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Abstract: In order to improve the identification accuracy of dynamic system, multi-innovation learning 
algorithm based on PID neural networks is presented, which can improve the online identification performance 
of the networks. The multi-innovation gradient type algorithms use the current data and the past data that make 
it more effective than the BP algorithm in view of accuracy and convergence rate. Simulation results showed 
that the proposed algorithm is effect. Copyright © 2013 IFSA. 
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1. Introduction 

 
As we have known, the model-based control 

techniques are usually implemented under the 
assumption of good understanding of process 
dynamics and they are the dependence on 
mathematical model of controlled plant. These 
techniques, however, can not provide satisfactory 
results when applied to poorly modeled processes. 
Therefore, how to design adaptive control system 
only based on information from the I/O data of the 
plant is great significance both in theoretic and 
application. Now, one successful method of the 
model-free control approaches is Proportional 
Integral Derivative neural network (PIDNN) control 
[1, 2].  

PIDNN is a new kind of networks. It utilizes the 
advantages of both PID control and neural structure. 
But the method has some shortcomings, such as slow 
convergence, easy to fall into local minimum and 
forget the samples [3, 4].  

In order to overcome these shortcomings, this 
paper improves the convergence by using multi 

innovation theory [5, 6] and proofs the fast 
convergence of the improvement method by 
supermartigale theory. 

 
 

2. PID Neural Network Model and Multi-
innovation Identification Algorithm 

 
2.1. PID Neural Network Model 
 
Consider a time-invariant stochastic system 
described by a linear regression model [7, 8]: 
 

( ) ( ) ( )Ty t t t    , (1) 

 

where 
nR   is the parameter vector of system, 

1( )y t R  is the system output, 
1( )u t R  is the 

system input, 
1( )t R   is a stochastic noise with zero 

mean, ( ) nt R   is the information vector consisting 
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of the system observation (input-output) data, the 
superscript T denotes the transpose. 

As it is shown in Fig. 1, PID neural network has a 
simple feed forward neural network which consists of 
2-3-1 structure, so it has three layers [7-9]. Let 

2 3( )ijW w 
 be the weight matrix between the input 

layer and the hidden layer and 1 2 3( , , )V v v v  be the 
weight matrix between the hidden layer and the 

output layer. iu , ju
 and u  are the inputs of the 

input layer, the hidden layer and the output layer. ix , 

jx
 and x  are the outputs of them. The actual output 

of the PID neural network is d . 
We can use Fig. 1 to approximate the process 

described by expressing (1). 
 
 

 
 

Fig. 1. Structure of PIDNN. 
 
 

2.2. Multi-innovation Identification 
Algorithm 

 
The following single innovation identification 

algorithm can be used to estimate the parameter   of 
system (1) [10]. 

 
( )ˆ ˆ( ) ( 1) ( )
( )

t
t t e t

r t

   
 

(2) 

 
ˆ( ) ( ) ( ) ( 1)Te t y t t t     (3) 

 
2

( 1) ( 1) ( )r t r t t   
， (0) 1r  , (4) 

 

where ( )e t  is a single innovation. 
In multi-innovation identification algorithm [5], 

the single innovation 
1( )e t R  is extended to multi-

innovation vector ( , 1) pE p t R  , the information 

vector ( ) nt R   is also extended to ( , ) n pp t R    
for scalar system. From here, the algorithm can be 
expressed as 

 
( , )ˆ ˆ( ) ( 1) ( , )
( )

p t
t t E p t

r t
  

  
 

(5) 

( , 1) [ ( 1), ( 1), , ( )]T pE p t e t e t e t p R        (6) 
 
( , ) [ ( ), ( 1), , ( 1)] n pp t t t t p R           (7) 

 

where 1p   represents the innovation length. As 
1p  , the multi-innovation identification algorithm 

reduces to the single innovation identification 
algorithm. 
 
 
3. Multi-innovation Learning Algorithm 

based on PID Neural Network 
 
Considering p groups of input-output data from 

time 1t p   to time t , the output vectors of the ith 
input node is  

 
( , ) [ ( ), ( 1), , ( 1)]i i i iX p t x t x t x t p     ， 1, 2i   

 
The output vector of the output node is 
 

( , ) [ ( ), ( 1), ( 1)]TD p t d t d t d t p       
 

The expected vector of PID neural network is  
 

( , ) [ ( ), ( 1), , ( 1)]TY p t y t y t y t p       
 

Define a cost function [10]: 
 

21
( , ) ( , ) ( , )

2
J p t Y p t D p t 

 
(8) 

 
Thus, we proceed to refine the weights by the 
training iteration as follows: 
 

( , )
( 1) ( )j j

j

J p t
v t v t

v
 

  


 
 

 
( , )

( 1) ( )ij ij
ij

J p t
w t w t

w
 

  


 
(9) 

 

where 0   is the learning rate. 
 

( , ) ( , ) ( , )

( , )

( , ) ( , )
( , )[ , , ]

( ) ( 1)

( , ) ( , )
( , )[ , , ]

( ) ( 1)

( , )[ ( ), , ( 1)]

( , ) ( , )

j j

T
j

T
j

T
j

j

J p t X p t J p t

v v X p t

J p t J p t
X p t

x t x t p

J p t J p t
X p t

d t d t p

X p t e t e t p

X p t E p t

  


  

   
    

   
   

      

 
 

by defining the vector 
( , )jX p t

 as 
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( , ) [ ( ), ( 1), , ( 1)]j j j jX p t x t x t x t p       
 

 
and 
 

1 1

1

( , )( , ) ( , )

( , )

( , ) ( , )
( , )[ , , ]

( ) ( 1)

( , )[ ( ), , ( 1)]

( , ) ( , )

j

ij ij j

T
i

j j

T
i

i

U p tJ p t J p t

w w U p t

J p t J p t
X p t

u t u t p

X p t e t e t p

X p t E p t

 
   

 
     

     
   

 

the vector 
( , )jX p t

 and 1( )e t  may be expressed as 
 

( , )=[ ( ), ( -1), , ( 1)]i i i iX p t x t x t x t p      
 

1

( )( , ) ( )
( )=-

( ) ( ) ( )

( ) ( 1)
= ( ) ( )

( ) ( 1)

j

j j

j j
j

j j

x tJ p t d t
e t

d t x t u t

x t x t
e t v t sign

u t u t

 
   

  
  

 
 
So we have  
 

( 1) ( ) ( , ) ( , )j j jv t v t X p t E p t   
 

 

 

1( 1) ( ) ( , ) ( , )ij ij iw t w t X p t E p t  
 (10) 

 
 
4. Convergence Analysis of multi-

Innovation Learning Algorithm 
 

For the identification of nonlinear dynamical 
systems, PID neural network can be treated as a 
dynamical system described by (1). Its adjustable 

parameters 
( , )ij jw v 

 which is made of 

2 3( )ijW w 
 and 1 2 3( , , )V v v v  can be written as (5).  

Reference [11, 12], convergence analysis of the 
proposed algorithm be given as fellows. 

Theorem 1. For the system in (1), assume that a 

stochastic white noise with zero mean ( )v t  is 

uncorrelated with ( )u t  

(A1) 
2 2[ ( )] vE v t    . 

if there exist constants 0       and the 

innovation length p n such that the following 
persistent excitation condition holds, 

(A2) 1

1
( 1) ( 1)

p
T

i

I t i t i I
p

   


     
. 

Then the parameter estimation 
ˆ( )t given by 

Eq.(5) is uniform bounded. 

Proof. Define the estimation error ( ) ( )t t   
, 

assume   is real value. Subtracting   from the two 
sides of Eq.(5), we have  

 

( , )
( ) ( 1) [ ( , )

( )

( , ) ( , ) ( 1)]

( , )
( 1) [ ( , )

( )

( , )( ( 1) )]

T

T

T

p t
t t p t

r t

V p t p t t

p t
t V p t

r t

p t t

    



 

 


      

 


    

    

(11) 

 

Substituting ( )t   
 

( , )
( ) ( 1) [ ( , ) ( 1) ( , )]

( )

( , ) ( , ) ( , ) ( , )
( 1)

( ) ( )

T

T

p t
t t p t t V p t

r t

p t p t p t V p t
I t

r t r t

  




     

   
    
 

  



(12) 
 

By using A2, taking the trace gives 
 

2

1

1
( 1)

p

i

p t i p
p

  


   
 

2

1

( 1)
p

i

np t i np  


   
 

 

Hence, we have  
 

2
( )np t np   

 
 

According to the definition of ( )r t  in (4), we 
have 

 

2

1

( 1)
2

0 1

( 1)

0

( ) ( ) (0)

( ) (0)

1

( ( 1) 1) 1

( 1) 1

t

j

t p p

j i

t p

j

r t j r

jp i r

np

t p np

t p n












  

 

  



 

  

 

     
   



 



 
2

1

1
2

0 1

1

0

( ) ( ) (0)

( ) (0)

(0)

( 1 1) 1

1

t

j

t p p

j i

t p

j

r t j r

jp i r

np r

t p np

tn












  

 

  



 

  

 

     
 



 



 
 

Then, the following inequality has been obtained 



Sensors & Transducers, Vol. 21, Special Issue, May 2013, pp. 142-146 

 145

1 ( ) ( 1) 1tn r t t p n        
 

( , ) ( , )
1

( ) ( 1) 1

Tp t p t p
I I

r t t p n




  
        

 

Here, using assume A1, we have 
 

2

2

2

( ( , ) ( , ) ) ( ( , ) ( , ) )

( ( , ) )

v

v

E p t V p t E p t V p t

p E V p t

p p

p



 

 

  





  

(13) 

 

Taking the expectation and norm of (12) and 
using (13) give 
 

( , ) ( , ) ( , ) ( , )
( ) ( 1)

( ) ( )

( , ) ( , ) ( , ) ( , )
( 1)

( ) ( )

( , ) ( , )
1 ( 1)

( 1) 1 ( )

( , ) ( , )
1 ( 1)

( 1) 1 ( )

1
( 1)

T

T

p t p t p t V p t
t I t

r t r t

p t p t p t V p t
I t

r t r t

p t V p tp
t

t p n r t

p t V p tp
t

t p n r t

p

t p n

 



 


 





   
    

 

   
    

 


   
  


   

  

 
  

 







( , ) ( , )
( 1)

1 1

p t V p t
t

tn





 




 

   

 

 

( ) 1 ( 1)
( 1) 1

1
( , ) ( , )

1

1 ( 1)
( 1) 1 1

v

p
E t E t

t p n

E p t V p t
tn

pp
E t

t p n tn

 



  

 

   
  




   
   

 



 

If we select suitable parameter   and  , it 
follows that 

 

0 1 1
( 1) 1

p
d

t p n




   
    

 

where d  is a constant. Thus, 
 

   ( ) ( 1)E t dE t M    
 

(14) 

 

where M  is a constant. Repeating using the formula 
(14) 
 

   
 

1
1

( ) ( 1)

1
(1)

1

t
t

E t dE t M

d
d E M

d

 






  


 



 



 
 

This completes the proof of Theorem 1.  

5. Examples 
 
To illustrate the effectiveness of the proposed 

algorithm, this paper compares its accuracy with the 
traditionaly BP algorithm with the following example. 

Example 1. Considering the nonlinear dynamical 
systems described by the following function. 

 
( ) 0.4 ( 1) 0.54 ( 2) [ ( 1)]y t y t y t f u k       

 

where ( )y t  is the output system, ( )u t  is the input 
system, 

 
3 2( ) 2.5f u u u u    

 
The test signal used for the example is 
 

2
( ) 0.2sin 0.3sin

25 75

t t
u t

 
 

 
 
The initial weight matrix in output layer 

(0) [1,0.1,1; 1, 0.1, 1]W     , the initial weight matrix 

in hidden layer (0) (0.1,0.1,0.1)V  , the innovation 

length 2p  , the learning rate 0.175  . The 
system responses are shown in Fig. 2 and Fig. 3. 

 
 

 
 

Fig. 2. Identification effect of the unmodified algorithm. 
 
 
 

 
 

Fig. 3. Identification effect of the proposed algorithm. 
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Example 2. Considering the nonlinear dynamical 
systems described by the following function. 
 

( 1) [ ( )] [ ( )]y t f y t g u k    

where 
2

5 ( )
[ ( )]

2.5 ( )

y t
f y t

y t



，

3[ ( )] ( )g u t u t  
The test signal used for the example is 

2 2
( ) 0.6sin 0.4sin

50 75

t t
u t

 
 

 
 

Here, the initial weight matrices of PID neural 
network be the same as the above example, the 

innovation length 3p  , the learning rate 0.015  . 
The system responses are shown in Fig. 4 and Fig. 5. 

 
 

 
 

Fig. 4. Identification effect of the unmodified algorithm. 
 
 

 
 

Fig. 5. Identification effect of the proposed algorithm. 
 
 

6. Conclusions 
 

This paper proposed a multi-innovation learning 
algorithm based on PID neural network and analyses 
the convergence of the algorithm. From the 

simulation example, it is shown that the proposed 
algorithm has fast convergence rate and good 
tracking ability.  
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