
Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 54-61

 54

Sensors & Transducers
© 2015 by IFSA Publishing, S. L.

http://www.sensorsportal.com

Automatic Human Tracking System
Using Localized Neighbor Node Calculation

1, 2 Tappei Yotsumoto, 1 Kozo Tanigawa, 2 Miki Tsuji,

2 Kenichi Takahashi, 2 Takao Kawamura and 2 Kazunori Sugahara
1 Melco Power Systems Co., Ltd., 1-1-2, Wadasaki-cho, Hyogo-ku, Kobe, 652-0855, Japan

2 Tottori University, 4-101, Koyama-cho Minami, Tottori, 680-8550, Japan
1 Tel.: +81-78-682-6942, fax: +81-78-682-6891

1 E-mail: Yotsumoto.Tappei@zb.MitsubishiElectric.co.jp

Received: 31 August 2015 /Accepted: 15 October 2015 /Published: 30 November 2015

Abstract: A human tracking system based on mobile agent technologies has been proposed to achieve automatic
human tracking function. In this system, each target person is tracked automatically by its mobile agent moving
among cameras in which a person is detected. The current system utilizes an algorithm to predict which camera
detects the target person. The algorithm needs information from all cameras about their monitoring ranges. If one
monitoring range is updated by a pan / tilt / zoom operation or some other reason, the whole calculation to
determine the relationship between camera nodes must be performed accordingly. In order to solve this problem,
we propose in this paper an algorithm that uses only localized node information from each camera and its
neighboring camera. With this proposed algorithm, each camera is able to calculate its neighbor nodes without
obtaining the monitoring ranges of all cameras. This enables the construction of robust human tracking systems.
Copyright © 2015 IFSA Publishing, S. L.

Keywords: Human tracking, Mobile agent, Pan/Tilt/Zoom, Neighbor relation, Localization.

1. Introduction

In recent years, in order to enhance public security,

various kinds of systems such as entrance and exit
management and detection of suspicious persons have
been introduced. The most widely used system is a
supervising system using cameras. In this system,
operators must fix their eyes on two or more cameras
to find a suspicious person. Considering the ability of
the operators, the maximum number of cameras
should be two or three for one operator. A number of
operators are required for monitoring many cameras
and tracking multiple people. Moreover, when an
operator loses sight of a suspicious person, the
operator must go over multiple cameras to find

him/her. For this reason, systems that enable
automatic human tracking using multiple cameras are
proposed [1]. These systems, however, have two
problems:

1) The computational cost for tracking a person is
concentrated on one monitoring server;

2) Dealing with the change of monitoring range of
cameras is not considered.

We have proposed an automatic human tracking
system based on mobile agent technology. This system
consists of cameras, tracking servers, mobile agents,
and a monitoring terminal. In this system, a tracking
server installed in each camera analyzes images
received from the camera. Therefore, the
computational cost of image analysis is distributed

www.sensorsportal.com/HTML/DIGEST/P_2757.htm

http://www.sensorsportal.com/

Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 54-61

 55

over each tracking server. A mobile agent is prepared
for each person being tracked. The mobile agent
migrates among tracking servers by detecting the
physical data of a person being tracked. By checking
the location of an agent at the monitoring terminal, the
operator is able to know the location of the tracked
persons.

Tracking all detected persons is possible if a
number of cameras that monitor in all directions
without blind spots are installed. However, this is an
unrealistic idea and is very costly. A more realistic
approach is to install a certain numbers of cameras at
some specific points such as entrances of a building or
rooms and passage crossings. In this case, there is a
moment at which a tracked person is not displayed on
any camera. When the human tracking system loses a
tracked person, the system has to check every
camera’s view to find the lost person. A high
computation cost for each camera is required for
image analysis. Therefore, the algorithm was proposed
to predict which camera would catch the tracked
person next [1-3].

The algorithm calculates neighbor nodes of each
camera based on the value of each camera’s
monitoring range, map of the floor, and the locations
where cameras are installed. A node is defined as a
location of a tracking server with a camera. If a tracked
person goes out of the monitoring range of one camera,
the person should appear in the neighbor nodes of the
camera. Since the algorithm has already calculated
each camera's neighbor nodes, computation cost for
image analysis is charged only on its neighbor nodes.
However, when the monitoring ranges of some camera
are changed by panning / tilting / zooming operations
or other reasons, we have to re-calculate neighbor
nodes.

In this paper, we extend the current human tracking
algorithm to localize the neighbor node calculation.
The proposed algorithm utilizes only the monitoring
range of neighbor nodes. By using the localization of
neighbor node calculation, re-calculation cost of the
neighbor node will be limited in some nodes even
when many cameras change their monitoring ranges.
Furthermore, this realizes a robust human tracking
system that enables continuous tracking even when
some nodes are down.

Section 2 of this paper mentions about the related
work. Section 3 introduces the proposed human
tracking system and describes the neighbor node
calculation algorithm. Section 4 describes the
localized neighbor node calculation algorithm. Section
5 shows the experimental result, and Section 6
concludes this paper.

2. Related Work

Y. Shirai researched about tracking multiple

persons and proposed a technique for collaboration
between cameras for tackling obstruction [4].
N. Kawashima proposed a tracking technique that

eliminates noise such as shadow by using a dispersion
matrix and by improving the background subtraction
method [5]. These researches aimed at accuracy
enhancement of persons’ detection by using multiple
cameras, but do not aim at tracking a target person
across multiple cameras.

H. Mori proposed a tracking technique in an
environment where the monitoring ranges of multiple
cameras are overlapped by unifying the monitoring
images from several cameras [6]. A. Nakazawa
proposed a mechanism for combining the physical
data of multiple persons [7]. N. Ukita proposed a
system to exchange monitoring images efficiently
using an agent based framework [8]. These researches
assume that the imaging ranges of cameras are
overlapped.

N. Ukita and D. Makris proposed a method for
estimating the migration path of a target based on
entry-exit(in-out) information [9-10]. This method
requires re-collection of the entry-exit (in-out)
information when the monitoring ranges of cameras
change. N. Takemura's research predicts possible
routes of a person from his/her position and moving
speed [11]. Y. Tanizawa proposed a mobile agent-
based framework, called “FollowingSpace” [12]. In
this system, when a user moves to another location in
a physical space, a mobile agent attached to the user
migrates to one of the nearest hosts from the current
location of the user. T. Tanaka also proposed an agent-
based approach to track a person [13]. However, a
mechanism to predict in which camera a target would
appear next was not discussed. K. Aoki proposed a
cooperative surveillance system using active cameras
[14]. In this system, each active camera adjusts its
observation area to decrease blind spots. In these
studies, cameras which a tracked person will appear
next are predicted by movement of the person.

Our proposed algorithm enables us to calculate a
camera which a target will appear next without
considering uncertain movement of the person.

3. Human Tracking System Using Mobile

Agent Technologies

An automatic human tracking system using mobile
agent technologies has been developed [1]. In the
system, there are multiple mobile agents, each of
which tracks one person called a “target.” Since all the
targets are tracked automatically by each of the mobile
agents, the location of each target can be known by
monitoring the location of its corresponding mobile
agent.

3.1. System Configuration

The structure of our automatic human tracking

system is shown in Fig. 1. The system consists of
cameras, tracking servers, mobile agents, and a
monitoring terminal. Cameras are discretely installed

Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 54-61

 56

in a monitoring area and have pan / tilt / zoom
functions which change each camera’s monitoring
range. A tracking server is connected to each camera
and receives images from the camera. Tracking
servers have the execution environment for a mobile
agent and an image analysis function. Since the image
analysis is performed in each tracking server, the
computational cost of image analysis is distributed to
each tracking server. The mobile agent migrates across
tracking servers in accordance with the movement of
a target. The locations of mobile agents are displayed
in a monitoring terminal. The current positions of all
targets can be seen through the location of mobile
agents.

Fig. 1. Structure of the proposed system.

3.2. Tracking Flow

When a target comes into the monitoring range of

each tracking server, the tracking server checks
whether the target is being tracked by any agent in the
server. If it is not, the tracking server generates a
mobile agent containing the physical data of the target
(e.g., facial features, color of attire). The mobile agent
tracks the target based on the target’s physical data. At
the same moment, the tracking server distributes
copies of the tracking agent, called “copy agents”, to
tracking servers of neighboring cameras where the
target may pass. The calculation algorithm for
neighbor nodes is described in the next subsection.
Tracking servers of neighboring cameras analyze the
camera image periodically based on the physical data
which the copy agents have. If the target is detected,
the copy agent in that camera becomes the new
tracking agent and distributes new copies to tracking
servers of neighboring cameras. The original tracking
agent and copy agents are subsequently erased.
Besides that, if an agent loses track of the target for a
definite period of time, the agent removes itself.

3.3. Algorithm to Calculate Neighbor Nodes

Regarding camera locations and cost-efficiency, it
is practical to install cameras only at specific places,
such as building entrances, rooms, or passage
crossings. In such an environment, each camera's
monitoring range is not necessarily overlapped with
other camera's monitoring range. Therefore, it
becomes necessary to predict which camera a target
will appear in next. In this case, it becomes necessary
to predict which camera a target will appear in next.

In order to predict the next camera, we defined
points that represent a route through which a target can
pass as following.
- Branch points (passage crossings): Bi
- Camera points (camera locations): Ci
- Viewing points (between two branch points,

between two camera points, and between a branch
point and a camera point): Vi
The monitoring range of each camera is

determined from these points, as shown in Fig. 2.

Fig. 2. Representation of a route.

The monitoring range of each camera changes by
pan, tilt and / or zoom operations. For example, when
the monitoring range of camera C1 is as in the left part
of Fig. 2, the monitoring range of C1 becomes [C1, V1,
B1]. When the monitoring range of C1 is as in the right
map of Fig. 2, the monitoring range of C1 becomes [B1,
V2]. Matrix ܺ of |ܥ| × |ܲ| is defined from the
monitoring range of all cameras. Element ௜ܺ௝ of
matrix ܺ is defined as (1).

௜ܺ௝ =
۔ۖۖەۖۖ
,0ۓ ݁ݎℎ݁ݓ ℎ݁ݐ ݂݋݁݃݊ܽݎ	݃݊݅ݎ݋ݐ݅݊݋݉ ℎ݁ݐ 	ݐ݊݅݋݌	ℎ݁ݐ	݁݀ݑ݈ܿ݊݅ݐ݋݊	ݏ݁݋݀	௜ܥ	ܽݎ݁݉ܽܿ ௝ܲ .1, ݂݋݁݃݊ܽݎ	݃݊݅ݎ݋ݐ݅݊݋݉	ℎ݁ݐ	݁ݎℎ݁ݓ ℎ݁ݐ ݏ݁݀ݑ௜݈݅݊ܿܥ	ܽݎ݁݉ܽܿ 	ݐ݊݅݋݌	ℎ݁ݐ ௝ܲ .

 (1)

where C is a set of camera points and P is a set of
branch points, camera points and viewing points.
Cameras that have overlapping monitoring ranges
(neighboring cameras) are identified using (2). The
monitoring range of Camera Ci and Cj are overlapped
if ܦ௜௝ ≥ 1.

B3

B1 B2

Camera
Point

Monitoring
Range B Branch

Point

C1, V1 and V2 are included in the
monitoring range of C1.

B1 and V2 are included in the
monitoring range of C1.

V Viewing
Point

V1 V2

V3 V4 V5

V6 B3

B1 B2V1 V2

V3 V4 V5

V6

C1

C2 C2C3 C3

C1

C

Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 54-61

 57

ܦ = ܺ ∙ ்ܺ (2)

Next, the adjacency matrix ܻ of |ܲ| × |ܲ| is

defined. Element ௜ܻ௝ of matrix ܻ is defined as (3).

௜ܻ௝ =
۔ۖۖەۖۖ
,0ۓ 	ݐ݊݅݋݌	ℎ݁ݐ	݁ݎℎ݁ݓ ௜ܲ	ܽ݊݀ݐℎ݁	ݐ݊݅݋݌	 ௝ܲ	ܽ݁ݎ	݃݅݁݊ݐ݋݊ℎܾ݃݊݅ݎ݋	݁ܽܿℎ	ݐ݋ℎ݁1.ݎ, 	ݐ݊݅݋݌	ℎ݁ݐ	݁ݎℎ݁ݓ ௜ܲ	ܽ݊݀ݐℎ݁	ݐ݊݅݋݌	 ௝ܲ	ܽ݃݅݁݊݁ݎℎܾ݃݊݅ݎ݋	݁ܽܿℎ	ݐ݋ℎ݁ݎ.

 (3)

When ܧ௜௝ ≥ 1 in (4), the neighboring camera is

overlapped with ሺ݊ − 1ሻ points away from the
monitoring range of the camera Ci.

ܧ = ܺ ∙ ܻ௡ ∙ ்ܺ (4)

Even if the neighboring cameras can be identified

by (4), the number of points between the monitoring
ranges of two cameras is unknown. In other words, ݊
is unknown. Therefore, points which are not included
in the monitoring range of all camera from matrix ܺ
and ܻ are eliminated. Matrix ܺ′ is generated from
matrix ܺ by eliminating all the points in column ݆ that
satisfy (5).

 ෍ܺ௞௝௠
௞ୀ௜ = 0 (5)

Similary, matrix ܻ′ is generated from matrix ܻ by

eliminating all the points in column ݆ and row ݆ .
Furthermore, ௜ܺ௞ is set to 1 if ௜ܺ௝ = 1 and ௝ܺ௞ = 1.
This prevents a route from being cut off by the
elimination of a point. The neighbor camera can be
predicted by calculating (6) from matrix ܺ′ and ܻ′.

′ܧ = ܺ′ ∙ ܻ′ ∙ ܺ′் (6)

4. Localization of Neighbor Node
Calculation

The neighbor nodes can be calculated by the

algorithm described in Section 3.3. The algorithm,
however, needs matrix ܺ that contains the monitoring
ranges of all cameras. Since matrix X consists of all
points, it is necessary to update matrix X each time a
monitoring range of any camera in the system is
changed by pan / tilt / zoom functions. Therefore, we
localize the algorithm for decreasing the number of
points for the calculation. Localization achieves
neighbor node calculation without using all points in
the system.

In the localized algorithm, all of the points in the
system are not required to calculate neighbor nodes of
each camera. Each camera manages only points that
are included in the monitoring range of itself and its
neighbor nodes. Let us define a matrix ܻܿ . The
elements of ܻܿ are defined as (7).

ܻܿ௜௝ =
۔ۖۖەۖۖ
,0ۓ ݁ݎℎ݁ݓ ℎ݁ݐ݀݊ܽ	௜ܿܲ	ݐ݊݅݋݌	ℎ݁ݐ ,1.ݎℎ݁ݐ݋	ℎܿܽ݁	݃݊݅ݎ݋ℎܾ݃݅݁݊ݐ݋݊	݁ݎܽ	௝ܿܲ	ݐ݊݅݋݌ ℎ݁ݐ݀݊ܽ	௜ܿܲ	ݐ݊݅݋݌	ℎ݁ݐ	݁ݎℎ݁ݓ .ݎℎ݁ݐ݋	ℎܿܽ݁	݃݊݅ݎ݋ℎܾ݃݅݁݊݁ݎܽ	௝ܿܲ	ݐ݊݅݋݌

 (7)

where Pci and Pcj are the points included in the route
located between the monitoring range of camera C and
the monitoring range of its neighboring cameras.
Similarly, we define matrix ܺܿ by (8).

ܺܿ௜௝ =
۔ۖۖەۖۖ
,0ۓ ݁ݎℎ݁ݓ ℎ݁ݐ ݂݋݁݃݊ܽݎ	݃݊݅ݎ݋ݐ݅݊݋݉ ℎ݁ݐ ܲ	ݐ݊݅݋݌	ℎ݁ݐ	݁݀ݑ݈ܿ݊݅ݐ݋݊	ݏ݁݋݀	௜ܥ	ܽݎ݁݉ܽܿ ௝ܿ.1, ݂݋݁݃݊ܽݎ	݃݊݅ݎ݋ݐ݅݊݋݉	ℎ݁ݐ	݁ݎℎ݁ݓ ℎ݁ݐ ݏ݁݀ݑ௜݈݅݊ܿܥ	ܽݎ݁݉ܽܿ ܲ	ݐ݊݅݋݌	ℎ݁ݐ ௝ܿ.

 (8)

 ܺܿ and ܻܿ are prepared in each camera. All the
points are not required in ܺܿ and ܻܿ. Next, matrix ܺܿ′
and ܻܿ′ are derived from matrix ܺܿ and ܻܿ using the
method described in Section 3.3. Then, the neighbor
nodes are calculated by:

′ܿܧ = ܺܿ′ ∙ ܻܿ′ ∙ ܺܿ′் (9)

The localized algorithm achieves a robust human

tracking system because all points in the system are
not required. If the monitoring range of a camera
changes, the localized algorithm requires the updated
matrixes of that camera and its neighboring cameras.

4.1. An Example of Reduced Points

By the localization, the number of points
constituting the matrix decreases, and as a result, the
calculation cost is reduced. We show an example of
localization by using a map in Fig. 3.

Fig. 3. Example map.

In Fig. 3, Ci represents a camera point. Bi
represents a branch point, and Vi represents a
viewing point. There are 5 camera points, 4 branch

C5

C1 V1 B1

V5

V4

C4

V2 B2 V3
C2

C3

V6

V8

V7V10V9

V11

B3

B4

Camera Monitoring
Range B

Branch
Point V

Viewing
PointC

Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 54-61

 58

points and 10 viewing points in the map. Since the
total number of the points is 19, the size of matrix ܺ
becomes 5×19 (|ݐℎ݁	݊ݎܾ݁݉ݑ	݂݋	ܽݎ݁݉ܽܿ	ݏݐ݊݅݋݌| and the size ,(|ݏݐ݊݅݋݌	݈݈ܽ	ℎ݁ݐ	݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ݐ	ℎ݁ݐ|×
of matrix ܻ becomes 19×19. The monitoring range of
each camera is represented by a triangular range.

Here, we focus on camera C1. ܻܿଵ consists of
points included in the monitoring range of camera C1
and points located between the monitoring range of C1
and its neighbor nodes. Therefore, ܻܿଵ consists of C1,
C3, C5, B1, B2, B3, V1, V2, V4, V5, V8 and V9. Thus, the
size of matrix ܻܿଵ becomes 12×12 as shown in (10).

ܻܿଵ =
CଵCଷCହBଵBଶBଷVଵVଶVସVହVV଼ଽ

Cଵ Cଷ Cହ Bଵ Bଶ Bଷ Vଵ Vଶ Vସ Vହ V଼ Vଽ

ۈۉ
ۈۈۈ
ۈۈۈ
ۇۈ
0 0 0 0 0 0 1 0 1 0 0 00 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 1 1 0 1 0 00 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 1 1 11 0 0 1 0 0 0 0 0 0 0 00 0 0 1 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 1 0 0 0 0 0 00 1 0 0 0 1 0 0 0 0 0 00 0 1 0 0 1 0 0 0 0 0 ی0

ۊ
(10)

Similarly, the size of ܺܿଵ becomes 4×12 as shown

in (11).
 ܺܿଵ
= CଵCଷCସCହ

Cଵ Cଷ Cହ Bଵ Bଶ Bଷ Vଵ Vଶ Vସ Vହ V଼ Vଽ൮1 0 0 1 0 0 1 1 0 0 0 00 1 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 00 0 1 0 0 0 0 0 0 0 0 0൲
(11)

Then, matrix ܺܿଵ′ is generated from ܺܿଵ by

eliminating column B3, V5, V8 and V9 because their
columns satisfy (8). Thus, ܺܿଵ′ becomes 4×8 matrix
as shown in (12).

ܺܿଵ′ = CଵCଷCସCହ
Cଵ Cଷ Cହ Bଵ Bଶ Vଵ Vଶ Vସ൮1 0 0 1 0 1 1 00 1 0 0 1 0 0 00 0 0 0 0 0 0 10 0 1 0 0 0 0 0൲ (12)

For the generation of matrix ܻܿଵ′, at first, columns

and rows of B3, V5, V8 and V9 are deleted from ܻܿଵ.
After that, B3, V5, V8 and V9, which satisfy ܻܿ௜௞ = 1
and ܻܿ௞௝ = 1 are set to 1 in ܻܿଵ′. For example, the
values of [݅, ݆] = [B1, B3] and [B3, B1] are set to 1 by
the deletion of V5. This prevents cutting off the route
between B1 and B3. Similarly, the values of [݅, ݆] = [B1,
V8], [V8, V9], [B1, V9] and [V9, B1] are set to 1 by the
deletion of B3; [B1, C3], [C3, B1], [C3, V9] and [V9, C3]
are set to 1 by V8; [B1, C5], [C5, B1], [C3, C5] and [C5,
C3] are set to 1 by V9. Thus, the matrix ܻܿଵ′ is
generated as shown in (13).

ܻܿଵ′ =
CଵCଷCହBଵBଶVଵVଶVସ

Cଵ Cଷ Cହ Bଵ Bଶ Vଵ Vଶ Vସ

ۈۉ
ۈۈۈ
0ۇ 0 0 0 0 1 0 10 0 1 1 0 0 0 00 1 0 1 0 0 0 00 1 1 0 0 1 1 00 0 0 0 0 0 1 01 0 0 1 0 0 0 00 0 0 1 1 0 0 01 0 0 0 0 0 0 ۋی0

ۋۋۋ
ۊ

 (13)

4.2. Dealing with the Change of
Monitoring Range

A change of monitoring range of a camera may

cause a change of its neighbor node. If that happens,
the camera notifies its neighbor cameras that the
monitoring range has changed. Neighbor cameras
update their ܺܿ with the updated monitoring range
included in the received notification. When the
monitoring range of a camera crosses the monitoring
camera of a neighbor node, the matrix ܺܿ and ܻܿ of
the camera does not have any points required for
calculating neighbor nodes. For example, in the left
part of Fig. 4, camera C1 has monitoring range
information for the neighbor node C2. However,
camera C1 does not need to have the information of
C3 because a tracked person moving from C1 to C3
always passes a monitoring range of camera C2. When
the monitoring range of C1 changes as seen in the right
part of Fig. 4, C1 and C3 become neighbors. However, ܺܿଵ and ܻܿଵ of C1 have no information about the
monitoring range of C3. Therefore, C1 gets ܺܿଶ and ܻܿଶ of C2, and combines ܺܿଵ and ܻܿଵ with ܺܿଶ and ܻܿଶ . Then, C1 can update its neighbor nodes by
running a localized neighbor node calculation because ܺܿଶ and ܻܿଶ include information about points
between C2 and C3.

Fig. 4. Change of monitoring range.
Dashed line shows that two cameras are neighbors.

4.3. Dealing with the Additional Camera

If a new camera is added to the system, it does not
have matrixes ܺܿ and ܻܿ. Hereafter, Cnew represents a
new camera and C1 represents its neighbor node.
When a new camera is installed, we give access

B3

B1 B2

Camera Monitoring
Range B Branch

Point

The neighbor of C1 is C2.
The neighbors of C2 are C1 and C3.
The neighbor of C3 is C2.

The neighbors of C1 are C2 and C3.
The neighbor of C2 is C1.
The neighbor of C3 is C1.

V Viewing
Point

V1 V2

V3 V4 V5

V6 B3

B1 B2V1 V2

V3 V4 V5

V6C2 C2C3 C3

C1

C

C1

Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 54-61

 59

information (e.g., IP address and authentication
information) about neighbor nodes to the new camera.
Cnew receives the matrix ܺܿଵ and ܻܿଵ from C1. Since
C1 is adjacent to Cnew, the location of Cnew installed is
included in ܺܿଵ	and ܻܿଵ. Therefore, Cnew can calculate
its neighbor nodes by using ܺܿଵ and ܻܿଵ.

For example, in the left part of Fig. 5, ܺܿଵ and ܻܿଵ
have information about the points from C1 to C2, and
C1 to C3.

Fig. 5. Addition of a camera.
Dashed line shows that two cameras are neighbors.

When Cnew is installed as shown in the right part of
Fig. 5, Cnew receives ܺܿଵ and ܻܿଵ from C1. Since ܺܿଵ
and ܻܿଵ contain all the information required to
calculate neighbor nodes of Cnew, Cnew can calculate its
neighbor nodes C1, C2 and C3.

Furthermore, the addition of Cnew may accompany
with the updating of points. Fig. 6 shows an example
of update policy.

Fig. 6. Change of the points.

When a camera is added at a branch point, the
branch point changes to a camera point. When a
camera is added at a viewing point, the viewing point
is divided into two viewing points on the both sides of
added camera point.

Updated points are added to ܺܿଵ and ܻܿଵ, and Cnew
updates ܺܿଵ with its monitoring range. The updated
matrix ܺܿଵ and ܻܿଵ	are matrixes ܺܿ௡௘௪ and ܻܿ௡௘௪ .
Cnew calculates neighbor nodes using ܺܿ௡௘௪ and ܻܿ௡௘௪. Then, Cnew notifies its neighbor nodes of the
updated points and its monitoring range. Cameras that
receive this notification update their ܺܿ and Yc and

recalculate their neighbor nodes. In this way, the
system can effectively handle the change of neighbor
nodes as a result of the addition of a camera.

4.4. Dealing with the Removing Camera

As for removing cameras, two cases must be

considered; intentional removal and unintentional
removal. Because unintentional removal means the
sudden loss of camera Crem, it is more difficult to
handle than intentional removal. Therefore, we discuss
only the case of unintentional removal.

Matrixes ܺܿ௥௘௠ and ܻܿ௥௘௠ are lost when
unintentional removal occurs. To tackle it, each
camera exchanges its ܺܿ and ܻܿ matrixes with its
neighbor node. Each camera periodically monitors its
neighboring cameras to check if they are accessible or
not. If one of the cameras becomes inaccessible, the
camera is regarded to have been removed
unintentionally. Suppose camera C1 detects removal of
Crem, C1 combines ܺܿ௥௘௠ and ܻܿ௥௘௠ with its ܺܿଵ and ܻܿଵ . In the combined ܺܿଵ , C1 sets the rows
corresponding to the camera point of Crem to 0. This
means that the monitoring range of Crem becomes
nothing. By calculating using the method in
Section 4.2, C1 can calculate its neighbor node even if
Crem is unintentionally removed. Note that the update
of points is not required because unnecessary points
(e.g., a camera point corresponding to Crem) are deleted
automatically using Equation (5) in Section 3.3.

5. Experiments

To verify the effectiveness of the proposed method,

we performed a simulation. We created a map of the
surveillance area and assumed that the plurality of
cameras are installed in experiments.

This experiment was conducted by installing
18 cameras in 124.5 m 	×	 51 m area as shown in
Fig. 7. In this experiment, three targets enter the
monitoring area from the entrance, walk randomly at
a speed of 1.5 m/s to 3.0 m/s, and then exit the area.
When one target exits the area, a new target enters
from the entrance. Pan / tilt / zoom of each camera
occurs randomly once every 30 seconds. Removal and
addition of a camera occurs once every 8 hours. In
addition, it was assumed that each camera detects a
target accurately because there is a focus on
localization of neighbor node calculation in
this experiment.

This simulation lasted 72 hours. The simulation
result is shown in Fig. 8. The camera number is
displayed on the vertical axis and elapsed time on the
horizontal axis. Movements of the targets are shown
by dotted lines, and the locations of mobile agents are
shown by solid lines. The occurrence times of pan, tilt,
and zoom are shown as ◇. Camera addition is shown
as ○. Camera removal is shown as ×.

B3

B1 B2

Camera Monitoring
Range B Branch

Point

The neighbors of C1 are C2 and C3.
The neighbors of C2 are C1 and C3.
The neighbors of C3 are C1 and C2.

The neighbors of C1 are C2 and Cnew.
The neighbors of C2 are C1 and Cnew.
The neighbor of C3 is Cnew.
The neighbors of Cnew are C1, C2 and C3.

V Viewing
Point

V1 V2

V3 V4 V5

V6 B3

B2V1 V2

V3 V4 V5

V6C2 C2C3 C3

C

CnewC1 C1

C camera
point B

branch
point

C2 is added at the branch point B1.

V viewing
point

C1 B1V1

V2

C1 V1

V2

C2

C2 is added at the viewing point V1.

C1 B1V1

V2

C1 V3

V2

B1V4C2

Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 54-61

 60

Fig. 7. Simulation map.

Fig. 8. Result of tracking simulation.

Initially, camera C5 is adjacent to camera C4, and

C6 is adjacent to C5. In Fig. 8, target A was detected
by C4, then detected by C5 and finally detected by C6.
C5 was deleted after 102 seconds had elapsed. Next,
target B was detected by C4, and then by C6. This
shows that neighbor nodes were correctly updated
when C5 was deleted.

Additionally, camera C19 was added between C4
and C6 after 3176 seconds had elapsed. Until C19 was
added, targets were detected by C6 after being detected
by C4. After C19 was added, the target was detected by
C19 after C4, and then by C6 after C19. This means that
the neighbor node of C4 was updated correctly to C19,
and that the neighbor node of C19 was updated
correctly to C6. Also, even if a monitoring range
changed due to pan / tilt / zoom, neighbor nodes were
calculated correctly.

There was no failure in the neighbor node
calculation, and targets continued to be tracked by
mobile agents accurately.

6. Conclusions

We propose the automatic human tracking system

using mobile agent technologies. To track a person, we
need to find the neighbor node which catches the target
person. The proposed algorithm is able to calculate
these neighbor nodes with only localized node

information. By using the algorithm, it is possible to
calculate neighbor node of each camera without the
monitoring ranges of all cameras in the system even
when monitoring ranges of cameras are changed or
cameras are added / removed. The proposed algorithm
provides continuous tracking ability even if some
nodes are down. We confirmed the effectiveness of the
proposed system in simulation experiments.

References

[1]. K. Tanigawa, T. Yotsumoto, K. Takahashi,

T. Kawamura, K. Sugahara, Determination of
neighbor node in consideration of the photographing
range of cameras in human tracking system, IEICE
Transactions on Communications, Vol. J97-B, No. 10,
October 2014, pp. 914-918.

[2]. T. Yotsumoto, K. Tanigawa, M. Tsuji, K. Takahashi,
T. Kawamura, K. Sugahara, Automatic Human
Tracking using Localization of Neighbor Node
Calculation, in Proceedings of the 9th International
Conference on Emerging Security Information,
Systems and Technologies (SECURWARE’15),
Venice, Italy, 23-28 August 2015, pp. 139-145.

[3]. M. Tsuji, T. Yotsumoto, K. Tanigawa, K. Takahashi,
T. Kawamura, K. Sugahara, Reduction of Neighbor
Node Calculations for Automatic Human Tracking
System, in Proceedings of the 9th International
Conference on Emerging Security Information,
Systems and Technologies (SECURWARE’15),

Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 54-61

 61

Venice, Italy, 23-28 August 2015, pp. 154-159.
[4]. Y. Shirai, J. Miura, Human Tracking Complex

Environment, IPSJ Journal. Computer Vision and
Image Media, Vol. 43, SIG 4(CVIM 4), June 2002,
pp. 33-42.

[5]. N. Kawashima, N. Nakamura, R. Hagiwara,
H. Hanaizumi, An Improved Method for Background
Sub and Its Application to Tracking of Moving
Objects, IPSJ SIG Technical Report. Computer Vision
and Image Media, 2007, 87, September 2007,
pp. 11-16.

[6]. H. Mori, A. Utsumi, J. Ohya, M. Yachida, Human
Motion Tracking Using Non-synchronous Multiple
Observations, IEICE Transactions on Information and
Systems, Vol. J84-D-II, No. 1, January 2001,
pp. 102-110.

[7]. A. Nakazawa, S. Hiura, H. Kato, S. Inokuchi, Tracking
Multi Persons Using Distributed Vision Systems, IPSJ
Journal, Vol. 42, No. 11, November 2001,
pp. 2669-2710.

[8]. N. Ukita, Real-Time Cooperative Multi-Target
Tracking by Dense Communication among Active
Vision Agent, IEICE Transactions on Information and
Systems, Vol. J88-D-I, September 2005,
pp. 1438-1447.

[9]. N. Ukita, Probabilistic-Topological Calibration of
Widely Distributed Cameras, IEICE Transactions on

Information and Systems, Vol. J89-D, No. 7, July
2006, pp. 1523-1533.

[10]. D. Makris, T. Ellis, J. Black, Bridging the Gaps
between Cameras, in Proceedings of the IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’04), Vol. 2, 2004,
pp. 205-210.

[11]. N. Takemura, Y. Nakamura, Y. Matsumoto,
H. Ishiguro, A Path Planning Method for Human
Tracking Agents using Variable-term Prediction, in
Proceedings of the International Conference on
Artificial Neural Networks (ICANN’10), 2010,
pp. 407-410.

[12]. Y. Tanizawa, I. Satoh, Y. Anzai, A User Tracking
Mobile Agent Framework “FollowingSpace”, IPSJ
Journal, Vol. 43, No. 12, December 2002,
pp. 3775-3784.

[13]. T. Tanaka, T. Ogawa, S. Numata, T. Itao,
M. Tsukamoto, S. Nishio, Design and Implementation
of a human Tracking System Using Mobile Agents in
Camera and Sensor Networks, in Proceedings of the
IPSJ Transaction on Groupware and Network
Services Workshop, November 2004, pp. 15-20.

[14]. K. Aoki, A. Yoshida, S. Arai, N. Ukita, M. Kidode,
Functional Assessment of Surveillance of Whole
Observation Area by Active Cameras, IPSJ Journal,
Vol. 48, No. SIG17, 2007, pp. 65-77.

2015 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved.
(http://www.sensorsportal.com)

http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors.htm
http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors.htm
http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors.htm
http://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors.htm

