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Abstract: We describe the design and performance of an ultraminiature lensless computational sensor optimized 
for estimating the one-dimensional position of visual bars. The sensor consists of a special-purpose wavelength-
robust optical binary phase diffraction grating affixed to a CMOS photodetector array. This grating does not 
produce a traditional high-quality human interpretable image on the photodetectors, but instead yields visual 
information relevant to the bar-position estimation problem. Computationally efficient algorithms then process 
this sensed information to yield an accurate estimate of the position of the bar. The optical grating is very small 
(120 µm diameter), has large angle of view (140◦), and extremely large depth of field (0.5 mm to infinity). The 
design of this sensor demonstrates the power of end-to-end optimization (optics and digital processing) for high 
accuracy and very low computational cost in a new class of ultraminiature computational sensors. Copyright © 
2015 IFSA Publishing, S. L. 
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1. Introduction 
 

We describe the design and simulated performance 
of an ultra-miniature lensless computational sensor 
optimized for estimating the one-dimensional position 
of visual bars. [1] While the task of estimating the one-
dimensional position of a visual bar can be solved 
easily using traditional cameras and two-dimensional 
signal processing methods, such methods rely on 
cameras that are needlessly large and that have more 
functionality than needed for the sensing task at hand. 
Our approach is to exploit new techniques in 
computational imaging in which (lensless) diffractive 
optics and matched signal processing yield a 
numerical estimate of the one dimensional position of 
the visual bar. Application-specific grating and 
processing, a particular instance of a general class of 
application-specific computational sensors. 

As background, note that the discipline of 
computational imaging involves the design of both 
optics and digital signal processing to achieve a 
desired end-to-end system performance. In many 
sensing and imaging applications much of the overall 
burden of imaging or sensing can be borne by the 
signal processing, and therefore the physical and 
optical constraints upon the optical components can be 
relaxed. [2] Specifically, the optical systems can be 
made with fewer optical components or smaller form 
factors. For instance, a complex multi-element lens 
system can be replaced by a somewhat simpler system 
(containing fewer elements) so long as the digital 
processing corrects the degraded optical image. [3] 
True joint design requires the definition of a global or 
end-to-end merit function (such as RMS image error) 
and an explicit functional relationship between this 
merit function and the optical and signal processing 

www.sensorsportal.com/HTML/DIGEST/P_2767.htm

http://www.sensorsportal.com/


Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 127-133 

 128

parameters. [4] Under such circumstances, the design 
process can rely on gradient descent in the end-to-end 
merit function. Approximations to this method can 
include taking steps alternately in the optical 
parameters and then the signal processing parameters 
and iterating until convergence. 

Recently, computational imaging systems have 
been designed that eschew traditional refracting or 
reflecting optical elements (lenses or curved mirrors) 
and which rely instead entirely upon diffraction. Such 
devices have been demonstrated in mobile medical 
microscopy [5, 6] and far-field imaging. [7–14] 
Simulation studies have shown that such diffractive 
systems can produce digital images nearly as 
accurately as do ideal lensed systems of the same size, 
but such lensed systems are very difficult to create at 
the spatial scales of diffractive imagers (∼ 100 µm). 
[15] Recently imagers as flat as such diffractive 
imagers have been announced, based on multiple static 
spatial light modulators and compressive sensing. [16] 
These require significant computational resources and 
yield two-dimensional images rather than some image 
estimate. 

Computational sensors nearly always require more 
processing to create a digital image than do 
“equivalent” traditional camera-based systems. 
Consider a diffractive computational imager in which 
light from the scene passes through a diffraction 
grating and is sensed by a two-dimensional 
photodetector array. If we let n denote the linear size 
of the photodetector array, image computation by 
Tikhonov regularization is an  Ο(n4) algorithm, which 
is rather costly for even moderately large sensors. If 
the forward image model can be assumed linear, that 
is 

 
 y = Ax + n, (1) 
 
where the input scene represented as a vector x leads 
to sensor signals y in an optical subsystem described 
by the system matrix A with noise vector n. In such a 
case an estimate of the scene is given by 
 
ොݔ  = ܣ௧ܣ) +  (2) ݕܣଵି(ܫߛ
 
where γ is the regularization parameter that depends 
upon the statistics of the scene and the noise, and −1 
denotes the Moore-Penrose pseudoinverse. 

If the optical image is shift invariant (possibly after 
simple image dewarping to correct for optical barrel 
distortion), then fast-Fourier-based deconvolution 
algorithm of complexity O(n2 ln n) can be used. [13] 
We denote the shift-invariant point-spread function as 
PSF(x,y), where x and y are positions on the image 
sensor plane. We denote the two dimensional Fourier 
transform of the point-spread function as  
P(ωx,ωy) = F[PSF(x,y)]; the Fourier transform of the 
sensor output is, analogously, Y(ωx,ωy) = F[y(x,y)]. 
Then the Fourier transform of the deconvolution 
kernel needed to compute the image is then 

 

(௬ݓ,௫ݓ)ܭ  = ௉∗(௪ೣ,௪೤)ఊାห௉(௪ೣ,௪೤)หమ , (3) 

 

where ∗ denotes complex conjugation and, as above, γ 
is a scalar regularization parameter whose optimal 
value depends upon the noise n. The estimate of the 
scene is then efficiently computed in the Fourier 
domain by 
 

ොݔ  = ܻ]ଵିܨ ∙  (4) [ܭ
 

Such convolution algorithms represent a small 
proportion of the overall computational cost of analog-
to-digital conversion, data transfer, and so forth. As 
the cost of computation continues to decrease, the 
additional computational burden of computational 
imaging systems over traditional systems will become 
less and less. Nevertheless, for the line-position task 
we address here, we seek here to avoid such image 
computation. 

The above discussion centered on computational 
imaging, and while nearly all high-level computer 
vision and pattern recognition algorithms (object 
recognition, bar-code reading, face recognition, ...) 
operate on image data, many sensing and image 
estimation tasks do not require such a digital image as 
an intermediate state. These sensing tasks are 
particularly attractive for low-power sensors, for 
instance: 
• Overall brightness estimation; 
• Point depth estimation; 
• Color gamut estimation; 
• Visual flow estimation; 
• Vibration estimation; 
• Axial visual flow or “looming” estimation (visual 

flow toward or away from the sensor); 
• Visual orientation estimation; 
• Image change detection; 
• Visual mark localization and spatial tracking. 

In computational sensors of the sort described 
here, the algorithms addressing such sensing tasks can 
operate on the raw sensor signals, without the need for 
a traditional image. For this reason, we informally 
consider the diffractive optical element as a 
computational device - one that performs a signal 
processing function in parallel, in negligible time (the 
time it takes light to pass through the thin grating), and 
with zero electrical power dissipation. Indeed, in 
computational imaging designers can consider optical 
elements as performing computations and digital 
algorithms as performing optical transformations. Our 
task in the work reported here is to exploit 
computational sensing design methodology to 
simplify the optical component and reduce the 
computational cost for one such target application: 
visual-bar-position estimation. Our broad motivation 
is to create inexpensive, low-power, application-
specific sensors for use in mobile and standalone 
applications in automotive, biomedical, smart 
architecture, smart cities, and the Internet of Things 
arenas. 
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We begin in Section 2 with a description of the 
image estimation task at hand, then turn in Section 3 
to our overall design methodology. Next, we discuss 
in Section 4 both our hardware design, in particular 
our special optical phase grating and the optical 
signals it captures, as well as the digital signal 
processing. We present the overall sensor performance 
and computational cost in Section 6, and conclude in 
Section 7 with a brief summary and suggestions for 
future research. 
 
 

2. Image Estimation Task 
 

Fig. 1 illustrates the image estimation task at hand. 
The scene consists of a vertical luminous bar of 
unknown horizontal position x within a visual field of 
±70◦ or θf = 140◦ full field on a dark background. (We 
also verified sensor functionality using spatially 
random or “noisy” backgrounds.) The bar can be of 
arbitrary spectral composition in the visible range  
400 nm < λ < 700 nm. Throughout, the field luminance 
is greater than roughly 500 lux (the industry 
recommended light level for normal office work, 
computer work, show rooms, laboratories, etc.), but 
we found that performance does not depend 
significantly upon luminance as long as it is within a 
few orders of magnitude of this value. Such an image 
estimation task appears in numerous practical 
applications from machine inspection (e.g., alignment 
of moving parts in situ), horizon tracking in unmanned 
aerial vehicles, lanetracking in autonomous road 
vehicles, estimation of the height of liquids in medical 
equipment such as test tubes, and others. We report 
here our design (including optical diffraction and 
digital signal algorithmics) and the results of our end-
to-end performance tests. 

 
 

 
 
Fig. 1. The image sensing task is to estimate the left-right 
position, x, of a long vertical visual bar on a dark background 
in the far field (distance from sensor greater than 2 mm). The 
full-field angle-of-view of the sensor is θf =140°. 

 
 

3. Sensor Design Methodology 
 

As mentioned above, computational sensing and 
imaging relies upon the joint design of both the optics 

and the signal processing for a desired end-to-end 
performance of the digital imaging system. The ideal, 
true joint method is to form a global criterion or merit 
function, such as predicted image mean-squared error, 
then determine how the optical and the signal 
processing parameters affect this merit function, and 
then iteratively adjust all parameters simultaneously to 
optimize this global merit function. [4] For 
complicated optical systems, the dependency of the 
merit function upon a system parameter, such as the 
shape parameter governing a diffraction grating, 
cannot be determined analytically. In such cases, a 
number of related or approximate design 
methodologies can be used instead: one can adjust the 
optical parameters then the signal processing 
parameters, then the optical parameters and so on until 
global convergence of the merit function is reached. 
Alternatively, one can design a fixed optical element 
that has desirable application-specific properties and 
then optimize the signal processing. In our current 
work, we employed the latter technique. 

As mentioned in Sect. 1, we model the sensor as a 
linear system, that is, y = Ax + n. (Other models, such 
as simple multiplicative noise, could also be assumed.) 
Here x is n-dimensional and y and n are  
m-dimensional, and hence A has dimensions n × m. 
During design, we computed the system matrix A once 
for each candidate diffraction grating, then used it with 
bars at different positions x to simulate the signals on 
the photodetector array. We then implement the signal 
processing algorithms to estimate the bar position (cf., 
Sect. V). All simulation steps were implemented in 
Matlab. 

 
 

4. Sensor and Phase Grating 
 

We are not aware of any general theory for 
deriving analytically the relationship between grating 
parameters of candidate phase gratings and a final 
merit function reflecting the accuracy of the final bar 
position estimate. The physical processes of 
diffraction, the constraints of grating 
manufacturability, and so forth, make such an 
analytical relationship complicated indeed. For that 
reason, we explored a number of grating designs “by 
hand,” guided by knowledge of manufacturing and 
physical constraints. The active portion of the gratings 
we explored were 120 µm in diameter, commensurate 
with sensor hardware described elsewhere. [10] 
Because the sensing problem appears one 
dimensional, we first tested linear (vertical) gratings. 
These yielded poor results in part because of 
geometrical effects due to sources at different depths: 
the projected images were curved toward the 
periphery, and that curvature depended upon the 
optical wavelength of light. Because the intermediate 
images varied significantly and in highly nonlinear 
ways for source bars of different spectral composition 
and spatial depth we could not design simple signal 
processing methods that reliably estimated the bar 
position across all such variations. 
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We then explored several classes of two-
dimensional gratings. A traditional Fresnel diffraction 
grating gave informative images for bars emitting at 
its single design wavelength, but not for bars emitting 
elsewhere throughout the visible range. For this 
reason, basic Fresnel gratings and gratings closely 
related to it, were unacceptable. A particularly 
intriguing class of gratings were based on fractals, 
which were designed to be relatively insensitive to 
wavelength. [17] While these yielded intermediate 
images that were indeed robust to spectral variations, 
the spatial shape of the resulting images were 
somewhat complicated so no simple signal processing 
algorithms could accurately estimate the bar location. 
Fig. 2 shows representative candidate gratings we 
explored. 

 

 
 

Fig. 2. Representative candidate binary phase gratings tested 
for onedimensional bar position estimation. Given the 
spatial symmetry of the barestimation task, we restricted our 
consideration to radially symmetric and bilaterally 
symmetric gratings. 

Fig. 3 shows the imaging performance of several 
grating designs (including the panchromatic Fresnel 
zone plate, see below), designed at the intermediate 
wavelength λ = 550 nm but rendered at λ = 470 nm. 
The image of Leonardo’s Mona Lisa was computed 
using fast Fourier deconvolution. [13] In traditional 
computer vision methodology, the ideal intermediate 
optical image would be sharp lines independent of 
wavelength, but such images cannot be achieved using 
binary phase gratings. Our goal, then, is the create 
optical images such that signal processing can estimate 
the visual bar location reliably, and at low 
computational cost, regardless of wavelength and 
distance of visual bar. 

 
 

 
 

Fig. 3. Images produced by several of the candidate binary 
phase gratings shown in Fig. 2 for input scene tendered in 
blue light. These images were computed from the raw sensor 
signals by fast Fourier deconvolution, described elsewhere. 
[13] The images in the right column are radially dewarped 
versions of those in the middle column. 

 
 

The grating that provided an easily processed image 
despite variations in bar spectral composition was the 
panchromatic binary Fresnel zone plate, governed by 
Eq. 5: 
  

 , (5) 
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where Θ[·] is a Heaviside step or threshold function, a 
a bias constant, z0 a spatial distance corresponding to 
the distance of a virtual point source that interferes 
with normal plane waves, the ki the wave numbers of 
the optical wavelengths chosen from the range desired, ݆ = √െ1 is the unit imaginary number and | · | denotes 
absolute value of a complex number. This grating can 
be considered the mixture of separate Fresnel zone 
plates each designed with different wavelengths.  
Fig. 4 shows a typical panchromatic Fresnel zone plate 
created with three wavelengths λi = 470,550 and  
700 nm, corresponding to blue, green and red ranges 
of the optical spectrum. This grating yielded 
intermediate images of visual bars such as shown in 
Fig. 5. 
 
 

 
 
Fig. 4. Panchromatic binary phase Fresnel zone plate 
generated according to Eq. 5. This circularly symmetric 
grating yield optical images on the photodetector matrix that 
are robust to variations in source spectral content, as shown 
in Fig. 5. 
 
 
5. Signal Processing 
 

Every grating we tested produced wavelength-
robust, narrow intermediate optical images of visual 
bars at the center of the visual field (θ = 0°) but 
somewhat complex multimodal images of bars at large 
field angles (e.g., θ = 40°). It is likely that a method of 
spatially varying dictionary learning [18] or complex 
dewarping followed by Bayesian or other pattern 
classification method [19] could be used to estimate 
the bar location from such optical images but such 
methods are computationally costly. Our goal was to 
find an algorithm with low computational cost, and 
thus we sought algorithms that were spatially 
independent, that is, applied the same algorithmic 
steps throughout the sensor domain. 

The estimation problem is one-dimensional (the 
left-right position of the visual bar) and thus our first 
algorithmic step was to project the sensor signals onto 
a one-dimensional horizontal line. This step integrates 
signals over vertical lines and hence reduces the 
effects of image noise, variations due to optics and 

background image noise. The optical signals were 
reliable and accurate throughout the full field of view. 
The next computational step is to estimate some 
measure of the center or central tendency of the one-
dimensional projected signal. We explored several 
computationally efficient statistical estimation 
methods to this end: 
• Peak or mode; 
• Peak or mode after Gaussian smoothing; 
• Mean of a Gaussian fit to the signal; 
• Gradient pre-processing, three of which are 

illustrated in Fig. 6. 
 
 

 
0° +30° 

 
Fig. 5. Simulated raw signals on the photodetector array 
produced by the panchromatic Fresnel zone plate of Fig. 4 
for a visual bar at 0◦ and 30◦ for λi = 470,550,700 nm, top to 
bottom. Notice that on the sensor optical axis (0°) the 
intermediate image is sharp and centered in the sensor matrix 
while off the axis (30°) the image is structured, has multiple 
lobes, and is wavelength dependent. (Through simple signal 
processing lobes due to different discrete incident 
wavelengths can be isolated.) Note especially that the quality 
of the optical images is lower than would be produced by a 
larger, more-expensive lens-based optical subsystem. 
Nevertheless, these images are adequate for the image 
estimation task at hand. 
 
 
6. Sensor Performance 

 
Fig. 7 shows the results of five different signal 

processing algorithms for the most robust diffraction 
grating, the panchromatic binary Fresnel zone plate. 



Sensors & Transducers, Vol. 194, Issue 11, November 2015, pp. 127-133 

 132

Each subfigure shows three curves representing the 
estimated bar position (ordinate) versus the actual bar 
position (abscissa) in long, medium and short 
wavelengths—red, green and blue. (In most 
subfigures, the three component curves overlap 
significantly and hence appear as one curve.) Each 
curve has a general sigmoidal or ogive shape due to 
geometric effects and Snell’s law of light passing 
through the grating at large incident angles (a version 
of barrel distortion). 
 
 

 
 

Fig. 6. The blue curves represent the projection of the full 
two-dimensional sensor signal along the vertical direction 
(i.e., parallel to the visual bar). The methods of central 
tendency estimation (for source angle) that were most 
accurate, reliable and robust to source spectral variation 
were the peak and the peak after a Gaussian smoothing (see 
below). This latter estimate did not depend upon the variance 
of the smoothing Gaussian, throughout a wide range of such 
variances. 

 
 

 
 

Fig. 7. The estimated bar center (in pixels on the sensor) 
versus bar position in the field of view for a panchromatic 
Fresnel zone plate. Each subfigure contains three curves (for 
λ = 470,550 and 700 nm light), but in several subfigures the 
curves overlap significantly and hence appear as one curve. 
The five signal processing algorithms are (left-to-right, top-
to-bottom) are: maximum or peak; peak after Gaussian 
smoothing; gradient based estimation; peak after log 
processing; mean of a Gaussian fit. 

 
 

The desiderata for the sensor, as expressed in the 
properties of these curves, are: 
• All three color curves should overlap perfectly 

throughout the entire angle range (field of view), 
indicating that the location estimate is independent 
of spectral composition of the visual bar 

• All three curves of estimated position versus 
location of central tendency should be monotonic 
(a bijection), so that the unique angle estimate can 
be computed from the image center estimate by an 
inverse function or lookup table 

• All three curves should extend through a large 
angle of view, here roughly 140° 

• The response curve should be antisymmetric with 
respect to the location of the central axis (θ = 0°), 
indicating geometric consistency. 
Both first two subfigures - peak as well as peak 

after Gaussian smoothing–show excellent 
performance on all four desiderata and accuracy of 
roughly 0.2° throughout the field of view, raising to 
0.4° at the extremes of the field of view. The 
difference between the computational costs of these 
two methods are negligible compared to the full 
computational costs. Either of these methods, then, 
would be acceptable in a fielded sensor application 
where the processing could be done one the chip. 

The overall space computational cost of the 
estimation algorithm was 1.0 kB without lookup table 
for inverting the sigmoidal curves (as in Fig. 7), and 
time cost 6.0 Mflop/sec at video rates, and hence easily 
implemented in embedded processors or special 
CMOS. The signal projection step of the algorithm 
could be parallelized in a SIMD microarchitecture, but 
such speedups are not needed in practical applications. 

 
 

7. Conclusions and Future Directions 
 

We have designed and tested through extensive 
simulations an ultra-miniature lensless sensor for 
estimating the one dimensional position of a visual bar 
throughout a large field of view and regardless of the 
spectral composition of the bar. Our end-to-end design 
approach led to an optical element (panchromatic 
binary Fresnel zone plate) that while somewhat 
complicated in design, is simple to manufacture and 
mount on a CMOS image sensor. The signal 
processing operates on the raw sensor signal (rather 
than a reconstructed or computed image) and is very 
computationally efficient. 

There are a number of directions for future work in 
end-to-end optimization based on these results, such 
as extending these methods to other image sensing 
functions. Finally, the deep challenge of developing a 
general-purpose theory for global end-to-end 
optimization of diffractive electro-optical systems 
incorporating physical constraints—analogous to the 
theory developed for traditional reflection and 
refraction based imagers [4]—remains elusive. 
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