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Abstract: A theoretical and experimental comparison of optimized search coils based magnetometers, 
operating either in the Flux mode or in the classical Lenz-Faraday mode, is presented. The 
improvements provided by the Flux mode in terms of bandwidth and measuring range of the sensor are 
detailed. Theory, SPICE model and measurements are in good agreement. The spatial resolution of the 
sensor is studied which is an important parameter for applications in non destructive evaluation. A 
general expression of the magnetic sensitivity of search coils sensors is derived. Solutions are 
proposed to design magnetometers with reduced weight and volume without degrading the magnetic 
sensitivity. An original differential search coil based magnetometer, made of coupled coils, operating 
in flux mode and connected to a differential transimpedance amplifier is proposed. It is shown that this 
structure is better in terms of volume occupancy than magnetometers using two separated coils without 
any degradation in magnetic sensitivity. Experimental results are in good agreement with calculations. 
Copyright © 2012 IFSA. 
 
Keywords: Search coil sensor, Magnetometer, Magnetic, Sensitivity, Transimpedance amplifier, 
Spatial resolution. 
 
 
 
1. Introduction 
 
This research work takes place in the context of an industrial contract aiming at developing a robust 
small size (1 cm3) large bandwidth magnetometer. We investigated benefits provided by using search 
coils operating in the flux mode, instead of the classical Lenz-Faraday mode. This paper consists in a 
theoretical and experimental comparative study of sensors specifications (bandwidth, sensitivity, 
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measuring range) depending on the operating mode. To meet the industrial constraints, we fixed a 
budget (i.e. we selected commercial ferrite cores and a low noise differential instrumentation 
amplifier). The obtained results are providing new solutions for applications requiring large bandwidth 
like pulsed eddy current non destructive evaluation [1], biomedical or geomagnetic measurements in 
the [1 Hz - 1 MHz] bandwidth, for which Lenz mode magnetometers are not well adapted. We present 
in section 2 the main characteristics of the sensors for the two operating mode. In Section III, we 
discuss how to optimize the signal conditioning so as to obtain low noise and large bandwidth 
magnetic field sensors. We show that using search coils in a Flux mode enables a large enhancement 
of both bandwidth and measuring range of the sensor without reduction of its sensitivity. Section 4 is 
devoted to the study of a coupled search coils sensor in Flux mode and the design of a small size 
differential coils based magnetometer. Sections 5 and 6 deal with the magnetic sensitivity of search 
coils sensors. We show that the magnetic sensitivity in Flux and Lenz mode are the same and detail 
which are the relevant parameter that fix the white noise level of the sensor as well as the noise corner 
frequency. Section 7, deals with the theoretical and experimental study of differential search coils 

magnetometers. A white noise level of HzpT /4.0  is obtained using 0.8 cm3 differential coupled 
search coils. In section 8, the spatial resolution of search coils sensors is studied. We show that the 
resolution is not the same in Lenz and Flux mode. 
 
 
2. Sensors Characteristics and Electrical Equivalent Model in Flux mode  

and Lenz Mode 
 
In the Lenz mode, the search coil generates a voltage signal proportional to the flux time derivative not 
to the flux density Be and is connected to a voltage instrumentation amplifier with an infinite input 
impedance. In the flux mode, the short circuit current, proportional to the field density, is measured. In 
that case the coil has to be connected to an infinite input admittance transimpedance amplifier [2]. 
Thus, search coils sensor can be considered as voltage or current source depending of the mode they 
are being operated. Their Thevenin equivalent voltage generator ETh, Thevenin impedance ZTh, Norton 
equivalent current generator IN and Norton equivalent admittance YN (Fig. 1) can be calculated as a 
function of both the flux density Be to measure and the coil features: inductance Lb, noisy resistance 
Rb, parasitic capacity Cb and equivalent surface Seq, which is defined as the ratio of the collected flux 
to the flux density Be and experimentally determined. One gets: 
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where enRb stands for the Johnson voltage noise source of Rb. 
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 (a)      (b)    (c) 
 

Fig. 1. Electrical equivalent circuit of a search coil (a), operating in Lenz mode (b), or Flux mode (c). In Lenz 
mode the magnetic flux is related to the open circuit voltage Voc whereas in Flux mode, the flux density is 

related to the short circuit current Isc. 
 
 

The transfer functions 
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  and 
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  and the intrinsic magnetic noise sensitivity, defined as 

the input noise flux density ( HzT ) that produces a voltage (or current) equal to the contribution of 
the Johnson noise of the resistance Rb, are plotted as a function of the frequency in Fig. 2. One deduces 
from these figures that in the Lenz mode the bandwidth is intrinsically upper limited by the coil 
resonant frequency and that the measuring range is inversely proportional to the frequency, whereas in 
the flux mode the bandwidth is larger, since not affected by the coil resonant frequency, and the 

measuring range is constant above a low cut off frequency equal to 
b

b

L2

R


 [3]. The magnetic 

sensitivity in the Lenz mode decreases as the frequency and is thus better at high frequency than in the 
flux mode. In this latter case, the sensitivity is constant over the bandwidth sensor. 
 
 

 
 

Fig. 2. Transfer function and intrinsic sensitivity of search coil magnetometer  
in Lenz mode (2 & 4) and Flux mode (1 & 3) as a function of the frequency. 

 
 
As a brief conclusion, intrinsically, the flux mode sensor is well suited to applications requiring a large 
bandwidth and frequency independent measuring range whereas the Lenz mode magnetometer is 
rather adapted to applications in limited frequency range and provides in that case a better sensitivity 
than the Flux mode magnetometer. 
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Signal amplification is different depending on the operation mode of the search coil. The signal has to 
be amplified for the Lenz mode by a voltage amplifier, with as high as possible input impedance Zi, 
and for the Flux mode Lenz mode by a transimpedance amplifier, with as large as possible input 
admittance Yi. These amplifiers can be replaced by their equivalent noisy quadripolar model as shown 
on Fig. 3 and 4. Such models are very useful for calculating the effective sensitivity of the sensor 
taking into account the noise due to the amplifier stage and more generally to state the required 
characteristics of both search coils and amplifier for given sensor specifications in terms of bandwidth 
and sensitivity. 
 
 

 
 

Fig. 3. Equivalent electrical model of the Lenz mode magnetometer. Av is the voltage Gain  
and Zi the input impedance, which has to be as large as possible. 

 
 

 
 

Fig. 4. Equivalent electrical model of the Flux mode magnetometer. Za is the amplifier transimpedance  
and Yi is the input admittance, which has to be as large as possible 

 
 
For signal conditioning, we selected an instrumentation amplifier structure (like the one included in the 
INA 163 integrated circuit) that we configurated so as to operate either as a voltage amplifier (for the 
Lenz mode) or as a transimpedance amplifier (for the Flux mode), as shown on Fig. 5 and 6. 
 
 

3. Search Coils Sensors Conditioning Optimization 
 
The classical Lenz mode magnetometer, which is rather a magnetic flux derivative meter, can be 
converted into a B field meter by using an integrator output stage [4]. We designed a solution with the 
integrator embedded inside the amplifier (Fig. 7). The transfer function TLenz of this Lenz mode B field 
meter is in that case given by: 
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Fig. 5. Signal conditioning for Lenz mode magnetometer. Rg is the gain-set resistor. 
 
 

 
 

Fig. 6. Signal conditioning for Flux mode magnetometer 
 
 

 
 

Fig. 7. Lenz mode B field meter with embedded integrator stage (Lg, Rg1 and Rg2),  
which replaces the gain-set resistor Rg in Fig. 5. 
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The magnetometer low cut off frequency can be adjusted by proper choice of integrator parameters. 
Nevertheless, the magnetometer bandwidth is still limited by the search coils resonance and the 
measuring range is not enlarged by the integrator stage. 
 
For the standard Flux mode magnetometer, the low cut off frequency is fixed by the search coil 
parameter. This low cut off frequency can be significantly reduced by including a compensation stage 
in the transimpedance amplifier as described in Fig. 8. 
 
 

 
 

Fig. 8. Flux mode magnetometer with compensation stage (Rc1, Rc2 and Cc)  
for bandwidth enhancement at low frequency. 

 
 
The function transfer TFlux writes: 
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Using the compensation stages described ahead, whatever is the mode of the magnetometer, one can 
obtained the same cut off low frequency and the same transfer value in the magnetometer bandwidth. 
The Lenz mode magnetometer bandwidth stays nevertheless limited by the search coil resonant 
frequency. 
 
 

 
 

Fig. 9. Transfer function of standard (std 1 &3) magnetometer and optimized (opt 2 & 4) magnetometer. 
 
 
4. Differential Coupled Search Coils Based Magnetometer 
 
A significant reduction of common mode signals as well as parasitic signals sensed in connecting 
wires is usually achieved by the use of a differential structure. An original flux mode differential 
magnetometer is presented in Fig. 10. The Norton equivalent model and the transfer function of this 
magnetometer can be calculated as follows: 
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b

b
bd R

ML 
  and 2b1b LLkM   

 
The low cut off frequency can be significantly reduced by including the compensation stage described 
in Section III. The theoretical study was compared to experimental measurements and calculations 
using a SPICE simulator. All results are in good agreement as shown on Fig. 11. 
 
The search coils coupling leads to correlation of the voltage noise sources of the two input amplifiers 
A1 and A2 of the instrumentation amplifier and thus to noise reduction of the sensor [5]. The coupling 
allows also a significant size reduction of the transducer since the coils can be wounded together on 
the same magnetic coil. In order to check the validity of the theoretical study, experimental 
measurements and calculations using a SPICE simulator were performed. All results fits very well as 
shown on Fig. 12. 
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Fig. 10. Flux mode differential magnetometer structure. 

 
 

 
 

Fig. 11. Transfer function of the differential Flux mode magnetometer. Theoretical, experimental and SPICE 
simulation curves are in very good agreement. Search coils features are: Rb1 = Rb2 = 45ohms, Lb1 = Lb2 = 4.7 mH, 
Cb1 = Cb2 = 60 pF, Seq = 0.152 m2, Volume = 0.83 cm3, intrinsic search coil transfer equal to 28A/T and search 
coil low cut off frequency equal to 1,5kHz. The compensation stage of the magnetometer (see Section III) was 
designed so as to obtain an 8 Hz low cut off frequency. 
 
 

 
 

Fig. 12. Section view of the search coil. Subscripts ‘cw’ and ‘f’ stand respectively  
for Coil Wire and Ferrite core. 
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5. Intrinsic Search Coils Magnetic Sensitivity 
 
The sensitivity of the sensor is limited by the Johnson noise of the coil resistance Rb. In a frequency 
band f, the variance of the noise voltage 2

nRbe  due to Rb is equal to: 
 

f.R.Tk4e bB
2
nRb   

 
From Faraday’s law, signal power can be written as : 
 

2
eeq
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Thus, for a signal to noise ratio equal to 1, one can define [6] the intrinsic magnetic induction 

resolution per unit bandwidth rinsicint
nB  as : 
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One has now to express the resistivity and the equivalent area of the search coil depending on the 
geometry. Let’s consider a search coils with geometrical parameters depicted in Fig. 12. We define 
forms factors mf and mcw for respectively the ferrite core and the coil wiring as : 
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The resistance Rb expresses as : 
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where Sw is the wire section, rmean is the mean radius of the coils wiring i.e. 
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(where kfill is the packing factor which will be taken equal to 1). 
 
The equivalent surface Seq, can be expressed as: 
 

fappeq S..NS 
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where 
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and where app is the apparent permeability which is different from the relative permeability r of the 
core due to the demagnetizing field. For an isotropic magnetic material ferrite, 
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where Nd is the demagnetizing factor. Assuming that the magnetic induction is constant inside the core 
and that the tube core can be considered as an ellipsoid, a general formula for Nd exists. [7]. Most 
existing papers deal with elongated search coils with mf > 10. In this case, the apparent permeability, 
we note app,long can be expressed by [4]: 
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For compact coils ferrite with 5.45.0  fm , we propose a simple expression for ND. ND can be 

approximated with less than 15 % error by: 
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In this case, the apparent permeability, we note app,short, reduces to: 
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As a result, the intrinsic magnetic induction resolution rinsicint
nB  expression for short and long coils 

expression are: 
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 (3)

 
where Vcopper is the coil wiring volume: cwcwmeancopper eLr.2V   

 
The main conclusion is that, whatever the coil geometry, the sensitivity is mainly governed by the 
length of the core and the copper volume. 
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6. Effective Magnetic Sensitivity of the Sensor 
 
6.1. Scale Factors 
 
For any search coils magnetometer, an open voltage is induced in the coil and one can then define a 
transfer function or Voltage Scale Factor SFV as: 
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In Flux mode, the induced short circuit current IN is measured using a transimpedance amplifier with 
high input admittance larger than the one of the coil capacitance. Their transfer function or current 
(Intensity) Scale Factor SFI is then defined as: 
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where Lb is the search coil inductance. This latter can be expressed as: 
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whereself is an apparent permeability, corresponding to the field enhancement due self induction, 
equal to the ratio of the inductances values for a solenoid with and without ferrite core. On the 
assumption that the field produced by the coil wiring is uniform and that magnetization inside the 
ferrite is uniform, self and app are usually considered to be equal [4] even if finite element 
calculations are required for a more accurate evaluation of their ratio. As a result, for a frequency 

above 
b
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 , SFI is frequency independent and simplifies to: 
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6.2. Effective Magnetic Sensitivity 
 
The effective magnetic sensitivity of the sensor depends on the noise characteristics of the preamplifier 
[8]. As explained before, in the Lenz mode a high input impedance voltage amplifier is used, in flux 
mode a high admittance current amplifier or transimpedance amplifier is used (Fig. 13). 
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Fig. 13. Search coil magnetometer operating in Flux mode. en-eq and in_eq are equivalent input voltage and 
current noise of the pre-amplifier whose input admittance is Ye. 

 
 
Below the coil resonance frequency for the Lenz mode magnetometer, the equivalent input noise 

voltage en_eq is equivalent to a magnetic induction noise Veq_n SFe and the equivalent input noise 

current in_eq is equivalent to a magnetic induction noise Ieq_n SFi . As a result the effective magnetic 

induction sensitivity is: 
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6.3. Discussion 
 
We deduce from equation 2 that minimization of the intrinsic magnetic induction sensitivity requires 
as large as possible copper volume and long ferrite core (high value of Lf). The number of turns N is 
not a relevant parameter. N becomes a relevant parameter when the noise of the amplifier is taken into 
account. In that case, equation (10) shows that, for any coil, the white noise level is fixed by the 
number of wires, the length of the core and the equivalent input current noise and is the same for air 
coils sensors and ferrite core sensors, since it does not depend on the apparent permeability. The value 
of N is indeed adjusted so as to meet the required specifications of the sensor in terms of magnetic 
noise sensitivity and bandwidth of the white noise region. The reason is that the noise corner frequency 
fcorner for which the noise due to en_eq becomes smaller than the noise due to in_eq is equal to: 
 
- for short coils: 
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- for long coils: 
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and depends on the apparent permeability. 
 
 
7. Differential Search Coils Based Magnetometer 
 
Differential sensors are the most appropriate one for getting rid with parasitic signals. In the case of 
magnetic sensors, a typical parasitic signal is the flux collected by the connection wires to the 
amplifier. It is possible to remove this flux by the use of two identical search coils sensors thus 
providing a differential sensor but with a less spatial resolution. If one wants to optimize size as well 
as spatial resolution, one can put the two sensors together to obtain a single differential sensor. By 
using two identical coils wounded on the same ferrite core and operating in flux mode (the coils are 
then highly coupled), one gets a magnetometer based on a differential sensor. The short circuit current 
(proportional to Bext) of both search coils is added using the differential current amplifier whereas the 
flux picked up in the connection wiring can easily be removed by an appropriate wounding of theses 
wires. If Lcoil is the inductance of one of the two coupled coils and Scoil its equivalent surface, it can be 
shown that the signal produced by two identical coupled coils is the same as the one produced by an 
equivalent coil with inductance coilcoilcc L2MLL   (where M is the mutual inductance between 

the coil which very close to Lcoil) and equivalent surface value coilcc_eq SS  . Let’s compare the 

sensitivity of such two coupled search coils with the sensitivity of two identical but separated coils of 
half length, the same copper and ferrite volumes are then used for both sensors. The equivalent surface 
of each single coil wounded onto the ferrite of half length is 2SS coilcc_eq   and their inductance is 

2Lcc . Thus from equation (10), we deduce that the white noise should be the same for both sensors 

whereas, from equation (11), the noise corner noise frequency should differ by a factor of 2. This was 
confirmed experimentally as shown on Fig. 14. We measured the magnetic induction sensitivity of 
coupled coils consisting of two coils with N = 400 turns, wounded on a ferrite 10 mm long, 4 mm in 
diameter with r=900 and compared it with a magnetometer made of two separated coils wounded on a 

ferrite 5mm long, 4mm in diameter with r = 900. The measured white noise level is HzpT /4.0  in 

both cases. Using a calculated value of HzpA /3.2  for in_eq, (deduced from typical noise sources 
values available in data sheets of the integrated circuit used for designing the transimpedance 

amplifier) and measured values 2
coil m035,0S   and mHLcoil 5.4 , one gets from equation (9) a 

value of HzpT /3.0  and from equation (10) a value of HzpT /25.0 . The small differences can be 
explained first from the fact that in_eq was not measured experimentally and second, for equation (10), 
from the fact that we considered that the core was equivalent to an ellipsoid. 
 
 
8. Search Coils Sensors Spatial Resolution 
 
Due to the presence of a ferrite core, the flux density distribution closed to the coils is different from 
the one when the coil is not present. It is thus interesting to estimate on which scale this modification 
takes place. The changes are not the same for the Lenz and the Flux mode. The reason why is that in 
the Flux mode eddy currents are induced in the wirings which generate a flux opposite to the one 
applied to the wirings. In order to evaluate the spatial resolution of search coils sensors, we calculated 
the flux density distribution around them when a uniform flux density Bext is applied along the core 
length. We decided to define the spatial resolution as the extent of the region for which the flux density 
is either 5 % above or below the applied field. Fig. 15 show the results obtained for a few search coils 
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with a fixed length core Lf but with different core diameters Df. In Lenz mode, the conclusion is that 
the spatial resolution along the direction of the applied field is not strongly affected by the ratio of the 
length over the diameter and ranges between 0.5 Lf and 1,5 Lf. We also compared the flux density 
distribution obtained for solid and hollow cores (Fig. 16). It turns out that the spatial resolution and the 
equivalent surface are the same in both case, which a very interesting result in term of weight 
reduction and optimal use of the volume. As shown on Fig. 17, in the Flux mode, the spatial resolution 
along the direction of the applied field does not depend of the core shape factor and is about 0.5 Lf. 
 
 

 
 

Fig. 14. Scale Factor and Noise equivalent Magnetic induction of sensitivity density per unit bandwidth  
of search coil magnetometers operating in Flux mode, made of two coils either coupled (green curves)  

or uncoupled (red curves). The same volume of ferrite and wiring is used for both magnetometers  
as well as the same transimpedance amplifier. 

 
 
5. Conclusions 
 
A detailed comparison of transfer function and noise sensitivity of search coils magnetometer 
operating either in Lenz mode of Flux mode was presented. We explained how to optimize both 
magnetometers and showed that the Flux mode provides a transfer function, which can be set constant 
over a bandwidth ranging from 1 Hz to 1 MHz, larger than what can be achieved in Lenz mode. The 
Flux mode also provides a constant measuring range over the full bandwidth, which is not the case for 
Lenz mode magnetometer. Such features are very interesting for applications requiring a large 
bandwidth and a good sensitivity over the whole bandwidth. An original differential coils based flux 
mode magnetometer, which is more compact than classical Lenz mode search coil differential 
magnetometer, was proposed and studied in details, namely in terms of transfer function and noise. 
Theoretical analysis, SPICE simulations and experimental measurements are in good agreement. 
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Fig. 15. Comparison of magnetic induction distribution (in T) around rod type ferrite cores for a uniform flux 
density applied along the length of the core and equal to 1T. FEMM software was used for calculations. The 
ferrite length Lf is 10 mm and the diameter Df range from 0.2 mm to 8 mm. The ratio in the insert corresponds 
to Df/2Lf. Thanks to the symmetry of the field distribution, each image is divided in two parts, an upper one and 
the lower each corresponding to a different Df/2Lf. ratio. Pink region correspond to region where the flux 
density is more than 5 % above the applied flux density. Turquoise blue region correspond to region where the 
flux density is more than 5 % below the applied flux density. 
 
 

 
 

Fig. 16. Comparison of magnetic induction distribution (in T) around ferrite cores for a uniform applied flux 
density equal to 1T. FEMM software was used for calculations. The ferrite length Lf is 10 mm and the 
diameter Df is 4 mm. The coils wiring length is Lf and its outside radius is 5 mm. The half upper part shows the 
flux distribution produced by a solid ferrite core. In the half lower part of the caption, the flux distribution 
produced by a solid ferrite core was replaced the one produced by a hollow ferrite core with a hole diameter of 
2 mm. Pink region correspond to region where the flux density is more than 5 % above the applied flux density. 
Turquoise blue region correspond to region where the flux density is more than 5 % below the applied flux 
density. Outside the ferrites, the field distributions are very similar for both cases. Though different values of 
app for the two cases, the calculated flux through the wiring (N=400) are the same (equal to 160 pWb) and thus 
the equivalent surface Seq are the same in both case (0.07 m2). 
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Fig. 17. Comparison of magnetic induction distribution (in T) around rod type ferrite cores for a uniform flux 
density applied along the length of the core and equal to 1T. FEMM software was used for calculations. The 
ferrite length Lf is 10 mm and the diameter Df range from 0.2 mm to 8 mm. The ratio in the insert corresponds 
to Df/2Lf. The coils wiring length is Lf and its thickness ranges from 4.9 down to is 1 mm. Pink region 
correspond to region where the flux density is more than 5 % above the applied flux density. Turquoise blue 
region correspond to region where the flux density is more than 5 % below the applied flux density. 
 
 
 
Taking into account the Johnson noise of the coils as well as the electrical noise of the conditioners, 
we calculated the magnetic sensitivity of search coils magnetometers and showed that the white noise 
level only depends on the number of turns and of the wirings, the length of the coils and the equivalent 
input noise current of the conditioner. The equivalent surface of search coils sensor as a function of the 
core diameter was studied as well as the spatial resolution of the sensor for Lenz and Flux mode. The 
main results are first that hollow ferrite cores provides equivalent surface and spatial resolution similar 
to the ones of solid cores and second that the flux distribution around search coils is not the same for 
Lenz and Flux modes. The spatial resolution slightly depends on the core diameter and is about the 
length of the core. 
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