Editors-in-Chief: professor Sergey Y. Yurish, Tel.: +34 96067716, e-mail: editor@sensorsportal.com

Editors for Western Europe
Meijer, Gerard C.M., Delft Univ. of Technology, The Netherlands
Ferrari, Vittorio, Università di Brescia, Italy

Editor for Eastern Europe
Sachenko, Anatoly, Ternopil National Economic University, Ukraine

Editors for North America
Katz, Evgeny, Clarkson University, USA
Datskos, Panos G., Oak Ridge National Laboratory, USA
Fabien, J. Josse, Marquette University, USA

Editor for South America
Costa-Felix, Rodrigo, Inmetro, Brazil

Editors for Asia
Ohyama, Shinji, Tokyo Institute of Technology, Japan
Zhengbing, Hu, Huazhong Univ. of Science and Technol., China

Editor for Asia-Pacific
Mukhopadhyay, Subhas, Massey University, New Zealand

Editor for Africa
Maki K.Habib, American University in Cairo, Egypt

Editorial Board
Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia
Abramchuk, George, Measur. Techn. & Advanced Applications, Canada
Ascold, Giorgio, George Mason University, USA
Atalay, Selcuk, Inonu University, Turkey
Atghaee, Ahmad, University of Tehran, Iran
Anam, Vu Thuy, Kaunas University of Technology, Lithuania
Ayesh, Aladdin, De Montfort University, UK
Baliga, Shankar, University of Texas, Austin, USA
Basu, Sukumar, Jadavpur University, India
Bousbia-Salah, Mounir, University of Abha, Algeria
Bouvet, Marcel, University of Burgundy, France
Campanella, Luigi, University La Sapienza, Italy
Carvalho, Vitor, Minho University, Portugal
Changhaisu, Wu, Harbin Engineering University, China
Chen, Wei, Hefei University of Technology, China
Cheng-Li, Chiang, National Chiao-Tung University, Taiwan
Chung, Wern-Yaw, Chung Yuan Christian University, Taiwan
Cortes, Camilo A., Universidad Nacional de Colombia, Colombia
D’Amico, Arnaldo, Universita di Tor Vergata, Italy
De Stefano, Luca, Institute for Microelectronics and System, Italy
Ding, Jianjiang, Changzhou University, China
Djordjevic, Aleksandar, City University of Hong Kong, Hong Kong
Donato, Nicola, University of Messina, Italy
Dong, Feng, Tianjin University, China
Erkmen, Aydan M., De Montfort University, UK
Euramerican, Agiltron, Inc., USA
Gaura, Elena, Coventry University, UK
Gole, James, Georgia Institute of Technology, USA
Gong, Hao, National University of Singapore, Singapore
Gonzalez de la Rosa, Juan Jose, DIAM, Spain
Guillet, Bruno, University of Caen, France
Hadjiloucas, Sillas, The University of Reading, UK
Hao, Shiyong, Michigan State University, USA
Hui, David, University of New Orleans, USA
Jaffrezic-Renaud, Nicole, Claude Bernard University Lyon 1, France
Jamal, Mohammad, Qatar University, Qatar
Kaszas, Engeniusz, Vienna University of Technology, Austria
Kim, Min Young, Kyungpook National University, Korea
Kumar, Arun, University of Delaware, USA
Lay-Ekakolle, Alme, University of Lecce, Italy
Li, SL, GE Global Research Center, USA
Lin, Paul, Cleveland State University, USA
Liu, Aihua, Chinese Academy of Sciences, China
Mahadi, Muhammad, University Tun Hussein Onn Malaysia, Malaysia
Massar, Muhammad Nafiel, University Malaysia Perlis, Malaysia
Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico
Mishra, Vivekanand, National Institute of Technology, India
Moghadam, Mahmoud, University of Malaya, Malaysia
Morello, Rosario, University “Mediterranea” of Reggio Calabria, Italy
Mulla, Imtiaz Sirajuddin, National Chemical Laboratory, Pune, India
Nakov, Aleksey, Sheffield Hallam University, UK
Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria
Passaro, Vittorio M. N., Politecnico di Bari, Italy
Penza, Michele, ENEA, Italy
Pereira, Jose Miguel, Instituto Politecnico de Setubal, Portugal
Pogacek, Lea, University of Ljubljana, Slovenia
Pullini, Daniele, Centro Ricerca IFAT, Italy
Reig, Candid, University of Valencia, Spain
Resitio, Maria Teresa, University of Porto, Portugal
Rodriguez Martinez, Angel, Universidad Politecnica de Catalunya, Spain
Sadana, Ajiit, University of Mississippi, USA
Sadeghian Marnani, Hamed, TU Delft, The Netherlands
Sapozhnikova, Ksenia, D. I. Mendeleefy Institute for Metrology, Russia
Singhal, Subodh Kumar, National Physical Laboratory, India
Shah, Kriyang, University of Texas, Austin, USA
Shi, Wendi, California Institute of Technology, USA
Shtamly, Yury, Guanajuato University, Mexico
Song, Xu, An Yang Normal University, China
Srivastava, Arvind K., LightField, Corp, USA
Stefanescu, Dan Mihai, Romanian Measurement Society, Romania
Sumridetdekajorn, Sarun, Nat. Electr. & Comp. Tech. Center, Thailand
Sun, Zhiqiang, Central South University, China
Sysoev, Victor, Saratov State Technical University, Russia
Thirunavukkarasu, I., Manipal University Karnataka, India
Thomas, Sadiq, Heriot Watt University, Edinburgh, UK
Tianxing, Chu, Research Center for Surveying & Mapping, Beijing, China
Vazquez, Carmen, Universidad Carlos III Madrid, Spain
Wang, Jiangping, National Research Council, Canada
Wu, Qing, National Research Council, Canada
Yang, Dongfang, National Research Council, Canada
Yang, Shuang-Hua, Loughborough University, UK
Yaping Dan, Harvard University, USA
Zakaria, Zuikarnay, University Malaysia Perlis, Malaysia
Zhang, Weiping, Shanghai Jiao Tong University, China
Zhang, Wanning, Shanghai Jiao Tong University, China

Sensors & Transducers Journal (ISSN 2306-8515) is a peer review international journal published monthly online by International Frequency Sensor Association (IFSA). Available in both: print and electronic (printable pdf) formats. Copyright © 2013 by International Frequency Sensor Association.
Contents

Research Articles

Research on the Structure and Signal Transmission of Rotary Piezoelectric Dynamometer
Zhenyuan Jia, Yongyan Shang, Zongjin Ren, Yifei Gao and Shengnan Gao......................... 1

Piezoelectric Sensor of Control Surface Hinge Moment
Zongjin Ren, Shengnan Gao, Zhenyuan Jia, Yongyan Shang and Yifei Gao....................... 11

Research Algorithm on Building Intelligent Transportation System based on RFID Technology
Chuanqi Chen ... 18

Using Displacement Sensor to Determine the Fracture Toughness of PMMA Bone Cement
Yongzhi Xu, Youzhi Wang ... 27

Study on the Applications of Fiber Bragg Grating and Wireless Network Technologies in Telemetry System of Atmospheric Precipitation
Han Bing, Tan Dongjie, Li Liangliang, Liu Jianping .. 33

Lü Tao, Zhu Qing-Xin, Zhu Yu-Yu .. 41

A Case Study of Event Detection Performance Measure in WSNs Using Gini Index
Luhutyit Peter Damuut, Dongbing Gu ... 51

Fault Diagnosis of Tool Wear Based on Weak Feature Extraction and GA-B-spline Network
Weiqing Cao, Pan Fu, Genhou Xu .. 60

The Research Abort Concept Restructuring of the Sensor Semantic Networks
Guanwei .. 68

Coordinating Reasoning Method for Semantic Sensor Networks
Shi Yun Ping ... 76

A Novel Intelligent Transportation Control Supported by Wireless Sensor Network
Zhe Qian, Jianqi Liu ... 84

Research on the Special Railway Intelligence Transportation Hierarchy and System Integration Methodology
Meng-Jie Wang, Xi-Fu Wang, Wen-Ying Zhang, Xue Feng .. 89

Application of a Heterogeneous Wireless Framework for Radiation Monitoring in Nuclear Power Plant
Gu Danying ... 98
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic Emission Signal Analysis of Aluminum Alloy Fatigue Crack</td>
<td>105</td>
</tr>
<tr>
<td>Wenxue Qian, Xiaowei Yin, Liyang Xie</td>
<td></td>
</tr>
<tr>
<td>A New Ultra-lightweight Authentication Protocol for Low Cost RFID Tags</td>
<td>110</td>
</tr>
<tr>
<td>Xin Wang, Qingxuan Jia, Xin Gao, Peng Chen, Bing Zhao</td>
<td></td>
</tr>
<tr>
<td>AGC Design in Frequency Modulation System for Voice Communication</td>
<td>116</td>
</tr>
<tr>
<td>via Underwater Acoustic Channel</td>
<td></td>
</tr>
<tr>
<td>Cheng En, Chen Sheng-Li, Li Ye, Ke Fu-Yuan, Yuan Fei</td>
<td></td>
</tr>
<tr>
<td>Joint Source-Channel Coding for Underwater Image Transmission</td>
<td>122</td>
</tr>
<tr>
<td>Chen Hua-Bin, Chen Wei-Ling, Li Ye, Cheng En, Yuan Fei</td>
<td></td>
</tr>
<tr>
<td>Study on the Applications of Cross-Layer Information Fusion in Target Recognition</td>
<td>129</td>
</tr>
<tr>
<td>Xing Liu, Shoushan Jiang</td>
<td></td>
</tr>
<tr>
<td>A Simple Tree Detector Using Laser and Camera Fusion</td>
<td>137</td>
</tr>
<tr>
<td>D. Wang, J. H. Liu, J. L. Wang, T. Li</td>
<td></td>
</tr>
<tr>
<td>Simulation and Analysis of T-Junction Microchannel</td>
<td>146</td>
</tr>
<tr>
<td>Kainat Nabi, Rida Rafi, Muhammad Waseem Ashraf, Shahzadi Takyaba, Zaho</td>
<td></td>
</tr>
<tr>
<td>M Ahmad, Muhammad Imran, Faran Baig and Nitin Afzulpurkar</td>
<td></td>
</tr>
<tr>
<td>Mass Flow Measurement of Fluids by a Helically Coiled Tube</td>
<td>152</td>
</tr>
<tr>
<td>Tian Zhou, Zhiqiang Sun, Zhenying Dong, Saiwei Li, Jiemin Zhou</td>
<td></td>
</tr>
<tr>
<td>Comparative Creep Evaluation between the Use of ISO 376 and OIML R60</td>
<td>158</td>
</tr>
<tr>
<td>for Silicon Load Cell Characterization</td>
<td></td>
</tr>
<tr>
<td>Ebtisam H. Hasan, Rolf Kumme, Günther Haucke and Sascha Mäuselein</td>
<td></td>
</tr>
<tr>
<td>Yuriy Bobalo, Zenoviy Kolodiy, Bohdan Stadnyk, Svyatoslav Yatsyshyn</td>
<td></td>
</tr>
<tr>
<td>Application of Mixed Programming in the Simulation of Lorenz Chaotic System's Dynamics Characteristics Based on Labview and Matlab</td>
<td>169</td>
</tr>
<tr>
<td>Peng Zhou, Gang Xu, Liang Chen</td>
<td></td>
</tr>
<tr>
<td>A Nanostructure with Dual-Band Plasmonic Resonance and Its Sensing Application</td>
<td>174</td>
</tr>
<tr>
<td>Zongheng Yuan, Jing Huan, Xiaonan Li and Dasen Ren</td>
<td></td>
</tr>
<tr>
<td>A Glucose Sensor Based on Glucose Oxidase Immobilized by Electrospinning Nanofibrous Polymer Membranes Modified with Carbon Nanotubes</td>
<td>180</td>
</tr>
<tr>
<td>You Wang, Hui Xu, Zhengang Wang, Rui'an Hu, Zhiyuan Luo, Zhikang Xu, Guang Li</td>
<td></td>
</tr>
<tr>
<td>The Platform Architecture and Key Technology of Cloud Service that Support Wisdom City Management</td>
<td>186</td>
</tr>
<tr>
<td>Liang Xiao</td>
<td></td>
</tr>
</tbody>
</table>
Digital Sensors and Sensor Systems: Practical Design

Sergey Y. Yurish

The goal of this book is to help the practitioners achieve the best metrological and technical performances of digital sensors and sensor systems at low cost, and significantly to reduce time-to-market. It should be also useful for students, lectures and professors to provide a solid background of the novel concepts and design approach.

Book features include:

- Each of chapter can be used independently and contains its own detailed list of references
- Easy-to-repeat experiments
- Practical orientation
- Dozens examples of various complete sensors and sensor systems for physical and chemical, electrical and non-electrical values
- Detailed description of technology driven and coming alternative to the ADC (analog-to-digital conversion)

Digital Sensors and Sensor Systems: Practical Design will greatly benefit undergraduate and graduate students, engineers, scientists and researchers in both industry and academia. It is especially suited as a reference guide for practitioners, working for Original Equipment Manufacturers (OEM) electronics market (electronics/hardware), sensor industry, and using commercial-off-the-shelf components.

http://sensorsportal.com/HTML/BOOKSTORE/Digital_Sensors.htm

Non-Dispersive Infrared Gas Measurement

Jacob Y. Wong, Roy L. Anderson

Written by experts in the field, the Non-Dispersive Infrared Gas Measurement begins with a brief survey of various gas measurement techniques and continues with fundamental aspects and cutting-edge progress in NDIR gas sensors in their historical development.

- It addresses various fields, including:
 - Interactive and non-interactive gas sensors
 - Non-dispersive infrared gas sensors' components
 - Single- and Double beam designs
 - Historical background and today's of NDIR gas measurements

Providing sufficient background information and details, the book Non-Dispersive Infrared Gas Measurement is an excellent resource for advanced level undergraduate and graduate students as well as researchers, instrumentation engineers, applied physicists, chemists, material scientists in gas, chemical, biological, and medical sensors to have a comprehensive understanding of the development of non-dispersive infrared gas sensors and the trends for the future investigation.

A Glucose Sensor Based on Glucose Oxidase Immobilized by Electrospinning Nanofibrous Polymer Membranes Modified with Carbon Nanotubes

1 You Wang, 1 Hui Xu, 2 Zhengang Wang, *1 Ruifen Hu, 3 Zhiyuan Luo, 2 Zhikang Xu, 1 Guang Li

1 National Laboratory of Industrial Control Technology, Institute of Cyber-systems and Control, Zhejiang University, Hangzhou 310027, China
2 Institute of Polymer Science, Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
3 Computer Learning Research Centre, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
Tel.: +86-57187952268, fax: +86-57187952279
E-mail: 0011377@zju.edu.cn

Received: 30 March 2013 /Accepted: 15 May 2013 /Published: 27 May 2013

Abstract: A glucose biosensor based on glucose oxidase immobilized by electrospinning nanofibrous membranes has been developed. Nanofibrous membranes were electrospun from the solution of poly(acrylonitrile-co-acrylic acid) containing carbon nanotubes suspension and directly deposited on Pt electrodes for immobilizing glucose oxidase. The morphologies and structure of the nanofibrous membranes with or without carbon nanotubes were characterized by scanning electron microscopy. The fabrication parameters of nanofibers were optimized such as thickness of the nanofibrous membranes and mass ratio of carbon nanotubes. The biosensor showed the relationship with a concentration range of 0.1–10 mM and response time was 60 s. The sensitivity of carbon nanotubes modified biosensors was two times larger than which of no carbon nanotubes modified ones. The pH effect, interference and lifetime of biosensors were discussed. Copyright © 2013 IFSA.

Keywords: Electrospinning, Glucose biosensor, Enzyme immobilization, Carbon nanotubes.

1. Introduction

The glucose biosensors are regarded as the most successful electrochemical sensors so far. They are widely applied in human blood glucose monitoring and other analytical detections due to their advantages of rapid analysis, high selectivity, ease of operation and portability [1-3]. In order to detect the concentration of glucose in biological samples repeatedly or continuously, it is necessary to immobilize enzymes on the sensing area [4]. The technique used to immobilize the enzyme is one of the key factors in developing a reliable biosensor. Various enzyme immobilization approaches have been employed to date, including covalent binding [5] and entrapment in gels or polymer matrices [6, 7]. Nanofibrous membranes are characterized by large surface area-to-volume ratio, high porosity and interconnectivity. These features make them to be
optimal candidates as carrier material in enzyme immobilization [8, 9].

Electrospinning was first reported by A. Formhals in 1934 [10] and P. K. Baumgarten fabricated nanofibers successfully using electrospinning technique in 1971 [11]. However, this technique applied in nanofibers fabrication did not attract scientists’ attention broadly until 1990’s when the research on nano-materials began to bloom. Electrospinning produces polymer filaments using an electrostatic force. A polymer solution (e.g. cellulose acetate), is fed through the spinneret (e.g. a pipette tip) under an external electric field of high voltage power, between the spinneret and the grounded collecting metal plate, a suspended conical droplet is formed. Once the applied electric field is strong enough to overcome the surface tension, a tiny jet is ejected from the surface of the droplet and drawn toward the collecting plate. Meanwhile the solvent in the jet stream evaporates and a non-woven fiber with diameters ranging from tens of nanometers to microns is produced [9, 12]. Electrospinning has been discovered as a unique technique and an easy method for generating non-woven fibrous articles from a rich variety of materials [13].

Electrospun nanofibrous membranes possess an extremely high surface-to-volume ratio, tunable porosity, and malleability to conform over a wide variety of sizes and shapes [9]. In addition, the membranes composition can be controlled to achieve desired properties and functionality. Due to these advantages, electrospun nanofibers have been demonstrated as suitable substrates for immobilized enzymes. Compared to other immobilizing technologies, electrospinning boasts several advantages in producing polymer nanofibers, such as larger surface area for enzymes or bioactive components to attach to; much bigger mass-transfer rate of the substrate to the active site of an enzyme; more durable for repeating usage and can be conveniently recovered from a reaction solution when used as supports for biocatalysts [14]. At present, materials such as polyvinylpyrrolidone (PVP), poly (vinyl alcohol) (PVA), polyacrylonitrile (PAN) and chitosan have been used for electrospinning due to their good properties in forming fibers and membranes. An electrospun PVP membrane was prepared to immobilize urease and to form fibers and membranes. An electrospun PAN nanofibers could be fabricated by electrospinning with fiber diameter in the range of 150–300 nm, providing huge surface area for lipase immobilization [21].

Carbon nanotubes (CNTs) have been recognized as one of the most promising electrode material since the first electrode application in the oxidation of dopamine in 1996 [22], because of their excellent properties such as superb electrical conductivity and remarkable mechanical strength and modules. The similarity in length scales between nanotubes and redox enzymes suggests interactions that may be favorable for biosensor electrode applications [23]. In view of the advantage of CNTs, it is expected that CNTs filling electrospinning nanofibers can enhance the activity of the immobilized redox enzymes and to increase the sensitivity of biosensors potentially.

In this work, a reactive group containing copolymer, poly(acrylonitrile-co-acrylic acid) (PANCAA) was electrospun on Pt electrode to immobilize GOx covalently on the nanofibrous membrane. Multi-walled carbon nanotubes (MWCNTs) were co-electrospun with PANCAA and experiments data indicated that MWCNTs filling increased the current of GOx electrode obviously. Its advancements over prior technology are faster response time, lower detection limit of glucose and a more versatile design.

2. Experimental

2.1. Materials

The copolymer poly(acrylonitrile-co-acrylic acid) (PANCAA) was synthesized by a water phase precipitation copolymerization process [24]. The viscosity averaged molecular weight (M_w) was 8.32×10^4 g/mol. The molar content of acrylic acid in this copolymer was about 10%. MWCNTs prepared by a chemical vapor deposition process were purchased from Shenzhen Nanotech Port Co., Ltd. (China). N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS) were purchased from Shanghai Medpep Biochemical Technology Development Co., Ltd. (China), both of which were HPLC grade. GOx (EC 1.1.3.4, from Aspergillus niger) and 6-glucose anhydrous (C$_6$H$_{12}$O$_6$, AR) was obtained from Sigma (USA) and Sinopharm Chemical Reagent Co., Ltd. (China), respectively. Other chemicals including N,N'-dimethylformamide, phosphate and borate, sodium chloride (NaCl) and calcium chloride (CaCl$_2$) were of analytical-reagent grade without further purification. Double-distilled water was used in all experiments.

Glucose standard solutions of different concentrations were prepared one day prior to use, carried out in a 50 mM borate-phosphate buffer solution (BPBS, pH 6.0) and stored at 4 °C.

2.2. Apparatus

The morphology of the PANCAA nanofibrous membranes was evaluated by field emission scanning electron microscopy (FEI, SIRION-100, USA). Before analysis, the samples were sputtered with gold using Ion sputter JFC-1100. Amperometric measurements were performed by a CHI760B Electrochemical Work Station (CH Instrument Inc., USA).
2.3. Electrode Preparation

Before electrospinning, the surface of Pt electrode was polished thoroughly with 0.03 micron Al₂O₃ power, rinsed with 5.0 wt.% sulphuric acid and distilled water in turn.

MWCNTs were treated with a mixture of concentrated sulfuric and nitric acids (3:1, 98 % and 70 %, respectively) at 40°C, in order to uniformly disperse MWCNTs in the copolymer matrix. PANCAA was dissolved in DMF with 5 wt.% concentration at 100°C and different concentration of MWCNTs (0, 5, 15, 25 and 35 wt.%) was suspended in the PANCAA solution for optimization. Electrospinning was worked out using a syringe with a 1.2 mm diameter stainless steel spinneret at an applied electrical potential difference of 14 kV over 15 cm gap between the spinneret and the Pt electrode surface which was connected to a 12×12 cm aluminum foil. The aluminum was connected to the ground to help provide a stable electric field. A microinfusion pump was set to deliver the solution at a flow rate of 1.0 mL/h using a 20 mL syringe. The electrospinning setup is shown in Fig. 1. During electrospinning the temperature and relative humidity was kept at 20-25°C and 35-45 %, respectively.

GOx was covalently immobilized onto the fibrous membrane deposited electrode with the EDC/NHS activation procedure. After rinsed by BPBS (pH 6.0), the pretreated electrode surface covered by the fibrous membranes was submerged into an EDC/NHS solution (10 mg/mL in BPBS, the molar ratio of EDC to NHS = 1:1) and shaken gently for 2 h at 4°C. Then, the activated surface was washed several times with BPBS, and immersed into GOx solution (4.0 mg/mL in BPBS). GOx immobilization was conducted at 4°C for 24 h. Finally, the PANCAA and PANCAA/MWCNTs fibrous membranes with GOx immobilized were washed and rinsed in BPBS to remove the unfixed enzyme and then were dried at room temperature.

2.4. Measurements

Amperometric measurements were carried out using a CHI760B Electrochemical Work Station at room temperature at about 22 °C. The enzyme modified electrode was used as working electrode while a bare platinum disk and Ag/AgCl were used as counter and reference electrodes, respectively. The working potential was 0.8 V versus the Ag/AgCl reference electrode. All electrodes were immerged in 5 ml glucose standard solution to measure the biosensor response. Current–time curves of the amperometry were recorded using an IBM PC compatible computer via a RS232 series port communicating to the Electrochemical Work Station. The response time of the sensors was 60 s. The calibration curve was obtained by testing samples of different glucose concentrations to investigate the characteristics of the biosensor to determine the glucose concentration.

3. Results and Discussion

3.1. Field Emission Scanning Electron Microscopy

Field emission scanning electron microscopy was employed to evaluate the morphology and fibrous membranes. As shown in Fig. 1, the fibrous membranes were deposited onto Pt surface of the electrode using the special electrospinning setup. Then GOx was directly immobilized onto the membrane through EDC/NHS activation procedure. Fig. 2 shows the images of pure PANCAA and MWCNTs filled PANCAA fibrous membranes. The latter one was interspersed with many beads, but fewer beads in pure PANCAA nanofibrous membranes. The beads were very common nanofiber defects. Their formation was dependent on some parameters, such as the spinning solution and the relative humidity of the surroundings. According to our study, MWCNTs filling has little effect on the enzyme loading.

3.2. Optimization of Membrane Amounts and PANCAA/MWCNTs Mass Ration

The amounts of the PANCAA fibers film were determined by the flow rate of the spinneret and the electrospinning time. A microinfusion pump was set to deliver the solution at a flow rate of 1.0 mL/h. So with the electrospinning time increased, the fibers membrane amount increased considering the rate was constant. Generally, the thicker the nanofibrous membranes were, the more enzymes could be covalently immobilized, but the analyte diffusion would be retarded. Our experiment results are shown in Fig. 3. When the electrospinning membrane amount was less than 1.6 mg/cm², the response
current was not high enough because little enzyme was covalently immobilized. When the membrane amount was more than 1.6 mg/cm², the response current increased slightly. In our experiments, the optimal membrane amount was 1.6 mg/cm² and electrospinning time was 4 hours.

Fig. 2. SEM images of electrospun PANCAA fibers (a) and PANCAA-MWCNTs fibers (b).

Fig. 3. Effect of electrospinning time on response current to 5 mM glucose.

The response of different amounts (0, 5, 15, 25 and 35 wt.%) MWCNTs filled PANCAA nanofibrous membrane with GOx immobilized to 5 mM glucose was compared in experiments. It can be demonstrated that the current increases until the ratio rises up to 25 wt. % according the experiment data. This can be attributed to the formation of percolating network among MWCNTs and to much more MWCNTs protruded out of the nanofibers, which enhance the electrical conductivity of the nanofibrous membrane and increase the opportunity for GOx to interact with MWCNTs. However, the current changes little as the MWCNT/PANCAA mass ratio increases from 25 to 35 wt.%. A MWCNTs/ PANCAA mass ratio of 25 wt.% was chose as the optimal and final recipe of the biosensor in the following experiments.

3.3. Sensor Characteristics

The calibration curve of the biosensor modified by PANCAA/GOx and PANCAA/MWCNTs/GOx is shown in Fig. 4.

Sixteen different glucose concentrations were measured using the electrodes and each concentration was measured 5 times. The calibration curve indicated that the linear range of the glucose electrode response was from 0.1 to 10 mM, and the limit of detection was 5.5 μM (calculated as three times the signal-to-noise ratio). The apparent Michaelis constants and the maximum current density for these electrodes were calculated to the electrochemical version of the Michaelis-Menten Equation

\[j = j_{\text{max}} [S] / (K_M^{\text{app}} + [S]) \] \hspace{1cm} (1)

where \(K_M^{\text{app}} \) is the Michaelis constant and \(j_{\text{max}} \) is the maximum current density.

These parameters were recorded in Table 1.
Table 1. The electrochemical parameters of PANCAA/GOx and PANCAA/MWCNTs/GOx sensors.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>PANCAA/GOx</th>
<th>PANCAA/MWCNTs/GOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>Equation</td>
<td>Equation</td>
</tr>
<tr>
<td>$I(\mu A)$</td>
<td>$0.0856C(mM) + 0.0855$</td>
<td>$0.1626C(mM) + 0.1142$</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9972</td>
<td>0.9927</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>$2.73 \mu A mM^{-1} cm^{-2}$</td>
<td>$5.18 \mu A mM^{-1} cm^{-2}$</td>
</tr>
<tr>
<td>R.S.D (n=5)</td>
<td>4.59 %</td>
<td>3.33 %</td>
</tr>
<tr>
<td>K_M^{app}</td>
<td>10.38 mM</td>
<td>21.48 mM</td>
</tr>
<tr>
<td>j_{max}</td>
<td>52.9 $\mu A cm^{-2}$</td>
<td>163.9 $\mu A cm^{-2}$</td>
</tr>
</tbody>
</table>

3.4. pH Effect

The response of the glucose biosensor depends on the activity of immobilized GOx, which is related to the pH of the solution. The pH influence was investigated by amperometric measurement of 5 mM glucose in BPBS of different pH values between 4.0 and 8.0. As shown in Fig. 5, the maximum response current was observed at pH 6.0.

![Fig. 5. Effect of pH on the response current to 5 mM glucose.](image)

3.5. Interference Study

In order to demonstrate the selectivity of the PANCAA/MWCNTs/GOx biosensor, the interferences of electroactive compounds to the glucose response were examined. Some electroactive compounds, such as ascorbic acid (AA) and uric acid (UA), may interfere in the detection of glucose. The normal levels of AA and UA in human blood are 0.023–0.034 mM (0.40–0.59 mg dl$^{-1}$) and 0.12–0.42 mM (2.0–7.0 mg dl$^{-1}$), respectively. When the patient is taking vitamin C, the concentration of AA in his or her blood will increases. So the responses of the sensors to 0.17 mM (3.0 mg dl$^{-1}$) AA, 0.48 mM (8.0 mg dl$^{-1}$) UA with glucose concentration at 5 mM were measured (Table 2). It can be considered that there is no difference among the responses of glucose with AA or with UA and that of glucose alone ($P > 0.05$ by paired t-test, $n = 4$). The interference of AA and uric acid UA to the glucose response was effectively eliminated by the PANCAA fibers.

![Fig. 6. The lifetime of PANCAA/MWCNTs/GOx.](image)

3.6. Sensor Lifetime

The operational stability was examined by measuring the response to 5 mM glucose. The PANCAA/MWCNTs/GOx sensors were stored at 5 $^\circ$C in the dark for 4 weeks, while measurements were conducted every 2 days during the first week and then once a week subsequently. The response remained 57.9 $\%$ of the initial value in 2 weeks and 40.0 $\%$ in 4 weeks. The experimental data about the lifetime of the sensor are shown in Fig. 6.

4. Conclusions

In summary, the electrospun MWCNTs-filled PANCAA nanofibrous membranes were applied to immobilize glucose oxidase for fabricating glucose biosensors, which could be used for multi-time measurements. The reactive groups EDC/NHS possessed by the membranes were used for the covalent immobilization of GOx. The parameter of nanofibrous membranes fabrication was optimized such as the amount and the mass ration of MWCNTs vs. PANCAA. The results from chronoamperometric measurements showed that sensitivity of MWCNTs modified biosensors was ca. two times larger than which of no MWCNTs modified ones. However, there are several problems need to resolve, such as improving the adhesion between nanofibrous membrane and the Pt electrode surface, extending the lifetime and decreasing the response time of MWCNTs modified biosensors. Therefore, clarifying the interactions of embedded MWCNTs with enzyme will be necessary in future study.
Acknowledgements

The work is supported by Natural Science Foundation of China (Grant No. 61004132 and 61128003), China Postdoctoral Science Foundation funded project (20100480090 & 201104715), the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT1210), and the Fundamental Research Funds for the Central Universities.

References

[12]. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, Vol. 63, 2003, pp. 2223–2253.

The Fourth International Conference on Sensor Device Technologies and Applications

SENSORDEVICES 2013
25 - 31 August 2013 - Barcelona, Spain

Deadline for papers: 30 March 2013

The Seventh International Conference on Sensor Technologies and Applications

SENSORCOMM 2013
25 - 31 August 2013 - Barcelona, Spain

Deadline for papers: 30 March 2013

The Sixth International Conference on Advances in Circuits, Electronics and Micro-electronics

CENICS 2013
25 - 31 August 2013 - Barcelona, Spain

Tracks: Semiconductors and applications - Design, models and languages - Signal processing circuits - Arithmetic computational circuits - Microelectronics - Electronics technologies - Special circuits - Consumer electronics - Application-oriented electronics

Deadline for papers: 30 March 2013

Aims and Scope

Sensors & Transducers is a peer reviewed international, interdisciplinary journal that provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes original research articles, timely state-of-the-art reviews and application specific articles with the following devices areas:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- Sensors interfaces, buses and networks;
- Signal processing and interfacing;
- Frequency (period, duty-cycle)-to-code converters, ADC;
- Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Further information on this journal is available from the Publisher's web site: http://www.sensorsportal.com/HTML/DIGEST/Submission.htm

Subscriptions

An annual subscription includes 12 regular issues and some special issues. Annual subscription rates for 2013 are the following:

Electronic version (in printable pdf format): 400.00 EUR
Printed with b/w illustrations: 640.00 EUR
Printed full color version: 760.00 EUR

40 % discount is available for IFSA Members.

Prices include shipping costs by mail. Further information about subscription is available through IFSA Publishing's web site: http://www.sensorsportal.com/HTML/DIGEST/Journal_Subscription.htm

Advertising Information

If you are interested in advertising or other commercial opportunities please e-mail sales@sensorsportal.com and your enquiry will be passed to the correct person who will respond to you within 24 hours. Please download also our Media Planner 2013: http://www.sensorsportal.com/DOWNLOADS/Media_Planner_2013.pdf

Books for Review

Publications should be sent to the IFSA Publishing Office: Ronda de Ramon Otero Pedrayo, 42C, 1-5, 08860, Castelldefels, Barcelona, Spain.

Abstracting Services

This journal is cited, indexed and abstracted by Chemical Abstracts, EBSCO Publishing, IndexCopernicus Journals Master List, ProQuest Science Journals, CAS Source Index (CASSI), Ulrich's Periodicals Directory, Scirus, Google Scholar, etc. Since 2011 Sensors & Transducers journal is covered and indexed by EI Compendex index (including a Scopus, Embase, Engineering Village and Reaxys) in Elsevier products.

Instructions for Authors

Please visit the journal web page http://www.sensorsportal.com/HTML/DIGEST/Submission.htm Authors must follow the instructions very carefully when submitting their manuscripts. Manuscript must be send electronically in both: MS Word 2003 for Windows (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com
Sensors and Biosensors, MEMS Technologies and its Applications

The second volume titled 'Sensors and Biosensors, MEMS Technologies and its Applications' from the 'Advances in Sensors: Reviews' Book Series contains eighteen chapters with sensor related state-of-the-art reviews and descriptions of the latest achievements written by experts from academia and industry from 12 countries: China, India, Iran, Malaysia, Poland, Singapore, Spain, Taiwan, Thailand, UK, Ukraine and USA.

This book ensures that our readers will stay at the cutting edge of the field and get the right and effective start point and road map for the further researches and developments. By this way, they will be able to save more time for productive research activity and eliminate routine work.

Built upon the series Advances in Sensors: Reviews - a premier sensor review source, it presents an overview of highlights in the field and becomes. This volume is divided into three main parts: physical sensors, biosensors, nanoparticles, MEMS technologies and applications. With this unique combination of information in each volume, the Advances in Sensors: Reviews Book Series will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

Like the first volume of this Book Series, the second volume also has been organized by topics of high interest. In order to offer a fast and easy reading of the state of the art of each topic, every chapter in this book is independent and self-contained. The eighteen chapters have the similar structure: first an introduction to specific topic under study; second particular field description including sensing applications.

Order online: http://sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors_Vol_2.htm