole #2. 
 
 

The above analysis shows that the sensors are all useful to crack detection. It is also noticed that S0 
wave amplitude as well as its time delay (or, time of flight [11]) relative to actuator signal are sensitive 
to the crack. Therefore the time sequences of S0 waves of sensors s1-s4 will be used as features for 
classification in this paper. Take the crack at hole #4 as an example. The combined S0 wave time 
sequence of sensors s1-s4 is shown in Fig. 13. 
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Fig. 12. Maximum amplitude of S0 wave versus crack length for crack at hole #1. 
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Fig. 13. S0 waves for crack at hole #4. 
 
 
4. Principal Component Estimation 
 
To make the damage classification simple, the time sequence of the S0 waves undergoes the principle 
component analysis so that the principal components are extracted. Principal component analysis 
(PCA) is a statistical technique used for data compression by determining a linear transformation 
matrix W  Rmn (m<n). The data X  Rn1 is compressed and a lower dimension data y  Rm1 is 
yielded and given by 
 
 .WXy   (1)
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The PCA technique is to reduce the number of features representing a data by discarding the ones 
which have small variance and retains only those that have large variance. It uses singular value 
decomposition method in calculating the eigenvectors of the co-variance matrix formed by analyzing 
the sensor data. Only those eigenvectors are selected which give the maximum information about the 
data. These chosen eigenvectors form the matrix W. A very brief introduction to the standard principal 
components computation is given as follows. 
 
Let the time sequence of S0 wave from each sensor signal be denoted as sk RM1, k = 1, , N. The 
total number of the sensors is N. All extracted S0 waves form a 1-D vector given by 
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where the total number of the specimens participating in the principal component estimation is L. The 
mean of the S0 waves for all specimens is obtained as 
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Subtracting the mean from the original data ci yields 
 
 .~  ii cc  (4)
 
The covariance matrix for the different specimens is obtained as 
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The eigenvectors corresponding to the covariance matrix C in (5) are computed in order to form the 
basis for the construction of W matrix in (1). The number of possible eigenvectors that would yield the 
maximum information about the dataset, is equal to the number of specimens in the training set. 
Therefore, for a dataset with L specimens, L eigenvectors are reasonably taken into account to form the 
W matrix. Consider a new matrix given by 
 
 ,LLT RG   (7)
 
and let the eigenvalue-eigenvector pairs of G be (μk, θk) (k=1, ... , L). We have 
 
 .kkkG    (8)
 
It is easily known that Γθk are the eigenvectors of C=ΓΓT. Thus L eigenvectors are computed instead of 
computing Q eigenvectors. A transformation matrix W is then constructed for dimension reduction as 
follows. 
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and correspondingly μ1> μ2>  > μm. Therefore, y=WX produces transformed input vectors y whose 
components are uncorrelated and ordered according to the magnitude of their variance. Those 
components that contribute only a small amount to the total variance in the data set are eliminated. 
 
 
5. Damage Classification Using a Neural Network Method 
 
In this section, a neural network is used to classify the structure conditions which are normal and 
abnormal. The output of the previously calculated principal components becomes the input to the 
neural network for training. The neural network is a learning vector quantization network which is 
shown in Fig. 14. 
 
 

 
 

Fig. 14. LVQ network architecture. 
 
 
5.1. LVQ Neural Network 
 
The LVQ network is trained according to Kohonen learning rule [13]. The learning starts from a set of 
input and target pairs: 
 
 .,;;,;, 2211 KK txtxtx   (10)
 
Each target vector has a single 1. For example, for input vectors to be assigned to four classes, 
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means the corresponding xk belongs to the second of four classes. 
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When the network is in training, the distance from an input x to each row of the input weight matrix 
IW1,1 is computed with the function ndist. The hidden neurons of layer 1 compete. If the ith element of 
n1 is most positive, and the neuron i wins the competition. Then the competitive transfer function 
produces a 1 as the ith element of a1, and all other elements of a1 are zero. a1 is then multiplied by the 
layer 2 weights IW2,1, the single 1 in a1 selects the class k associated with the input x. Thus the 
network has assigned the input vector x to class k and 2

k
a  is 1. If the assignment is correct, the ith row 

of IW1,1 is adjusted in such a way to move this row closer to the input vector x, and if the assignment is 
not correct, the ith row of IW1,1 is adjusted to move the row away from x. Therefore, if x is classified 
correctly, 
 
 ,12   kk

ta  (12)

 
the new value of the ith row of IW1,1 is computed as 
 
 )).1()(()1()( 1,11,11,1  qIWqpqIWqIW iii   (13)
 
If x is classified incorrectly, 
 
 ,012   kk

ta  (14)

 
the new value of the ith row of IW1,1 is computed as 
 
 )).1()(()1()( 1,11,11,1  qIWqpqIWqIW iii   (15)
 
 
5.2. Classification Performance Analysis 
 
In this section, we mainly would like to demonstrate the effectiveness of this kind of time-domain 
feature processed via principle component extraction in the crack detection with the implementation of 
neural network. As such, without loss of generality, cracks at holes #1 to #4 associated with sensors  
1 to 4 are considered here. As is discussed in Section 3, the time domain data of S0 waves from 
sensors 1 to 4 are used as features to classify the plates into categories relative to the structure 
condition. In this paper, two classes are assigned: 1 representing no damage, and 2 representing 
damage with crack. 
 
As shown in Table 1, the shaded parts are the types of plates under consideration. The data used for 
principal component estimation and neural network training mostly come from FEM results. Only one 
case is from a real specimen as the pristine plate. For principal component estimation and neural 
network training, these data are expanded as 1019 pristine plate and 736 damaged plates, which means 
the sensor data for pristine plate is used for 1019 times with random noise ( 5 %) added, and the 
sensor data for each damaged case is used for 46 times and also coupled with the random noise. The 
dimension of S0 wave combination from the four sensors is 1684. After principal component 
estimation, the dimension is reduced from 1684 to 13. 
 
The LVQ neural network being used ('newlvq' function in Matlab) is a two-layer network. The first 
layer is a competitive layer that uses the compet transfer function and calculates the distance from an 
input to each row of the input weight matrix. The second layer is a linear layer having purelin neurons. 
In this application, the number of hidden neuron of the first layer is 4 and the class percentages are  
45 % and 55 %. 
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As shown in Table 1, testing results from 10 real plates (indicated by the shadow) are used to verify 
the classification method. Based on the trained LVQ neural network, 8 plates are classified correctly, 
and 2 plates are not classified correctly. It is noted the NN training is mainly based on the FEM 
simulation results. The trained neural network leads to such a classification results for the tested 
specimens is acceptable and promising. It is also noticed that the trained neural network is potentially 
able to identify combined cracks, although the training is solely based on the single crack cases. 
 
 

Table 1. Structure Condition classification results. 
 

Plates Crack length l 
(mm) 

FEM simulation 
plates 

Tested plates Classification 
results 

0 T T 1 Pristine 
0   1 
2 T   
6 T   
10 T  2 

Crack at Hole #4 

16 T  2 
2 T  2 
6 T  1 
10 T  2 

Crack at Hole #3 

16 T  2 
2 T   
6 T   
10 T   

Crack at Hole #2 

16 T   
2 T   
6 T   
10 T   

Crack at Hole #1 

16 T   
Cracks:2mm@hole#4, 6mm@hole#1   2 
Cracks:6mm@hole#4, 2mm@hole#1   1 

 Classification results: 1- healthy; 2- damaged 
T: used for principal component estimation and NN training 

 
 
6. Conclusions 
 
In this paper, the aluminum plates with the riveted holes and possible crack damage at these holes have 
been considered and the surface-mounted piezoelectric sensor/actuator network has been utilized to 
detect the crack. The 400 kHz sine wave burst has been used as the diagnostic signal and injected to 
the actuator and it propagates to sensors in order to detect the integrity of the plate. The combination of 
time-domain S0 waves from all sensitive sensor signals has been directly used as the feature to detect 
the crack damage. After the principal component estimation, the reduced-size data work as inputs for 
the LVQ neural network training. The neural network training has mainly relied on a number of FEM 
simulation results, since the simulated S0 wave agrees well with its experimental testing result on the 
real plate. The performance of the classification has been validated by using the testing results from  
10 real plates, and it results in 8 plates classified correctly. The results imply that this time-domain 
feature processed with principle component extraction is straightforward and effective to identify the 
crack damage facilitated by the active sensing network. 
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