Kaniasu, Eugenius, Vienna University of Technology, Austria
Katake, Anup, Texas A&M University, USA
Kausel, Wilfried, University of Music, Vienna, Austria
Kavasseri, Neev, Mergus University, Pune, India
Ke, Cathy, Tyndall National Institute, Ireland
Khan, Asif, Aligarh Muslim University, Aligarh, India
Kim, Min Young, Koh Young Technology, Inc., Korea South
Ko, Sang Choon, Electronics and Telecommunications Research Institute, Korea South
Kockar, Hakan, Balikesir University, Turkey
Kotulska, Malgorzata, Wroclaw University of Technology, Poland
Kratz, Henrik, Uppsala University, Sweden
Kumar, Arun, University of South Florida, USA
Kumar, Subodh, National Physical Laboratory, India
Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan
Lacnjevac, Caslav, University of Belgrade, Serbia
Laufer, Laurent, IMEC, Belgium
Lay-Ekuakille, Aime, University of Lecce, Italy
Lee, Jang Myung, Pusan National University, Korea South
Li, Genxu, Nanjing University, China
Li, Hui, Shanghai Jiaotong University, China
Li, Xin-Fang, Central South University of Technology, China
Liang, Yuanchang, Southeast University, China
Liu Changgeng, University of Minho, Portugal
Ma, Zhanfang, City University of Hong Kong, Hong Kong
Main, Benjamin, City University of London, UK
Majstorovic, Vidosev, University of Belgrade, Serbia
Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico
Matay, Ladislav, Slovak Academy of Sciences, Slovakia
Maurer, Raffael, City University of Hong Kong, Hong Kong
Maurya, D.K., Institute of Materials Research and Engineering, Singapore
Mekid, Samir, University of Manchester, UK
Mendes, Paulo, University of Minho, Portugal
Mirem, Julie, Northumbria University, UK
M lead, Bin, Boston Scientific Corporation, USA
Mi, Zhi, University of Michigan, USA
Moghavemni, Mahmoud, University of Malaya, Malaysia
Mohammadizadeh, Mohamad-Reza, University of Cambridge, UK
Molina Flores, Esteban, Benemerita Universidad Autonoma de Puebla, Mexico
Moradi, Majid, University of Kerman, Iran
Morello, Rosario, DIMET, University "Mediterranea" of Reggio Calabria, Italy
Mounir, Ben Ali, University of Mohammed V, Rabat, Morocco
Mukhopadhyay, Subhas, Massey University, New Zealand
Nelander, Paul, Sam Houston State University, USA
Neshkovska, Milaka, Bulgarian Academy of Sciences, Bulgaria
Oberhammer, Joachim, Royal Institute of Technology, Sweden
Ould Lahoucine, University of Guelma, Algeria
Pamidiganta, Sayanu, Bharat Electronics Limited (BEL), India
Pan, Jisheng, Institute of Materials Research & Engineering, Singapore
Park, Joon-Shik, Korea Electronics Technology Institute, Korea South
Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal
Petcov, Dimitor, University of New Mexico, USA
Pogacnik, Lea, University of Ljubljana, Slovenia
Post, Michael, National Research Council Canada
Prance, Robert, University of Sussex, UK
Prasad, Ambika, Gulbarga University, India
Prateepasen, Asa, Kingmongkut's University of Technology, Thailand
Pullini, Daniele, Centro Ricerche FIAT, Italy
Pumera, Martin, National Institute for Materials Science, Japan
Radhakishore, X, National Chemical Laboratory, Pune, India
Rajanna, K., Indian Institute of Science, India
Ramadan, Qasem, Institute of Microelectronics, Singapore
Rao, Basutkhar, Tata Inst. of Fundamental Research, India
Reig, Candid, University of Valencia, Spain
Rellervi, Maria Teresa, University of Porto, Portugal
Rezazadeh, Ghufr, Urmia University, Iran
Robert, Michel, University Henri Poincare, France
Rodriguez, Angel, Universidad Politica de Catalunya, Spain
Rothberg, Steven, Loughborough University, UK
Royo, Santiago, Universitat Politica de Catalunya, Spain
Sadana, Ajit, University of Mississippi, USA
Sandacci, Sergio, Sensor Technology Ltd., UK
Sapozhnikova, Ksenia, D.I. Mendeleyev Institute for Metrology, Russia
Saxena, Vibha, Bhbba Atomic Research Centre, Mumbai, India
Schneider, John K., Ultra-Scan Corporation, USA
Seale, Selemena, Alabana & M K University, USA
Seiler, Achim, Los Alamos National Laboratory, USA
Shearwood, Christopher, Nanyang Technological University, Singapore
Shin, Kyuho, Samsung Advanced Institute of Technology, Korea
Shmaliy, Yuriy, Kharkiv National University of Radio Electronics, Ukraine
Silva Girao, Pedro, Technical University of Lisbon Portugal
Slomovitz, Daniel, UTE, Uruguay
Smith, Martin, Open University, UK
Soylemanpour, Ahmad, Danghuan Basic Science University, Iran
Somani, Prakash R., Centre for Materials for Electronics Technology, India
Srinivas, Talabattula, Indian Institute of Science, Bangalore, India
Srivastava, Arvind K., Northwestern University
Stefan-van Staden, Raleuca Ioana, University of Pretoria, South Africa
Summertime, Saeed, National Electronics and Computer Technology Center, Thailand
Sun, Chengliang, Polytechnic University, Hong Kong
Sun, Dongming, Jilin University, China
Sun, Junhua, Beijing University of Aeronautics and Astronautics, China
Sun, Zhiqiang, Central South University, China
Suri, C. Raman, Institute of Microbial Technology, India
Sysoev, Victor, Saratov State Technical University, Russia
Szewczyk, Roman, Industrial Research Institute for Automation and Measurement, Poland
Tan, Ooi Kiang, Nanyang Technological University, Singapore
Tang, Dianqing, Southwest Normal University, China
Tang, Jaw-Luen, National Chung Cheng University, Taiwan
Thumbavanan Pad, Kartik, Carnegie Mellon University, USA
Tiansong, Vassilios, Technological Educational Institute of Kaval, Greece
Tigara, Anna, National Hellenic Research Foundation, Greece
Tiwari, Prafull, National Physical Laboratory, India
Valente, Antonio, University, Vila Real, - U.T.A.D., Portugal
Vaschaxa, Ashok, Marshall University, USA
Vazques, Carmen, Carlos III University in Madrid, Spain
Veizra, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal
Vigna, Benedetto, STMic elec?ronics, Italy
Vrb, Radimir, Beno University of Technology, Czech Republic
Wandelt, Barbara, Technical University of Lodz, Poland
Wang, Jianqiang, Xi'an Shiyou University, China
Wang, Kedong, Beihang University, China
Wang, Liang, Advanced Micro Devices, USA
Wang, Mi, University of Leeds, UK
Wang, Shinn-Fwu, Ching Yun University, Taiwan
Wang, Wei-Chih, University of Washington, USA
Wang, Wensheng, University of Pennsylvania, USA
Watson, Steven, Center for NanoSpace Technologies Inc., USA
Weiping, Yan, Dalin University of Technology, China
Wells, Stephen, Southern Company Services, USA
Wolkenberg, Andrej, Institute of Electron Technology, Poland
Woods, R. Clive, Louisiana State University, USA
Wu, DerHo, National Pingtung University of Science and Technology, Taiwan
Wu, Zhuoyang, Hunan University, China
Xu, Lantao, University of California, Irvine, USA
Yang, Dongfang, National Research Council, Canada
Yang, Wufeng, The University of Manchester, UK
Yemet, Aurel, University of Twente, Netherlands
Yu, Haihu, Wuhan University of Technology, China
Yufera Garcia, Alberto, Seville University, Spain
Zagroni, Michele, University of Southampton, UK
Zeni, Luigi, Second University of Naples, Italy
Zhong, Haxiang, Henan Normal University, China
Zhao, Minglong, Shanghai University, China
Zhong, Qiutao, University of California at Berkeley, USA
Zhong, Weiping, Shanghai Jiao Tong University, China
Zhou, Zhi-Gang, Tsinghua University, China
Zorzan, Luis, Universidad de La Rioja, Spain
Zourob, Mohammed, University of Cambridge, UK
Research Articles

Standardized Interconnectivity of Sensors for Construction Machines via CAN Bus with the Higher-Layer Protocol CANopen
Christian Dressler ... 1143

An Analysis of Sawtooth Noise in the Timing SynPaQ III GPS Sensor
Yuriy S. Shmaliy, Oscar Ibarra-Manzano, Luis Arceo-Miquel, Jorge Munoz-Diaz 1151

Cross-Talk Compensation Using Matrix Methods
David Schrand .. 1157

Model Based Evaluation of a Controller Using Flow Sensor for Conductivity Process
P. Madhavasarma, S. Sundaram .. 1164

Investigation of Pull-in Phenomenon on a Extensible Micro Beam Subjected to Electrostatic Pressure
Ghader Rezazadeh, Hamed Sadeghian, Isa Hosseinzadeh, Alireza Toloei 1173

SnO2/PPy Screen-Printed Multilayer CO2 Gas Sensor
S. A. Waghuley, S. M. Yenorkar, S. S. Yawale and S. P. Yawale .. 1180

Characterization of Modified Rosen-Type Piezoelectric Transformers as a Function of Load Resistance
Selemani Seif ... 1186

Lactate Biosensor Based on Cellulose Acetate Membrane Bound Lactate Oxidase
Suman and C. S. Pundir .. 1192

A Novel Noninvasive Sensing Approach of Assessment of Pelt Quality

Sol-gel processed Titania films on a Prism substrate as an Optical Moisture Sensor
B. C. Yadav ... 1217
Cross-Talk Compensation Using Matrix Methods

David SCHRAND,
Sensor Developments Inc., 1050 W. Silver Bell Rd, Orion, MI, USA
Tel: 1-248-391-3000, fax: 1-248-391-0107
Sales@sendev.com, http://www.sendev.com

Received: 27 March 2007 /Accepted: 11 May 2007 /Published: 31 May 2007

Abstract: This article reviews the method to correct for cross talk effects created when using multi-axis load cells. In actual use, these calculations can be set up to be done in real time by the data acquisition or control system, or can be done by post processing the data after the test is complete by using a spread sheet program. This technique will typically reduce the cross talk to less that 0.5% of the full scale capacities of the sensor. Copyright © 2007 IFSA.

Keywords: Cross talk, Matrix compensation, Multi-axis load cell, Multi-axis

1. Introduction

Force sensors are designed to measure forces and torques along defined axes (ref Figure 1), typically labeled X, Y and Z. These force sensors can have from one to six measurement channels; three force channels (Fx, Fy and Fz) and three torque or moment channels (Mx, My and Mz). In theory, a load along any one of those measurement axes will not produce an output on any of the other measurement channels. Unfortunately, this is seldom the case in the real world. For most force sensors, this undesired output, or cross talk, will be between 1 and 5%. While 1% - 5% cross talk may not sound like much, if each channel has 1% - 5% cross talk due to each of the remaining five loads, then the total cross talk could be as high as 5% - 25%.
There are basically two methods used to reduce this potential source of measurement error. With the first method, the load-cell is ‘tuned’, either mechanically or electrically to reduce the channels output due to off-axis or extraneous loads. While effective, this method is time consuming and is not practical if more than two extraneous loads need to be compensated for. The other method of cross-talk compensation involves mathematically manipulating the load-cells output data to correct the cross-talk outputs. It is effective for any number of extraneous loads, and can be characterized as mathematical cross-talk compensation by the application of “cross coupling coefficients”, or the inverse matrix method. This is the method that will be discussed here.

When a load is applied to a force sensor, the measurement channel that lines up with that load will respond. However, as described earlier, other measurement channels that are not in line with that applied load will also respond to that load. That’s the bad news. The good news is that that response is repeatable for any given load or combination of loads. This means that by carefully applying these extraneous loads during the calibration process, and recording each channels output response to those loads, an output profile of the sensor can be created. From here, a series of simultaneous equations can be created to describe the cross talk performance of the force sensor. By solving this series of equations using any set of simultaneous data from all the channels of the sensor, the true loading condition that produced that unique set of data can be determined. The drawback to this method is that a sensor channel is required for each extraneous load that is present during loading. This usually isn’t a problem, since in most instances, a measurement channel is present to monitor all the significant loads present in the application.

In application, a six axis sensor, with three force channels and three torque channels, will be calibrated by applying a known load in line with one of those measurement axis, and recording the output from the corresponding channel. This gives rise to the first transfer function for the sensor. That is, the channel output, O, is equal to the sensitivity (mV/V per unit load), K, times the applied load, F, or (1):

$$O_{Fx} = K_1 \cdot F_x$$

At the same time, the output from the other five channels will be recorded as cross talk outputs. Now the transfer functions for the sensor begin to take shape (2).

$$O_{Fx} = K_1 \cdot F_x$$
$$O_{Fy} = K_7 \cdot F_x$$
$$O_{Fz} = K_{13} \cdot F_x$$
$$O_{Mx} = K_{19} \cdot F_x$$
$$O_{My} = K_{25} \cdot F_x$$
$$O_{Mz} = K_{31} \cdot F_x$$

(2)
From this set of equations, the transfer functions \((K_1, K_7, \text{etc}) \), can be determined for each axis by dividing the sensors output by the applied load.

This same procedure will be used to calibrate the remaining five axes of the sensor, providing the remaining transfer functions \((3) \). Using the theory of superposition, they can be combined to yield the output equations that fully describe the output of the sensor to all the applied loads.

\[
\begin{align*}
O_{Fx} &= K_1 \cdot F_x + K_2 \cdot F_y + K_3 \cdot F_z + K_4 \cdot M_x + K_5 \cdot M_y + K_6 \cdot M_z \\
O_{Fy} &= K_7 \cdot F_x + K_8 \cdot F_y + K_9 \cdot F_z + K_{10} \cdot M_x + K_{11} \cdot M_y + K_{12} \cdot M_z \\
O_{Fz} &= K_{13} \cdot F_x + K_{14} \cdot F_y + K_{15} \cdot F_z + K_{16} \cdot M_x + K_{17} \cdot M_y + K_{18} \cdot M_z \\
O_{Mx} &= K_{19} \cdot F_x + K_{20} \cdot F_y + K_{21} \cdot F_z + K_{22} \cdot M_x + K_{23} \cdot M_y + K_{24} \cdot M_z \\
O_{My} &= K_{25} \cdot F_x + K_{26} \cdot F_y + K_{27} \cdot F_z + K_{28} \cdot M_x + K_{29} \cdot M_y + K_{30} \cdot M_z \\
O_{Mz} &= K_{31} \cdot F_x + K_{32} \cdot F_y + K_{33} \cdot F_z + K_{34} \cdot M_x + K_{35} \cdot M_y + K_{36} \cdot M_z
\end{align*}
\]

These equations describe the output of the sensor in terms of the applied loads. However, in application, the loads are the unknowns, and the outputs are the known measured quantities. With these six equations and their six unknowns (the loads \(F_x-z \) and \(M_x-z \)), it will be possible to solve for the unknown loads.

2. Inverse Matrix Method

The series of equations described above can be solved by using what is called the inverse matrix method. A brief overview of the theory behind this technique is given in Appendix A, ‘Inverse Matrix Theory’. In essence, it is a technique that ‘inverts’ the equations so that instead of having the output as a function of the loads as described above, the loads are now functions of the outputs.

Finding the inverse matrix used to correct or compensate a sensors output due to cross talk errors, involves gathering calibration data on the sensors response to extraneous loads, and using it to construct a matrix that can be used to find the sensors true loading condition. A multi-axis sensor that has undergone a thorough calibration will already have such a cross talk matrix supplied with the calibration data. More information on the steps involved in creating this matrix is presented in Appendix B, ‘Finding the Inverse Matrix’.

This may all seem confusing, but it is a very simple way to handle a very complex problem. For example, we have a sensor that is ‘less than perfect’. We do however have the cross talk matrix that was supplied with the sensor, as listed below \((4) \).

\[
K^{-1} = \begin{bmatrix}
2.5465 & -0.0338 & 0.0575 & -0.0122 & -0.1517 & 0.0359 \\
0.0763 & 2.4399 & -0.0336 & -0.0392 & 0.0482 & 0.0428 \\
-0.0489 & 0.0976 & 2.3759 & -0.0620 & 0.0210 & -0.0512 \\
-0.0666 & -0.0819 & -0.1331 & 5.5723 & -0.1013 & 0.1528 \\
-0.0255 & -0.0485 & 0.1957 & -0.1432 & 4.9941 & -0.0089 \\
0.1941 & -0.0279 & -0.1180 & -0.0969 & 0.1386 & 5.5279 \\
\end{bmatrix}
\]

With this inverse matrix the loads that produced any set of simultaneous data from the sensor can be calculated. We start with the inverse matrix, \(K^{-1} \), and the equation \((5) \):

\[
X = K^{-1} \cdot O
\]

Or, in long hand \((6) \):
At a particular point in time, we obtain the following readings from our sensor (Table 1):

<table>
<thead>
<tr>
<th></th>
<th>Ox</th>
<th>Oy</th>
<th>Oz</th>
<th>Ox</th>
<th>Oy</th>
<th>Oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fx</td>
<td>2.5465</td>
<td>-0.0338</td>
<td>0.0575</td>
<td>-0.0122</td>
<td>-0.1517</td>
<td>0.0359</td>
</tr>
<tr>
<td>Fy</td>
<td>0.0763</td>
<td>2.4399</td>
<td>-0.0336</td>
<td>-0.0392</td>
<td>0.0482</td>
<td>0.0428</td>
</tr>
<tr>
<td>Fz</td>
<td>-0.0489</td>
<td>0.0976</td>
<td>2.3759</td>
<td>-0.0620</td>
<td>0.0210</td>
<td>-0.0512</td>
</tr>
<tr>
<td>Mx</td>
<td>-0.0666</td>
<td>-0.0819</td>
<td>-0.1331</td>
<td>5.5723</td>
<td>-0.1013</td>
<td>0.1528</td>
</tr>
<tr>
<td>My</td>
<td>-0.0255</td>
<td>-0.0485</td>
<td>0.1957</td>
<td>-0.1432</td>
<td>4.9941</td>
<td>-0.0089</td>
</tr>
<tr>
<td>Mz</td>
<td>0.1941</td>
<td>-0.0279</td>
<td>-0.1180</td>
<td>-0.0969</td>
<td>0.1386</td>
<td>5.5279</td>
</tr>
</tbody>
</table>

Table 1.

\[
\begin{align*}
O_{Fx} &= -1.6510 \text{ mV/V} \\
O_{Fy} &= 0.6151 \text{ mV/V} \\
O_{Fz} &= 0.2501 \text{ mV/V} \\
\end{align*}
\]

To find the Fx load that must have been present to create those six outputs, we multiply the elements of the first row of the inverse matrix by the individual outputs that were recorded, and sum them (7):

\[
Fx = (2.5465 \times -1.6510) + (-0.0338 \times 0.6151) + \ldots + (0.0359 \times 0.0067) = -4.35 \text{ lb}
\]

(7)

Similarly, the remaining five loads can be calculated by carrying out the same operations on the remaining five rows of the inverse matrix (Table 2). Doing so yields the following loading conditions:

Table 2.

In actual use, these calculations can be set up to be done in real time by the data acquisition or control system, or can be done by post-processing the data after the test is complete by using a spreadsheet program. This technique will typically reduce the cross talk to less that 0.5% of the full scale capacities of the sensor.
Appendix A

Inverse Matrix Theory

For any series of ‘N’ equations, each with ‘N’ variables, taking the form (8, 9):

\[O_1 = K_1X_1 + K_2X_2 + \ldots + K_NX_N \] (8)

\[O_N = K_1X_1 + K_2X_2 + \ldots + K_NX_N \] (9)

there is a unique solution to the variables \(X_1 \) thru \(X_N \).

While this series of equations could be solved by using the substitution method from basic algebra, linear algebra’s matrix math offers a simpler method. If we put this series of equations into matrix notation (10), we have:

\[O = K \cdot X \] (10)

Where (11, 12, 13):

\[O = \begin{bmatrix} O_1 \\ \vdots \\ O_N \end{bmatrix} \] (11)

\[K = \begin{bmatrix} K_1 & \ldots & K_N \\ \vdots & \ddots & \vdots \\ K_1 & \ldots & K_N \end{bmatrix} \] (12)

\[X = \begin{bmatrix} X_1 \\ \vdots \\ X_N \end{bmatrix} \] (13)

While we all know from basic algebra that the equation \(a \cdot x = b \) can be solved for ‘x’ by multiplying both sides of the equation by the reciprocal or inverse of ‘a’ (\(1/a \) or \(a^{-1} \)), yielding the solution \(x = a^{-1} \cdot b \), the same can be said for the matrix equation above. That is, the equation (14):

\[O = K \cdot X \] (14)

can be solved for ‘X’ when multiplied by the inverse matrix \(K^{-1} \). The question now is, what is the matrix \(K^{-1} \)? \(K^{-1} \) is the inverse of the matrix ‘K’. It is not simply the matrix \(K \) with the inverse or reciprocal of all its original elements. It can be calculated by hand through a complicated series of operations on the individual rows of the matrix. Fortunately it can be done much faster with a computer. When this inverse matrix is multiplied by the solution set, here the values in the matrix ‘O’, the result is the unique solution to the variable matrix ‘X’.
Appendix B

Finding the Inverse Matrix

In order to find the inverse matrix that will be used to compensate for cross talks due to extraneous loads, the sensors response to those individual extraneous loads must be determined. For example, let’s say we have a six axis sensor with 5 lb capacities for the force channels, and 10 in.lb capacities for the moment channels. It has been calibrated by applying those loads, one at a time, and monitoring the individual sensor channels. The following data has been collected (Table 3):

<table>
<thead>
<tr>
<th>LOAD DIRECTION</th>
<th>Fx (5#)</th>
<th>Fy (5#)</th>
<th>Fz (5#)</th>
<th>Mx (10in#)</th>
<th>My (10in#)</th>
<th>Mz (10in#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fx</td>
<td>1.9633</td>
<td>0.0305</td>
<td>-0.0524</td>
<td>0.0105</td>
<td>0.1201</td>
<td>-0.0261</td>
</tr>
<tr>
<td>Fy</td>
<td>-0.0618</td>
<td>2.0473</td>
<td>0.0339</td>
<td>0.0287</td>
<td>-0.0439</td>
<td>0.0323</td>
</tr>
<tr>
<td>Fz</td>
<td>0.0421</td>
<td>-0.0828</td>
<td>2.1050</td>
<td>0.0461</td>
<td>-0.0136</td>
<td>0.0359</td>
</tr>
<tr>
<td>Mx</td>
<td>0.0256</td>
<td>0.0287</td>
<td>0.0473</td>
<td>1.7963</td>
<td>0.0384</td>
<td>-0.0486</td>
</tr>
<tr>
<td>My</td>
<td>0.0084</td>
<td>0.0241</td>
<td>-0.0810</td>
<td>0.0501</td>
<td>2.0041</td>
<td>0.0006</td>
</tr>
<tr>
<td>Mz</td>
<td>-0.0681</td>
<td>0.0074</td>
<td>0.0498</td>
<td>0.0310</td>
<td>-0.0543</td>
<td>1.8100</td>
</tr>
</tbody>
</table>

By dividing the channel output due to an extraneous load, by the full scale output for that same channel, the sensors cross talk performance can be seen (Table 4).

<table>
<thead>
<tr>
<th>LOAD DIRECTION</th>
<th>Fx</th>
<th>Fy</th>
<th>Fz</th>
<th>Mx</th>
<th>My</th>
<th>Mz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fx</td>
<td>1.55</td>
<td>-2.67</td>
<td>0.53</td>
<td>6.12</td>
<td>-1.33</td>
<td></td>
</tr>
<tr>
<td>Fy</td>
<td>-3.02</td>
<td>1.66</td>
<td>1.40</td>
<td>-2.14</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>Fz</td>
<td>2.00</td>
<td>-3.93</td>
<td>2.19</td>
<td>-0.65</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>Mx</td>
<td>1.43</td>
<td>1.60</td>
<td>2.63</td>
<td>2.14</td>
<td>-2.71</td>
<td></td>
</tr>
<tr>
<td>My</td>
<td>0.42</td>
<td>1.20</td>
<td>-4.04</td>
<td>2.50</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Mz</td>
<td>-3.76</td>
<td>0.41</td>
<td>2.75</td>
<td>1.71</td>
<td>-3.00</td>
<td></td>
</tr>
</tbody>
</table>

Here, the minimum cross talk is only 0.03% of the full scale load when an Mz load is applied to the My channel. If all the values were this good, no correction would be necessary. However, the maximum is over 6%, and the average cross talk for this sensor is around 2%. Computed cross talk compensation will definitely improve the accuracy of the data obtained from this sensor.

The data matrix, referred to as ‘K’ in Appendix A (16), is constructed by taking the cross talk data and dividing it by the applied load, to get the transfer function for that load / channel combination.
Using a computer program such as Excel, the inverse of this matrix is easily calculated using built in functions, and is shown below (17):

\[
K^{-1} = \begin{bmatrix}
2.5465 & -0.0338 & 0.0575 & -0.0122 & -0.1517 & 0.0359 \\
0.0763 & 2.4399 & -0.0336 & -0.0392 & 0.0482 & 0.0428 \\
-0.0489 & 0.0976 & 2.3759 & -0.0620 & 0.0210 & -0.0512 \\
-0.0666 & -0.0819 & -0.1331 & 5.5723 & -0.1013 & 0.1528 \\
-0.0255 & -0.0485 & 0.1957 & -0.1432 & 4.9941 & -0.0089 \\
0.1941 & -0.0279 & -0.1180 & -0.0969 & 0.1386 & 5.5279 \\
\end{bmatrix}
\] (17)

An interesting thing about matrices and their inverses is that when they are multiplied together, either as \(K \cdot K^{-1}\) or as \(K^{-1} \cdot K\), the result is what is called an identity matrix, that is, a matrix with 1’s along its diagonal, and 0’s in all the other locations, like this (18):

\[
K \cdot K^{-1} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\] (18)

Performing this operation is often done to verify the inverse matrix was correctly derived.
Aims and Scope

Sensors & Transducers Journal (ISSN 1726- 5479) provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and application specific papers, short notes, letters to Editor and sensors related books reviews as well as academic, practical and commercial information of interest to its readership. Because it is an open access, peer review international journal, papers rapidly published in *Sensors & Transducers Journal* will receive a very high publicity. The journal is published monthly as twelve issues per annual by International Frequency Association (IFSA). In additional, some special sponsored and conference issues published annually.

Topics Covered

Contributions are invited on all aspects of research, development and application of the science and technology of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- Sensors interfaces, buses and networks;
- Signal processing;
- Frequency (period, duty-cycle)-to-digital converters, ADC;
- Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Submission of papers

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 4-12 pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word (doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript are available from the journal’s webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors must follow the instructions strictly when submitting their manuscripts.

Advertising Information

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit: http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2007.PDF
Data Acquisition and Signal Processing for Smart Sensors

This book provides a good basis for anyone entering or studying the field of smart sensors not only for the inexperienced but also very useful to those with some experience.

(from IEEE Instrumentation & Measurement Magazine review)

Order online:
http://www.sensorsportal.com/HTML/BOOKSTORE/DAQ_SP.htm

www.sensorsportal.com