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Abstract: A human tracking system based on mobile agent technologies has been proposed to achieve automatic 
human tracking function. In this system, each target person is tracked automatically by its mobile agent moving 
among cameras in which a person is detected. The current system utilizes an algorithm to predict which camera 
detects the target person. The algorithm needs information from all cameras about their monitoring ranges. If one 
monitoring range is updated by a pan / tilt / zoom operation or some other reason, the whole calculation to 
determine the relationship between camera nodes must be performed accordingly. In order to solve this problem, 
we propose in this paper an algorithm that uses only localized node information from each camera and its 
neighboring camera. With this proposed algorithm, each camera is able to calculate its neighbor nodes without 
obtaining the monitoring ranges of all cameras. This enables the construction of robust human tracking systems. 
Copyright © 2015 IFSA Publishing, S. L. 
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1. Introduction 

 
In recent years, in order to enhance public security, 

various kinds of systems such as entrance and exit 
management and detection of suspicious persons have 
been introduced. The most widely used system is a 
supervising system using cameras. In this system, 
operators must fix their eyes on two or more cameras 
to find a suspicious person. Considering the ability of 
the operators, the maximum number of cameras 
should be two or three for one operator. A number of 
operators are required for monitoring many cameras 
and tracking multiple people. Moreover, when an 
operator loses sight of a suspicious person, the 
operator must go over multiple cameras to find 

him/her. For this reason, systems that enable 
automatic human tracking using multiple cameras are 
proposed [1]. These systems, however, have two 
problems:  

1) The computational cost for tracking a person is 
concentrated on one monitoring server; 

2) Dealing with the change of monitoring range of 
cameras is not considered. 

We have proposed an automatic human tracking 
system based on mobile agent technology. This system 
consists of cameras, tracking servers, mobile agents, 
and a monitoring terminal. In this system, a tracking 
server installed in each camera analyzes images 
received from the camera. Therefore, the 
computational cost of image analysis is distributed 
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over each tracking server. A mobile agent is prepared 
for each person being tracked. The mobile agent 
migrates among tracking servers by detecting the 
physical data of a person being tracked. By checking 
the location of an agent at the monitoring terminal, the 
operator is able to know the location of the tracked 
persons. 

Tracking all detected persons is possible if a 
number of cameras that monitor in all directions 
without blind spots are installed. However, this is an 
unrealistic idea and is very costly. A more realistic 
approach is to install a certain numbers of cameras at 
some specific points such as entrances of a building or 
rooms and passage crossings. In this case, there is a 
moment at which a tracked person is not displayed on 
any camera. When the human tracking system loses a 
tracked person, the system has to check every 
camera’s view to find the lost person. A high 
computation cost for each camera is required for 
image analysis. Therefore, the algorithm was proposed 
to predict which camera would catch the tracked 
person next [1-3]. 

The algorithm calculates neighbor nodes of each 
camera based on the value of each camera’s 
monitoring range, map of the floor, and the locations 
where cameras are installed. A node is defined as a 
location of a tracking server with a camera. If a tracked 
person goes out of the monitoring range of one camera, 
the person should appear in the neighbor nodes of the 
camera. Since the algorithm has already calculated 
each camera's neighbor nodes, computation cost for 
image analysis is charged only on its neighbor nodes. 
However, when the monitoring ranges of some camera 
are changed by panning / tilting / zooming operations 
or other reasons, we have to re-calculate neighbor 
nodes. 

In this paper, we extend the current human tracking 
algorithm to localize the neighbor node calculation. 
The proposed algorithm utilizes only the monitoring 
range of neighbor nodes. By using the localization of 
neighbor node calculation, re-calculation cost of the 
neighbor node will be limited in some nodes even 
when many cameras change their monitoring ranges. 
Furthermore, this realizes a robust human tracking 
system that enables continuous tracking even when 
some nodes are down. 

Section 2 of this paper mentions about the related 
work. Section 3 introduces the proposed human 
tracking system and describes the neighbor node 
calculation algorithm. Section 4 describes the 
localized neighbor node calculation algorithm. Section 
5 shows the experimental result, and Section 6 
concludes this paper. 

 
 

2. Related Work 
 
Y. Shirai researched about tracking multiple 

persons and proposed a technique for collaboration 
between cameras for tackling obstruction [4].  
N. Kawashima proposed a tracking technique that 

eliminates noise such as shadow by using a dispersion 
matrix and by improving the background subtraction 
method [5]. These researches aimed at accuracy 
enhancement of persons’ detection by using multiple 
cameras, but do not aim at tracking a target person 
across multiple cameras. 

H. Mori proposed a tracking technique in an 
environment where the monitoring ranges of multiple 
cameras are overlapped by unifying the monitoring 
images from several cameras [6]. A. Nakazawa 
proposed a mechanism for combining the physical 
data of multiple persons [7]. N. Ukita proposed a 
system to exchange monitoring images efficiently 
using an agent based framework [8]. These researches 
assume that the imaging ranges of cameras are 
overlapped.  

N. Ukita and D. Makris proposed a method for 
estimating the migration path of a target based on 
entry-exit(in-out) information [9-10]. This method 
requires re-collection of the entry-exit (in-out) 
information when the monitoring ranges of cameras 
change. N. Takemura's research predicts possible 
routes of a person from his/her position and moving 
speed [11]. Y. Tanizawa proposed a mobile agent-
based framework, called “FollowingSpace” [12]. In 
this system, when a user moves to another location in 
a physical space, a mobile agent attached to the user 
migrates to one of the nearest hosts from the current 
location of the user. T. Tanaka also proposed an agent-
based approach to track a person [13]. However, a 
mechanism to predict in which camera a target would 
appear next was not discussed. K. Aoki proposed a 
cooperative surveillance system using active cameras 
[14]. In this system, each active camera adjusts its 
observation area to decrease blind spots. In these 
studies, cameras which a tracked person will appear 
next are predicted by movement of the person.  

Our proposed algorithm enables us to calculate a 
camera which a target will appear next without 
considering uncertain movement of the person. 
 
 
3. Human Tracking System Using Mobile 

Agent Technologies 
 

An automatic human tracking system using mobile 
agent technologies has been developed [1]. In the 
system, there are multiple mobile agents, each of 
which tracks one person called a “target.” Since all the 
targets are tracked automatically by each of the mobile 
agents, the location of each target can be known by 
monitoring the location of its corresponding mobile 
agent. 

 
 

3.1. System Configuration 
 
The structure of our automatic human tracking 

system is shown in Fig. 1. The system consists of 
cameras, tracking servers, mobile agents, and a 
monitoring terminal. Cameras are discretely installed 
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in a monitoring area and have pan / tilt / zoom 
functions which change each camera’s monitoring 
range. A tracking server is connected to each camera 
and receives images from the camera. Tracking 
servers have the execution environment for a mobile 
agent and an image analysis function. Since the image 
analysis is performed in each tracking server, the 
computational cost of image analysis is distributed to 
each tracking server. The mobile agent migrates across 
tracking servers in accordance with the movement of 
a target. The locations of mobile agents are displayed 
in a monitoring terminal. The current positions of all 
targets can be seen through the location of mobile 
agents. 

 
 

 
 

Fig. 1. Structure of the proposed system. 
 
 

3.2. Tracking Flow 
 
When a target comes into the monitoring range of 

each tracking server, the tracking server checks 
whether the target is being tracked by any agent in the 
server. If it is not, the tracking server generates a 
mobile agent containing the physical data of the target 
(e.g., facial features, color of attire). The mobile agent 
tracks the target based on the target’s physical data. At 
the same moment, the tracking server distributes 
copies of the tracking agent, called “copy agents”, to 
tracking servers of neighboring cameras where the 
target may pass. The calculation algorithm for 
neighbor nodes is described in the next subsection. 
Tracking servers of neighboring cameras analyze the 
camera image periodically based on the physical data 
which the copy agents have. If the target is detected, 
the copy agent in that camera becomes the new 
tracking agent and distributes new copies to tracking 
servers of neighboring cameras. The original tracking 
agent and copy agents are subsequently erased. 
Besides that, if an agent loses track of the target for a 
definite period of time, the agent removes itself. 

 

3.3. Algorithm to Calculate Neighbor Nodes 
 

Regarding camera locations and cost-efficiency, it 
is practical to install cameras only at specific places, 
such as building entrances, rooms, or passage 
crossings. In such an environment, each camera's 
monitoring range is not necessarily overlapped with 
other camera's monitoring range. Therefore, it 
becomes necessary to predict which camera a target 
will appear in next. In this case, it becomes necessary 
to predict which camera a target will appear in next. 

In order to predict the next camera, we defined 
points that represent a route through which a target can 
pass as following. 
- Branch points (passage crossings): Bi 
- Camera points (camera locations): Ci 
- Viewing points (between two branch points, 

between two camera points, and between a branch 
point and a camera point): Vi 
The monitoring range of each camera is 

determined from these points, as shown in Fig. 2. 
 
 

 
 

Fig. 2. Representation of a route. 
 
 

The monitoring range of each camera changes by 
pan, tilt and / or zoom operations. For example, when 
the monitoring range of camera C1 is as in the left part 
of Fig. 2, the monitoring range of C1 becomes [C1, V1, 
B1]. When the monitoring range of C1 is as in the right 
map of Fig. 2, the monitoring range of C1 becomes [B1, 
V2]. Matrix ܺ  of |ܥ| × |ܲ|  is defined from the 
monitoring range of all cameras. Element ௜ܺ௝  of 
matrix ܺ is defined as (1). 

 

௜ܺ௝ =
۔ۖۖەۖۖ
,0ۓ ݁ݎℎ݁ݓ ℎ݁ݐ ݂݋݁݃݊ܽݎ	݃݊݅ݎ݋ݐ݅݊݋݉ ℎ݁ݐ 	ݐ݊݅݋݌	ℎ݁ݐ	݁݀ݑ݈ܿ݊݅ݐ݋݊	ݏ݁݋݀	௜ܥ	ܽݎ݁݉ܽܿ ௝ܲ .1, ݂݋݁݃݊ܽݎ	݃݊݅ݎ݋ݐ݅݊݋݉	ℎ݁ݐ	݁ݎℎ݁ݓ ℎ݁ݐ ݏ݁݀ݑ௜݈݅݊ܿܥ	ܽݎ݁݉ܽܿ 	ݐ݊݅݋݌	ℎ݁ݐ ௝ܲ .

 (1) 

 
where C is a set of camera points and P is a set of 
branch points, camera points and viewing points. 
Cameras that have overlapping monitoring ranges 
(neighboring cameras) are identified using (2). The 
monitoring range of Camera Ci and Cj are overlapped 
if ܦ௜௝ ≥ 1. 
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ܦ = ܺ ∙ ்ܺ (2) 
 
Next, the adjacency matrix ܻ of |ܲ| × |ܲ| is 

defined. Element ௜ܻ௝ of matrix ܻ is defined as (3). 
 

௜ܻ௝ =
۔ۖۖەۖۖ
,0ۓ 	ݐ݊݅݋݌	ℎ݁ݐ	݁ݎℎ݁ݓ ௜ܲ	ܽ݊݀ݐℎ݁	ݐ݊݅݋݌	 ௝ܲ	ܽ݁ݎ	݃݅݁݊ݐ݋݊ℎܾ݃݊݅ݎ݋	݁ܽܿℎ	ݐ݋ℎ݁1.ݎ, 	ݐ݊݅݋݌	ℎ݁ݐ	݁ݎℎ݁ݓ ௜ܲ	ܽ݊݀ݐℎ݁	ݐ݊݅݋݌	 ௝ܲ	ܽ݃݅݁݊݁ݎℎܾ݃݊݅ݎ݋	݁ܽܿℎ	ݐ݋ℎ݁ݎ.

 (3) 

 
When ܧ௜௝ ≥ 1  in (4), the neighboring camera is 

overlapped with ሺ݊ − 1ሻ  points away from the 
monitoring range of the camera Ci. 

ܧ  = ܺ ∙ ܻ௡ ∙ ்ܺ (4) 
 
Even if the neighboring cameras can be identified 

by (4), the number of points between the monitoring 
ranges of two cameras is unknown. In other words, ݊ 
is unknown. Therefore, points which are not included 
in the monitoring range of all camera from matrix ܺ 
and ܻ  are eliminated. Matrix ܺ′  is generated from 
matrix ܺ by eliminating all the points in column ݆ that 
satisfy (5). 

 ෍ܺ௞௝௠
௞ୀ௜ = 0 (5) 

 
Similary, matrix ܻ′ is generated from matrix ܻ by 

eliminating all the points in column ݆  and row ݆ . 
Furthermore, ௜ܺ௞  is set to 1 if ௜ܺ௝ = 1 and ௝ܺ௞ = 1. 
This prevents a route from being cut off by the 
elimination of a point. The neighbor camera can be 
predicted by calculating (6) from matrix ܺ′ and ܻ′. 

′ܧ  = ܺ′ ∙ ܻ′ ∙ ܺ′் (6) 
 
 

4. Localization of Neighbor Node 
Calculation 
 
The neighbor nodes can be calculated by the 

algorithm described in Section 3.3. The algorithm, 
however, needs matrix ܺ that contains the monitoring 
ranges of all cameras. Since matrix X consists of all 
points, it is necessary to update matrix X each time a 
monitoring range of any camera in the system is 
changed by pan / tilt / zoom functions. Therefore, we 
localize the algorithm for decreasing the number of 
points for the calculation. Localization achieves 
neighbor node calculation without using all points in 
the system.  

In the localized algorithm, all of the points in the 
system are not required to calculate neighbor nodes of 
each camera. Each camera manages only points that 
are included in the monitoring range of itself and its 
neighbor nodes. Let us define a matrix ܻܿ . The 
elements of ܻܿ are defined as (7). 

ܻܿ௜௝ =
۔ۖۖەۖۖ
,0ۓ ݁ݎℎ݁ݓ ℎ݁ݐ݀݊ܽ	௜ܿܲ	ݐ݊݅݋݌	ℎ݁ݐ ,1.ݎℎ݁ݐ݋	ℎܿܽ݁	݃݊݅ݎ݋ℎܾ݃݅݁݊ݐ݋݊	݁ݎܽ	௝ܿܲ	ݐ݊݅݋݌ ℎ݁ݐ݀݊ܽ	௜ܿܲ	ݐ݊݅݋݌	ℎ݁ݐ	݁ݎℎ݁ݓ .ݎℎ݁ݐ݋	ℎܿܽ݁	݃݊݅ݎ݋ℎܾ݃݅݁݊݁ݎܽ	௝ܿܲ	ݐ݊݅݋݌

 (7) 

 
where Pci and Pcj are the points included in the route 
located between the monitoring range of camera C and 
the monitoring range of its neighboring cameras. 
Similarly, we define matrix ܺܿ by (8). 

 

ܺܿ௜௝ =
۔ۖۖەۖۖ
,0ۓ ݁ݎℎ݁ݓ ℎ݁ݐ ݂݋݁݃݊ܽݎ	݃݊݅ݎ݋ݐ݅݊݋݉ ℎ݁ݐ ܲ	ݐ݊݅݋݌	ℎ݁ݐ	݁݀ݑ݈ܿ݊݅ݐ݋݊	ݏ݁݋݀	௜ܥ	ܽݎ݁݉ܽܿ ௝ܿ.1, ݂݋݁݃݊ܽݎ	݃݊݅ݎ݋ݐ݅݊݋݉	ℎ݁ݐ	݁ݎℎ݁ݓ ℎ݁ݐ ݏ݁݀ݑ௜݈݅݊ܿܥ	ܽݎ݁݉ܽܿ ܲ	ݐ݊݅݋݌	ℎ݁ݐ ௝ܿ.

 (8) 

 ܺܿ  and ܻܿ  are prepared in each camera. All the 
points are not required in ܺܿ and ܻܿ. Next, matrix ܺܿ′ 
and ܻܿ′ are derived from matrix ܺܿ and ܻܿ using the 
method described in Section 3.3. Then, the neighbor 
nodes are calculated by: 

′ܿܧ  = ܺܿ′ ∙ ܻܿ′ ∙ ܺܿ′் (9) 
 
The localized algorithm achieves a robust human 

tracking system because all points in the system are 
not required. If the monitoring range of a camera 
changes, the localized algorithm requires the updated 
matrixes of that camera and its neighboring cameras.  

 
 

4.1. An Example of Reduced Points 
 

By the localization, the number of points 
constituting the matrix decreases, and as a result, the 
calculation cost is reduced. We show an example of 
localization by using a map in Fig. 3.  

 
 

 
 

Fig. 3. Example map. 
 
 

In Fig. 3, Ci represents a camera point. Bi 
represents a branch point, and Vi represents a  
viewing point. There are 5 camera points, 4 branch 
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points and 10 viewing points in the map. Since the 
total number of the points is 19, the size of matrix ܺ 
becomes 5×19 (|ݐℎ݁	݊ݎܾ݁݉ݑ	݂݋	ܽݎ݁݉ܽܿ	ݏݐ݊݅݋݌|  and the size ,(|ݏݐ݊݅݋݌	݈݈ܽ	ℎ݁ݐ	݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ݐ	ℎ݁ݐ|×
of matrix ܻ becomes 19×19. The monitoring range of 
each camera is represented by a triangular range. 

Here, we focus on camera C1. ܻܿଵ  consists of 
points included in the monitoring range of camera C1 
and points located between the monitoring range of C1 
and its neighbor nodes. Therefore, ܻܿଵ consists of C1, 
C3, C5, B1, B2, B3, V1, V2, V4, V5, V8 and V9. Thus, the 
size of matrix ܻܿଵ becomes 12×12 as shown in (10). 

 

ܻܿଵ =
CଵCଷCହBଵBଶBଷVଵVଶVସVହVV଼ଽ

Cଵ Cଷ Cହ Bଵ Bଶ Bଷ Vଵ Vଶ Vସ Vହ V଼ Vଽ

ۈۉ
ۈۈۈ
ۈۈۈ
ۇۈ
0 0 0 0 0 0 1 0 1 0 0 00 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 1 1 0 1 0 00 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 1 1 11 0 0 1 0 0 0 0 0 0 0 00 0 0 1 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 1 0 0 0 0 0 00 1 0 0 0 1 0 0 0 0 0 00 0 1 0 0 1 0 0 0 0 0 ی0

ۊ
(10) 

 
Similarly, the size of ܺܿଵ becomes 4×12 as shown 

in (11). 
 ܺܿଵ
= CଵCଷCସCହ

Cଵ Cଷ Cହ Bଵ Bଶ Bଷ Vଵ Vଶ Vସ Vହ V଼ Vଽ൮1 0 0 1 0 0 1 1 0 0 0 00 1 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 00 0 1 0 0 0 0 0 0 0 0 0൲ 
(11) 

 
Then, matrix ܺܿଵ′ is generated from ܺܿଵ  by 

eliminating column B3, V5, V8 and V9 because their 
columns satisfy (8). Thus, ܺܿଵ′ becomes 4×8 matrix 
as shown in (12). 

 

ܺܿଵ′ = CଵCଷCସCହ
Cଵ Cଷ Cହ Bଵ Bଶ Vଵ Vଶ Vସ൮1 0 0 1 0 1 1 00 1 0 0 1 0 0 00 0 0 0 0 0 0 10 0 1 0 0 0 0 0൲ (12) 

 
For the generation of matrix ܻܿଵ′, at first, columns 

and rows of B3, V5, V8 and V9 are deleted from ܻܿଵ. 
After that, B3, V5, V8 and V9, which satisfy ܻܿ௜௞ = 1 
and ܻܿ௞௝ = 1 are set to 1 in ܻܿଵ′. For example, the 
values of [݅, ݆] = [B1, B3] and [B3, B1] are set to 1 by 
the deletion of V5. This prevents cutting off the route 
between B1 and B3. Similarly, the values of [݅, ݆] = [B1, 
V8], [V8, V9], [B1, V9] and [V9, B1] are set to 1 by the 
deletion of B3; [B1, C3], [C3, B1], [C3, V9] and [V9, C3] 
are set to 1 by V8; [B1, C5], [C5, B1], [C3, C5] and [C5, 
C3] are set to 1 by V9. Thus, the matrix ܻܿଵ′  is 
generated as shown in (13). 

ܻܿଵ′ =
CଵCଷCହBଵBଶVଵVଶVସ

Cଵ Cଷ Cହ Bଵ Bଶ Vଵ Vଶ Vସ

ۈۉ
ۈۈۈ
0ۇ 0 0 0 0 1 0 10 0 1 1 0 0 0 00 1 0 1 0 0 0 00 1 1 0 0 1 1 00 0 0 0 0 0 1 01 0 0 1 0 0 0 00 0 0 1 1 0 0 01 0 0 0 0 0 0 ۋی0

ۋۋۋ
ۊ

 (13) 

 
 

4.2. Dealing with the Change of  
Monitoring Range 

 
A change of monitoring range of a camera may 

cause a change of its neighbor node. If that happens, 
the camera notifies its neighbor cameras that the 
monitoring range has changed. Neighbor cameras 
update their ܺܿ  with the updated monitoring range 
included in the received notification. When the 
monitoring range of a camera crosses the monitoring 
camera of a neighbor node, the matrix ܺܿ and ܻܿ of 
the camera does not have any points required for 
calculating neighbor nodes. For example, in the left 
part of Fig. 4, camera C1 has monitoring range 
information for the neighbor node C2. However, 
camera C1 does not need to have the information of 
C3 because a tracked person moving from C1 to C3 
always passes a monitoring range of camera C2. When 
the monitoring range of C1 changes as seen in the right 
part of Fig. 4, C1 and C3 become neighbors. However, ܺܿଵ  and ܻܿଵ  of C1 have no information about the 
monitoring range of C3. Therefore, C1 gets ܺܿଶ  and ܻܿଶ  of C2, and combines ܺܿଵ  and ܻܿଵ  with ܺܿଶ  and ܻܿଶ . Then, C1 can update its neighbor nodes by 
running a localized neighbor node calculation because ܺܿଶ  and ܻܿଶ  include information about points 
between C2 and C3.  

 
 

 
 

Fig. 4. Change of monitoring range. 
Dashed line shows that two cameras are neighbors. 

 
 

4.3. Dealing with the Additional Camera 
 

If a new camera is added to the system, it does not 
have matrixes ܺܿ and ܻܿ. Hereafter, Cnew represents a 
new camera and C1 represents its neighbor node. 
When a new camera is installed, we give access 
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information (e.g., IP address and authentication 
information) about neighbor nodes to the new camera. 
Cnew receives the matrix ܺܿଵ and ܻܿଵ from C1. Since 
C1 is adjacent to Cnew, the location of Cnew installed is 
included in ܺܿଵ	and ܻܿଵ. Therefore, Cnew can calculate 
its neighbor nodes by using ܺܿଵ and ܻܿଵ. 

For example, in the left part of Fig. 5, ܺܿଵ and ܻܿଵ 
have information about the points from C1 to C2, and 
C1 to C3. 

 
 

 
 

Fig. 5. Addition of a camera. 
Dashed line shows that two cameras are neighbors. 

 
 

When Cnew is installed as shown in the right part of 
Fig. 5, Cnew receives ܺܿଵ and ܻܿଵ from C1. Since ܺܿଵ 
and ܻܿଵ  contain all the information required to 
calculate neighbor nodes of Cnew, Cnew can calculate its 
neighbor nodes C1, C2 and C3.  

Furthermore, the addition of Cnew may accompany 
with the updating of points. Fig. 6 shows an example 
of update policy. 

 
 

 
 

Fig. 6. Change of the points. 
 
 

When a camera is added at a branch point, the 
branch point changes to a camera point. When a 
camera is added at a viewing point, the viewing point 
is divided into two viewing points on the both sides of 
added camera point. 

Updated points are added to ܺܿଵ and ܻܿଵ, and Cnew 
updates ܺܿଵ  with its monitoring range. The updated 
matrix ܺܿଵ  and ܻܿଵ	are matrixes ܺܿ௡௘௪  and ܻܿ௡௘௪ . 
Cnew calculates neighbor nodes using ܺܿ௡௘௪  and ܻܿ௡௘௪. Then, Cnew notifies its neighbor nodes of the 
updated points and its monitoring range. Cameras that 
receive this notification update their ܺܿ and Yc  and 

recalculate their neighbor nodes. In this way, the 
system can effectively handle the change of neighbor 
nodes as a result of the addition of a camera. 

 
 

4.4. Dealing with the Removing Camera 
 
As for removing cameras, two cases must be 

considered; intentional removal and unintentional 
removal. Because unintentional removal means the 
sudden loss of camera Crem, it is more difficult to 
handle than intentional removal. Therefore, we discuss 
only the case of unintentional removal. 

Matrixes ܺܿ௥௘௠  and ܻܿ௥௘௠  are lost when 
unintentional removal occurs. To tackle it, each 
camera exchanges its ܺܿ  and ܻܿ  matrixes with its 
neighbor node. Each camera periodically monitors its 
neighboring cameras to check if they are accessible or 
not. If one of the cameras becomes inaccessible, the 
camera is regarded to have been removed 
unintentionally. Suppose camera C1 detects removal of 
Crem, C1 combines ܺܿ௥௘௠ and ܻܿ௥௘௠ with its ܺܿଵ and ܻܿଵ . In the combined ܺܿଵ , C1 sets the rows 
corresponding to the camera point of Crem to 0. This 
means that the monitoring range of Crem becomes 
nothing. By calculating using the method in 
Section 4.2, C1 can calculate its neighbor node even if 
Crem is unintentionally removed. Note that the update 
of points is not required because unnecessary points 
(e.g., a camera point corresponding to Crem) are deleted 
automatically using Equation (5) in Section 3.3. 
 
 
5. Experiments 

 
To verify the effectiveness of the proposed method, 

we performed a simulation. We created a map of the 
surveillance area and assumed that the plurality of 
cameras are installed in experiments. 

This experiment was conducted by installing 
18 cameras in 124.5 m 	×	 51 m area as shown in  
Fig. 7. In this experiment, three targets enter the 
monitoring area from the entrance, walk randomly at 
a speed of 1.5 m/s to 3.0 m/s, and then exit the area. 
When one target exits the area, a new target enters 
from the entrance. Pan / tilt / zoom of each camera 
occurs randomly once every 30 seconds. Removal and 
addition of a camera occurs once every 8 hours. In 
addition, it was assumed that each camera detects a 
target accurately because there is a focus on 
localization of neighbor node calculation in  
this experiment. 

This simulation lasted 72 hours. The simulation 
result is shown in Fig. 8. The camera number is 
displayed on the vertical axis and elapsed time on the 
horizontal axis. Movements of the targets are shown 
by dotted lines, and the locations of mobile agents are 
shown by solid lines. The occurrence times of pan, tilt, 
and zoom are shown as ◇. Camera addition is shown 
as ○. Camera removal is shown as ×. 
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Fig. 7. Simulation map. 
 
 

 
 

Fig. 8. Result of tracking simulation. 
 

 
Initially, camera C5 is adjacent to camera C4, and 

C6 is adjacent to C5. In Fig. 8, target A was detected 
by C4, then detected by C5 and finally detected by C6. 
C5 was deleted after 102 seconds had elapsed. Next, 
target B was detected by C4, and then by C6. This 
shows that neighbor nodes were correctly updated 
when C5 was deleted. 

Additionally, camera C19 was added between C4 
and C6 after 3176 seconds had elapsed. Until C19 was 
added, targets were detected by C6 after being detected 
by C4. After C19 was added, the target was detected by 
C19 after C4, and then by C6 after C19. This means that 
the neighbor node of C4 was updated correctly to C19, 
and that the neighbor node of C19 was updated 
correctly to C6. Also, even if a monitoring range 
changed due to pan / tilt / zoom, neighbor nodes were 
calculated correctly.  

There was no failure in the neighbor node 
calculation, and targets continued to be tracked by 
mobile agents accurately. 
 
 
6. Conclusions 

 
We propose the automatic human tracking system 

using mobile agent technologies. To track a person, we 
need to find the neighbor node which catches the target 
person. The proposed algorithm is able to calculate 
these neighbor nodes with only localized node 

information. By using the algorithm, it is possible to 
calculate neighbor node of each camera without the 
monitoring ranges of all cameras in the system even 
when monitoring ranges of cameras are changed or 
cameras are added / removed. The proposed algorithm 
provides continuous tracking ability even if some 
nodes are down. We confirmed the effectiveness of the 
proposed system in simulation experiments. 
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