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Abstract: In this paper, the potentialities of the manganese oxide Lay;Sro3sMnO; (LSMO) for the
realization of sensitive room temperature thermometers and magnetic sensors are discussed. LSMO
exhibits both a large change of the resistance versus temperature at its metal-to-insulator transition
(about 330 K) and low field magnetoresistive effects at room temperature. The sensor performances
are described in terms of signal-to-noise ratio in the 1 Hz - 100 kHz frequency range. It is shown that
due to the very low 1/f noise level, LSMO based sensors can exhibit competitive performances at room
temperature. Copyright © 2012 IFSA.

Keywords: Low frequency noise, Magnetoresistance sensors, Thermometers.

1. Introduction

Due to the colossal magnetoresistance effect and the strong spin polarization at the Fermi level, the
rare earth manganese oxides may find important applications in magnetoresistive devices such as
magnetic random access memories and magnetic sensors [1, 2]. In addition, the large change of their
electrical resistance R at the metal-to-insulator transition, which takes place in the 300 - 350 K range
makes them potential materials for the fabrication of room temperature thermometers. Ideal materials
would indeed present at the desired operating temperature T close to 300 K:
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i) a high temperature coefficient of the resistance (Br), expressed in K ' and defined as the relative
derivative of the resistance versus temperature Br = (1/R)x (dR/dT), or a high relative change of the

resistance with the magnetic field (By), expressed in T, and defined as Bu = (1/R)x(dR/d(noH))

(with po the vacuum permeability), and
ii) alow noise level.

The limits of the device performances are given by the signal-to-noise ratio.

Temperature coefficient of the resistance values and operating temperatures are important parameters
to be considered in the fabrication of high sensitivity room-temperature thermometers or
magnetoresistances. However, more attention should be paid to the low-frequency noise level in these
materials since it can vary by several orders of magnitude while By or Br values may only vary by a
factor less than 10. However noise is more difficult to optimize since its origin is still not well known
[3-8]. To reduce noise, high material quality is required and a large number of measurements are
needed in order to determine the general trend for the evolution of noise with geometrical parameters
such as width, length, and sample thickness.

Even if it does not exhibit the highest By or Pr values, Lay7Sro3sMnO; (LSMO) has been selected
among all the possible manganite compositions because it has shown the lowest reported low-
frequency noise level so far [8-10].

In this paper, details about sample preparation are presented in section 2. In section 3, the low
frequency noise measurement set-up is presented. A discussion about the sensor performances as a
function of the geometry, of the bias condition and of the frequency is given in section 4. The
performances of LSMO based thermometers as well as magnetoresistive sensors are finally presented
and compared with published values.

2. Sample Preparation

The sensors are patterned in 100 nm thick LSMO thin films deposited by pulsed laser deposition from
a stoichiometric target onto SrTiOs (001) single crystal substrate. The laser radiation energy density,
the target-to-substrate distance, the oxygen pressure and the substrate temperature were 220 mlJ,
50 mm, 0.35 mTorr and 720 °C, respectively.

The deposition conditions were found optimal for producing single-crystalline films as judged by
X-ray diffraction. The X-ray diffraction study indicated a full (001) orientation of the LSMO films as
shown by the 6-20 scan of Fig. 1. Full Width at Half Maximum measured in a ®-scan configuration
around the LSMO 002 peak was 0.2°.

An Atomic Force microscopy (AFM) study was performed in tapping mode. As shown in Fig. 2, we
observed very smooth surface (with rms roughness of 0.2 nm) and terraces at the film surface.

Electrical resistivity and saturated magnetization were measured in the unpatterned film. They are
reported in Fig. 3. Both resistivity and saturated magnetization values are close to those measured in
bulk LSMO, thus confirming the overall good quality of the tested sample.

After LSMO deposition, a 200 nm thick gold layer was sputtered on the films in order to make low
resistive connections. The LSMO thin films were patterned by UV photolithography and argon ion
etching to form lines. As shown in Fig. 4, the mask enables the study of lines of four different widths
W =20, 50, 100 and 150 pm. For each width, five lengths L could be measured depending on the
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position of the voltage contacts L = 50, 100, 150, 200, and 300 um. Tens of samples with different
geometries have been investigated. In this paper, we chose to report typical results for 50 um wide
300 pum long line patterned in a 100 nm thick LSMO film.
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Fig. 1. X-ray diffraction pattern in the 6—20 configuration of the 100 nm thick LSMO films on STO(001).
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Fig. 2. I um x 1 um AFM image in tapping mode of the 100 nm thick LSMO film on STO (001).
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Fig. 3. Electrical resistivity (left axis — black squares) and saturated magnetization in 500 Oe (right axis — red
circles) versus temperature of the 100 nm thick LSMO film deposited on STO (001).
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Fig. 4. Optical photography of a 100 pm width line with the two current probes IP and IM and 4 voltage probes
(V1...V4, V1°...V4’) on each side of the line. The line lengths between V1 -V2, V2 - V3 and V3 -V4 are
100 pum, 50 pm and 150 pm, respectively.

3. Low Frequency Noise Measurements
3.1. Measurement Set-up and Protocol

The experimental set-up mainly consists in one low noise high output impedance DC current source
and a dedicated low noise instrumentation amplifier with the following characteristics: a DC output
dedicated to resistance measurement with a voltage gain equal to 10 and an AC output dedicated to
noise measurements with a voltage gain around one thousand and a 1 Hz - 1 MHz bandwidth [11]. The
input voltage white noise is around 20 x 10™"® V*Hz"' and its input current noise is negligible. The
device is connected at the output of the DC current source using IP and IM pads (defined in Figs. 4
and 5). The DC voltage as well as the voltage noise are measured using the instrumentation amplifier
connected either on IP, IM pads for two probe configuration or on Vi, Vj (i,j=1..4 with i#j) for four
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probe configuration. A spectrum analyzer Agilent 89410A calculates the noise spectral density for
frequencies in the 1 Hz - 1 MHz range.

Current
source enrcr el enpov Rov S“Cnk  Differential ™
amplifier

Ry

€EnRM VM

Sasesssssssnnnes -

Fig. 5. Schematic representation of the noise measurement set-up showing the four probe technique. The noise
sources are located for the current source, the sample and the differential amplifier. Zg is the output impedance
of the current source, R¢y is the current contact resistance (for simplicity, R¢y is the sum of then current contact
resistance of the two probes Ip and I;), Ry is the film resistance, Rcy is the voltage contact resistance (Rey is the
sum of the voltage contact resistance of the two probes Vp and Vy), i,s is the current source noise, eyrcy is the
current contact resistance noise, e,ry 18 the film noise, e,rcy is the voltage contact resistance noise and e,y is the
differential amplifier noise of spectral density.

According to [11], the DC current source is quasi-ideal, i.e. its output impedance is infinite and its
noise contribution is negligible. It is also assumed that the input impedance of the instrumentation
amplifier is very high so that no DC current flows in its inputs. It will be also considered that the noise
contribution of the amplifier is known and can be subtracted from the measured noise when a device is
connected at its input. The noise of the measurement set-up is deduced from the measurement
performed at zero bias. This set-up contribution is then removed from all the measured data with
applied bias current.

Fig. 6 shows the noise spectral density measured in the two probes (Svi,) and the four probe
configurations (Svsp) for the same DC current I. Two noise contributions were found: a white noise
one and a 1/f noise one. The white noise level is clearly due the thermal noise contribution given by
4kgTR (kg is the Boltzmann constant equal to 1.38 x 102 ] -K'l) and should not depend on the bias
current. The white noise level is consistent with the expected value deduced from the DC measurement
of the sample resistance thus validating the thermal origin of the white noise. One should notice that
thermal noise of the voltage contact should have to be taken into account but for simplicity, this
contribution as well as the amplifier noise will be neglected in the following: optimal sensor
geometries (especially for the voltage contact) and optimized read-out electronic may easily be used to
fulfil this requirement indeed.

Different noise contributions that both generate white noise and 1/f noise have to be considered in the
sensor: the voltage contact noise, the current contact noise and the film noise (as shown in Fig. 5).
Details can be found in [12]. It can be shown that in the two probe configuration, both film and current
contact noise contributions are measured. In the four probe configuration, due to the high output
impedance of the DC current source, the current contact noise contribution can be completely
eliminated. Since no DC current flows into the voltage contact, one would assume that no 1/f noise
exists for the voltage contact sources. As shown in Fig. 6, in the four probe configuration (i.e. when
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the amplifier is connected to the VP, VM pads), the measured spectral density Sysp is the sample noise
spectral density without any correction whereas in the two probe configuration (when the amplifier is
connecter to the IP and IM pads), the measured spectral density Syp is the sum of the current contact
noise and the sample noise spectral densities.

The contact contribution originates from the contact between gold and LSMO and thus presents a great
impact for sensor applications. Fig. 6 also shows that for this sample, the current contact contribution
is much higher than the film noise. This result has already been reported by other studies [13]. It can
lead to an overestimation of the film noise if the current source used for the measurement does not
exhibit large output impedance.

LSMO, W=50 um, L=300 pm, thickness=100 nm, T=300 K, 1=133 pA
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Fig. 6. Noise spectral densities in the two probes (Svzp) and the four probe (Svsp) configurations for the same
DC bias current. Using the mask shown in Fig. 4, the current contact noise is non negligible and may have a
great impact on sensor performances in the two probe configuration was used.

3.2. Results

Preliminary results presented in Fig. 6 showed that the sensor can not be used in a two contact
configuration. A four probe configuration must be used to ensure best signal to noise ratio. Moreover,
the metallic pads used for the voltage contacts have also to be placed in a correct manner in order to
avoid any possible current path through this metallic contact. As a consequence, metallic voltage pads
should not be placed onto the line (like in Transmission Line Measurement (TLM) patterns for
instance) but on the side of the line in order to achieve a low frequency noise level sensor.

In these conditions, Fig. 7 shows the voltage noise spectral density measured for a typical device
(W=50 um and L=300 um) in four probe configuration for different values of the bias current I in the
device. As expected, the white noise level does not depend on the bias current but the 1/f noise
increases with bias current.
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Fig. 7. Noise spectral density measured in the four probe configuration at different bias currents. White noise
does not depend on the bias point on the contrary to 1/f noise.

Following the geometrical behaviour reported in homogeneous sample, the 1/f noise level at 1 Hz is in
the inverse ratio of the device volume W X L x t [14]. A deviation from this relation can be explained
by non homogeneous sample. Finally, the noise spectral density of the sample in the four probe
configuration Sy4p(f) can be written as follow:

Kl/f XV2+4XkBXTXpXL

S f)=——"—
vap (D) fxWxLxt W xt

(1)

where p is the film electrical resistivity (typical value is in the 2-4 mQ-cm for LSMO at 300 K) and
Ky 1s a material characteristic independent of the geometry that quantify the value of the K, noise
level. In this sample, K;ris found around 1 x 10°° m®. As reported in [8], this K value is among the
lowest reported values for LSMO samples and is comparable with values reported for integrated
silicon resistances.

Fig. 8 shows the noise spectral density at 1 Hz versus the sample voltage. In this log-log graph a slope
equal to 2 was found, as expected from equation (1) for a quadratic dependence of the noise spectral
density Sysp with the sample voltage V. This verified quadratic dependence is an indication that the
sample and the noise sources are homogeneous. Equation (1) also clearly shows that length and bias
dependency of the noise are completely different in the low frequency and white noise ranges. These
discussions will be extended in the next section in the framework of sensor performance analysis.

4. Sensor Performances

In this section, the performances in terms of signal-to-noise ratio will be presented and discussed in the
case of thermometers and magnetoresistance sensors.
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Fig. 8. Noise spectral density at 1 Hz versus the sample voltage.

4.1. Background

To use the devices as sensors, a current source is connected and the voltage across the sensor is
measured. A four probe configuration will be used to avoid the current contact noise contribution.
Either the temperature T or the magnetic field poH are the measurand. For these theoretical derivations,
the measurand will be noted M and the relative sensitivity By, defined in the following equation, will
be used:

S
MTR My @)

where M, is the DC value of the measurand for which the relative sensitivity is estimated. The
equivalent input sensor noise Sy(f) is given by the ratio of the voltage noise spectral density of the
sensor Sv(f) (given by Svap(f) in the case of our LSMO samples in the previous sample) over the
square of the voltage sensitivity at My given by (dV/dM =V x By). Using equation (1), it follows that
Sm(f) finally writes:

Sm(f) =

Sy() 1( K| ¢ +4kaxTxprj G

(Av/dM)? B3\ FxWxLxt  v2xtxw

In order to obtain the smallest noise sensor, this equation shows that in addition to large sensitivity

values, low value of the 1/f noise parameter K, and low value of the electrical resistivity are first

required. Two geometrical and bias dependencies can then be distinguished:

* in the low frequency part where 1/f noise dominates, the equivalent input sensor noise does not
depend on the bias and the sample should have the largest volume W x L X t;

* in the white noise range of frequencies, the equivalent input sensor noise decreases with the square of
the bias voltage. The geometry should have the smallest ratio value L/W and the sensor should also
be as thick as possible.
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All these considerations obviously do not take into account other constraints such as frequency
bandwidth or cost, which usually leads to opposite conclusions in term of device volume or size. The
above noise analysis is illustrated in the next sections for LSMO thermometers and LSMO
magnetoresistance sensors (L=300 um, W=150 pum) considering 1/f noise.

4.2. Thermometers

LSMO electrical resistivity p and relative temperature sensitivity Br (also called TCR for Temperature
Coefficient of the Resistance) in case of thermometers versus temperature T are shown in Fig. 9. In
this kind of material, a transition from metallic to insulator behaviour occurs for temperature close to
room temperature as already reported [15]. In this sample, the maximum value of Br is found for
temperature close to 330 K, and is reported in Table 1.

Table 1. Typical electrical characteristics and noise properties of the film used for the estimation of the signal-
to-noise ratio. The values are given for a device length and width of 300 pm and 50 pm, respectively.

Parameter Value
Ky(m’) at 300 K 1x107
p (- m) at 300 K and at 330 K 3.5x107° (300K), 6.3x107 (330K)
Brmax at 330 K (K™ 2.7 %107
Brmax at 300 K (T ~1

Temperature (°C)
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Fig. 9. LSMO electrical resistivity p (square symbols, left axis) and relative temperature sensitivity Br (circle
symbols, right axis) versus temperature T in the 300-380 K range for a line with W=50 um and L=300 pum. The
maximum sensitivity is found around 330 K where pr=2.7 x 102 K.

4.3. Magnetoresistance Sensors

LSMO electrical resistance and relative magnetic field sensitivity By as a function of the magnetic
field poH are shown in Fig. 10. Due to the ferromagnetic behaviour of LSMO at room temperature, a
magnetoresistance effect is observed. Two kinds of effect can be distinguished:
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1) a Colossal MagnetoResistance effect (CMR) for magnetic field values greater than 2 mT [16-18],
and i1) a low field magnetoresistance effect for magnetic field values close to 0.5 mT.

The first one leads to a small sensitivity with no interesting sensor applications. The second one is
related to the magnetization reversal [18-20]. It gives two peaks in the R versus poH characteristic and

a relatively high value of the relative magnetic field sensitivity (absolute typical values around 1 T
for an operation point around 1 mT) at room temperature (Table 1).

W=50 pm L= 300 um ; y H parallel to the current path
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Fig. 10. LSMO electrical resistance R (square symbols, left axis) and relative magnetic field sensitivity By
(circle symbols, right axis) as a function of the magnetic field p,yH at room temperature for a line with W=50 pm
and L=300 um. Magnetic field is parallel to the current direction. Sensitivity maxima observed at low magnetic

field are related to the magnetization reversal in the film.

4.4. Discussion

In this discussion, it will be assumed that the thermometer or the magnetoresistance is connected in
four probe configuration and that the device geometry leads to the smallest value of 1/f noise. The
noise performances in terms of equivalent input sensor noise values of DC current will be calculated
with the data in Table 2 for three values of the DC current I = 100 pA, I =1 mA and I = 5 mA.

Table 2 summarizes the results for a 150 um wide and 300 um long thermometer or magnetoresistance
at optimal operating point (330 K for the thermometer, 300 K and 0.1 mT for the magnetoresistance).
In this table, the equivalent input sensor noise has been calculated at two frequencies (30 Hz and
10 kHz) to distinguish between the low frequency domain where 1/f noise dominates and the white
noise domain.

The equivalent input sensor spectral densities Sp(f) (also called NET for Noise Equivalent
Temperature) and Sy(f) calculated using equation 3 and data from table 1 are shown in Fig. 11. As
expected, the spectral density at low frequency does not depend on the bias when 1/f noise dominates.
On the contrary, at high frequency, the noise level is directly related to the applied bias current. From
this figure, it appears that ultimate performances can be achieved at highest current. This remark has
obviously to be moderated by the fact that self heating effects occur for too high current values so that
the noise performances will be discussed in the following for a bias current limited to 100 pA. At low
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bias current, the 1/f noise contribution is negligible. In this LSMO sample, due to the low value of the
1/f noise level, the noise spectral density mainly consists in white noise even at a bias current of about

300 pA.

Table 2. Sensor performances for a 150 um wide 300 pm long line at different bias current I.

(*) R=700 Q at 300 K, (**) R =1260 Q at 330 K).

Bias current I (mA) 0.1 1 5
dv .
at 300 K (mV/T) (*) 45.5 455 2275
d(noH)
Sy (f) at 300 K (nT-HZz*?)
f=30Hz 78 8.6 4.4
f=10 kHz 75 7.5 1
dv 3.4 34 170
—— at 330 K (mV/K) (**)
dT
NSt (f) at 330 K (nK-Hz ")
f=30Hz 1400 170 100
f=10kHz 1400 140 30

The reported NET values are lower (at least one magnitude order) than the one of other uncooled
thermometers such as amorphous semiconductors, vanadium oxides, etc. or the well-known Pt100
thermometer [8, 9]. This can easily be explained by the lower noise level of epitaxial manganites thin
films compared to others. The results show that despite a quite small TCR value and thanks to a very
low-noise level, LSMO thin films are real potential material for uncooled thermometry, as concluded
previously by Lisauskas et al. for another manganite composition, namely La ¢ 7(Pb;«xSrx)o3sMnO; [21].

—¥— | =100 pA
+—1=1mA
I=5mA

SpinKHz "2 at330K Sy in THz "2 at 300K

——1=100 pA
—Il=1mA
I=5mA

,10..

100

1k 10k

Frequency (Hz)

100k

Fig. 11. Square root of the estimated equivalent input sensor spectral densities St(f) (filled symbols) or Sy(f)
(open symbols) using equation (3) and the table 1 data for three values of the DC current I for a 150 um width
and 300 pm length sensor.
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According to [22] where equivalent input sensor spectral densities Sy(f) have been compared for
various kinds of magnetic sensors, this LSMO magnetoresistance noise performances are better than
Hall effect sensors. Equivalent input sensor spectral densities are only one order of magnitude higher
than commercial Honeywell HMC1001 sensors [22-24]. These results are promising since the mask
used was not optimized for sensor applications so that the sensitivity could be increased by changing
the substrate type or the line geometry. Moreover, it has been demonstrated that LSMO can be
deposited onto silicon substrate [25] without modifications of the magnetic properties: compatibility
with the standard semiconductor used in the microelectronic industry has thus been demonstrated. This
is another way to extend to "More than Moore” idea proposed by the International Roadmap for
Semiconductor by the integration of manganese oxide.

5. Conclusion

In this paper, the potentialities of LSMO thin films as magnetic and temperature sensors at room
temperature have been reported. It has been shown that a four probe configuration is required to
remove the current contact noise that is often several orders of magnitude higher than the material
noise. In such conditions, the performances of the room thermometers are in the state of the art for
thermometers and that magnetoresistance exhibits noise performances one decade better than classical
hall effect sensors.
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