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Abstract: In this paper, the path following control of a spherical robot rolling without slipping on an inclined 
plane is discussed. We first study the kinematic constraints of the spherical robot and develop the dynamic 
model of the robot through the constrained Lagrange method. We then present a state space realization of this 
constrained system through the null space method and using nonlinear feedback. We investigate the path 
following control algorithms and develop a variable structure approach to the control of this nonholonomic 
system. By choosing appropriate output equations for path following, we design the sliding surfaces as the 
functions of the output tracking errors. Using Lyapunov stability theorem and exponential reaching law, we 
derive the sliding mode control law. The asymptotic stability of the sliding surfaces is theoretically proved, and 
the validity of the proposed path following method is further validated through MATLAB simulations. 
Copyright © 2013 IFSA. 
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1. Introduction  
 

Most mobile robots we have today have wheels. 
That is an obvious choice as there is a considerable 
amount of knowledge about this type of locomotion. 
However, more and more possible applications occur 
where wheeled robots have some flaws. Spherical 
robots could be a solution to some of these problems. 
As the robot is encompassed in a ball it is possible to 
effectively seal everything to enable the robot to 
withstand exposure to dust, humidity, dangerous 
substances and other environmental threats. As we 
can understand, this could be very handy in such 
applications as planetary exploration, surveillance 
and others. The above mentioned situations often 
involve dealing with difficult terrain as well. While 
wheeled robots can cope with it pretty good, the risk 

of falling over still persists. A spherical robot, on the 
other hand, can't fall over at all. 

Over the last few decades, there has been 
considerable interest in the development of powerful 
methods for motion control of mobile robots. The 
problems addressed in the literature can be roughly 
classified into three groups: trajectory tracking, path 
following and point stabilization [1]. With respect to 
spherical robots, there have not been established 
methodologies to resolve these control problems, 
although many studies have been made during the 
past. Alves and Dias [2] presented a line tracking 
method of a spherical robot based on kinematics. 
Zhan and Liu et al. [3] discussed the trajectory 
tracking problem of a spherical robot using 
backstepping approach. Zheng and Zhan et al. [4] 
investigated the trajectory tracking algorithm for a 
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spherical robot based on the RBF-PD controller. Cai 
and Zhan et al. [5] proposed a real-time fuzzy 
guidance scheme for trajectory tracking of a spherical 
robot. Liu and Sun et al. [6] developed a line 
following controller for a spherical robot based on 
sliding modes. 

Current researches on motion control of spherical 
robots usually assume that the robot remains strictly 
on a level plane. As a result, the dynamic model fails 
to represent the actual motion when the robot rolls up 
a slope. This paper focuses on practical solutions to 
trajectory tracking and path following control of a 
spherical robot rolling on an inclined plane. The main 
contributions of the paper include two parts. Firstly, 
the kinematics and dynamics of the robot subject to 
no-slip and no-spin constraints are derived. Secondly, 
a sliding mode control scheme for path following of 
the robot is proposed. 

 
 

2. Mathematical Model  
 

2.1. System Description  
 
BYQ-VIII is a pendulum-driven spherical robot, 

the mechanical structure of the robot is illustrated in 
Fig. 1. The robot is mainly consisted of three parts: 
the spherical shell 1, the internal gimbals 2 and the 
pendulum 3. The robot has the internal driving unit 
mounted inside the spherical shell. The steering 
motion of the robot is achieved by tilting the 
pendulum, and the driving motion is performed by 
swinging the pendulum indirectly through the 
internal gimbal. 
 
 

 
 

Fig. 1. Three-dimensional model of BYQ-VIII. 
 
 

2.2. Kinematic Constraints  
 
We first assign two coordinate frames. Let ∑OXYZ 

be a fixed inertial frame whose XY plane is anchored 
to the surface of the incline and Z is the vertical 
position to the surface. Let ∑BXbYbZb be the body 
coordinate frame whose origin is located at the center 

of the sphere B. We denote (, , ) to be the ZYX 
Euler angles from the inertial frame ∑O to the body 
coordinate frame ∑B. 

Fig. 2 presents the geometrical model of the 
rolling sphere and definition of necessary variables to 
deduce the mathematical model. Here R represents 
the radius of the sphere, C is the contact point 
between the sphere and slope surface with its 
coordinates (xc, yc) with respect to ∑O,  and  
denote the torques exerted on the sphere along the 
axis Xb and Yb respectively. 
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Fig. 2. Definition of system variables for BYQ-VIII. 
 
 
We now derive the kinematics and dynamics of 

the spherical robot on the basis of the following 
assumptions: (i) no-slip constraint: the sphere rolls on 
the perfectly flat surface of the incline without 
slipping, (ii) no-spin constraint: rotations of the 
rolling sphere around the Z axis are not allowed. 

Let νB and ωB denote the velocity of the center of 
mass of the sphere and its angular velocity with respect 
to the inertia frame

 
∑O. Then, we have 
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where i, j, k

 
are the unit vectors of ∑O.  

The no-spin constraint can be formulated as  
 

sin 0      (2) 

 
The constraint in (2) represents a nonholonomic 

constraint. The constraints result from the requirement 
that the sphere rolls without slipping on the incline, i.e., 
the velocity of the contact point on the sphere is zero at 
any instant νC = 0. Now we can express νB as 

 
  B B BC Crv v , (3) 
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where rBC = -Rk represents the vector from point C to 
B. Substituting (1) into (3) gives 
 

    B c cx y Zv i j k  (4) 
 
where 

  cos sin cos 0   cx R       (5) 

  cos cos sin 0  cy R       (6) 

 0Z  (7) 
 
The constraints in (5) and (6) are nonholonomic, 

whereas the constraint in (7) is holonomic and can be 
integrated to obtain Z = R. 

Therefore the configuration of the robotic system 
can be described by a vector of five generalized 
coordinates q = (xc, yc, , , )T. 

Combing (2), (5) and (6), the nonholonomic 
constraints can be written as 

 

   0A q q  (8) 

 
where 

 
1 0 0 cos sin cos

0 1 0 sin cos cos

0 0 1 0 sin
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2.3. Robot Dynamics 
 
We study the motion equations by calculating the 

Lagrangian L = T - P of the system, where T and P 
are the kinetic energy and potential energy of the 
system respectively. The spherical shell is assumed to 
have mass m and the moment of inertia I. Then T and 
P of the robotic system can be calculated as follows 
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where  is the inclination angle of the slope. 

Using the constrained Lagrangian method, the 
motion equations of the robotic system are described by 

 

       T   , tM q q V q q E q A q   (10) 
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To eliminate the Lagrange multipliers [7], we first 

partition A(q) as A = [A1 ¦ A2], where  
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where 
2

  k
  ,  1 2 k , , . 

It is straightforward to verify that C(q) satisfies 
that A(q)C(q) = 0. If we choose  and  to be the two 
quasi-coordinates, 
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t

 
 

  

 
and we can verify that (12) is satisfied. 
 

    tq C q   (12) 

 
Differentiating (12) yields  
 

  q C C   (13) 

 
Using (10) and (11), we have CTE = I. 

Substituting (13) into (10), and premultiplying both 
sides by CT gives 

 

   T T T   t tC MC C MC C V  t  (14) 

 
Using the state variable x = (qT, υT)T, we have 
 

1
1



   
    

  

0


C
x

f M
t , (15) 

 

where  TM C MC ,  1
1

  T Tf M C MC C V . 

We apply the following nonlinear feedback [8] 
 

 1 M fut , (16) 

 
where u = (u1, u2)

T represent the new control inputs. 
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Then the state equation simplifies to the form  
 

    x f x b x u  (17) 

 
where 
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3. Path Following 

 
3.1. Controller Design 

 
In the path following task, the controller is given 

a geometric description of the assigned Cartesian 
path. For this task, time dependence is not relevant 
because one is concerned only with the geometric 
displacement between the robot and path. The path 
following problem is rephrased as the stabilization to 
zero of a suitable scalar path error function. Since the 
robotic system has two control inputs, we may 
choose two output variables. By appropriately 
choosing the output variables h1 and h2 

we can 
achieve path following control. 

Suppose the reference path is  
 

( ) = 0
c cf x , y  (18) 

 
We define the path error function ef as  
 

= ( )
f c ce f x , y  (19) 

 
Then h1 can be chosen as 
 

 1 = ( ) 
f c ch e f x , yq  (20) 

 
The other output variable h2 is chosen to be one of 

the quasi-velocities of the robotic system. 
 

 2 2 h    (21) 

 
Differentiating (20) once and twice respectively 

gives  
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Differentiating (21) yields  
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where  

2
0 1hJ . 

We define the following sliding surfaces  
 

1 1 1 1

2 2 2
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where c1 is a real positive constant, y2d is the desired 
value for y2. 

Let S1 be the vector of components s1 and s2. 
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Differentiating (25) yields  
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Let  
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T
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where η1, η2 are real positive constants. 

We choose the control law u as follows  
 

 1
1 1 2sgn      S KS fu g  (28) 
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2

0

0

 
  
 

k

k
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constants. 
 
 
3.2. Stability Analysis 
 

Theorem 1: Suppose that the system in (17) is 
controlled by the control law given by (28), then the 
sliding surfaces s1, s2 are asymptotically stable. 

Proof: Substituting (28) into (26) yields  
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Consider the Lyapunov function candidates 

21
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Differentiating Vi with respect to time gives  
 

2 0     i i i i i i iV s s s k s  (30) 

 
Integrating both sides of (30), we can obtain 
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From (31), we have si∈L∞, si∈L2. From (30), we 

have is L . Consequently, according to Babalat’s 

lemma we have 0 1, 2


 i
t
lim s ,  i . 

 
 

4. Simulation Study  
 
We developed a computer simulation in order to 

verify the validity of the control algorithms discussed 
in the previous sections. The dimensions and inertial 
parameters are representative of the spherical robot. 
According to the notation introduced before:  
m = 0.85 kg, R = 0.14 m, I = 0.0111 kg·m2,  = 10 º. 
 
 
4.1. Basic Paths 
 

Consider a straight line path y = x, as shown in 
Fig. 3. The initial values of the system configuration 
variables are such that 

 
(xc, yc, , , ) = (0.4, 0.2, 0, 0, 0) 

 
and the initial velocity is zero. For the path following 
algorithm, 
 

h1 = xc - yc, y2d =2.5 
 

with the controller parameters 
 

c1 = 4.8, k1 = 4.3, k2 = 4.5, η1 = 2.6, η2 = 2.2 
 

The performance of the robot in straight line path 
following is shown in Fig. 3. The star marker 
indicates the starting point of the robot.  

Consider a circular path 
 

(x - 0.8)2 + (y - 1)2 = 0.25 
 

as shown in Fig. 4. The initial values of the system 
configuration variables are such that 
 

(xc, yc, , , ) = (1.2, 1.4, 0, 0, 0) 
 

and the initial velocity is zero. For the path following 
algorithm, 
 

h1 = (xc - 0.8)2+(yc - 1)2 - 0.25, y2d = 2.5 

with the controller parameters 
 

c1 = 4.9, k1 = 4.5, k2 = 1.3, η1 = 2, η2 = 1 
 

The performance of the robot in circular path 
following is shown in Fig. 4.  
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Fig. 3. Control performance in straight line path following. 
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Fig. 4. Performance of the robot in circular path following. 
 
 
In both cases, the reference point of the robot is 

able to reach the path and stay on the path. The path 
following algorithm seems to exhibit a gradual merge, 
with the path following controller the actual path 
followed is smooth. 

 
 

4.2. Piecewise Continuous Paths  
 

An example of a composite path is shown in  
Fig. 5, which is composed of two circular arcs and a 
straight line. The performance of the control system 
is acceptable as seen from the figure. The 
discontinuities in curvature are negotiated without 
any difficulty and there is almost no deviation of the 
actual path from the desired one. 
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Fig. 5. Control performance in composite path following. 
 
 
5. Conclusions 

 
We presented a variable structure method for path 

following control of a spherical robot moving on an 
inclined plane. We derived the kinematics by 
imposing the constraint conditions of no-slip and no-
spin. We deduced the robot dynamics using the 
constrained Lagrange formulation. We eliminated the 
Lagrange multipliers to obtain a state space 
description of the system. We devised a sliding mode 
scheme to achieve output tracking. We considered 
the choice of output variables for path following and 
derived the sliding mode control laws to satisfy the 
existence condition of sliding modes. Computer 
simulation results were presented to illustrate the 
performance of the proposed control algorithm. 
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