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Abstract: This paper considers the state estimation problem for the sensor monitoring system which contains 
system uncertainty and nonlinear disturbance. In the sensor monitoring system, states of each inner sensor node 
usually contains system uncertainty, and external noise often works as nonlinear item. Besides, information 
transmission in the system is also time consuming. All mentioned above may arouse in unstable of the 
monitoring system. In this case, states of sensors could be wrongly sampled. Under this circumstance, a proper 
mathematical model is proposed and by the use of Lipschitz condition, the nonlinear item is transformed to 
linear one. In addition, we suppose that all sensor nodes are distributed arranged, no interface occurs with each 
other. By establishing proper Lyapunov–Krasovskii functional, sufficient conditions are acquired by solving 
linear matrix inequality to make the error augmented system stable, and the gains of observers are also derived. 
Finally, an illustrated example is given to show that system observed value tracks system states well, which 
fully demonstrate the effectiveness of our result. Copyright © 2014 IFSA Publishing, S. L. 
 
Keywords: State estimation, Sensor monitoring system, System uncertainty, Nonlinear disturbance, Linear 
matrix inequality. 
 
 
 
1. Introduction 

 

During last decades, states estimation and other 
related problems are hot issues in the scholar field 
due to the increasing demand of sensor monitoring 
system, which is a distributed system composed of 
sensor nodes [1-3]. Because of its convenience for 
use and low cost, sensor monitoring system aroused 
much attention both from theoretical researches and 
practical occasions, such as in industry, agriculture, 
military and some other occasions [4]. Sensors 
collect data from the field and also control the 
operating parameters. By running a dedicated data 
collection procedure to achieve field data collection, 

in addition, control operating parameters are 
transferred to sensors via data bus to achieve 
automatic control. However, many problems are 
resulted in for its special system structure. 
Information flow between sensor nodes is time 
consuming, which reflects as time-delay in system 
model. In addition, outer environment, take 
temperature, pressure, moist for example, can greatly 
affect sensors’ working condition, so system 
uncertainties and disturbances are inevitable when 
modeling for sensor monitoring system. Take all 
mentioned above, states estimation is quite important 
for the stability analysis of sensor monitoring system. 
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Still now, great effort has been done to deal with 
states estimation problem [5-7]. Reference [8] 
studied the spread of subsurface contaminants, 
proposed a dual estimation strategy for data 
assimilation into a one-way coupled system by 
treating the flow and the contaminant models 
separately. This strategy didn’t only deals  
with states estimation, but also could be used for 
parameter estimation. Reference [9] considered a 
fuzzy-integral model of a fuzzy process. Sufficient 
conditions were established for the existence of an 
optimal estimating fuzzy process. Reference [10] 
researched estimation problem around human 
environment. A Human motion map was proposed 
which incorporating human states information into 
results of conventional SLAM. 

Motivated by previous research stated above, our 
target is to make state estimation for sensor 
monitoring system, which contains uncertainty and 
nonlinear disturbance. By establishing proper 
Lyapunov-Krasovskii functional, sufficient 
conditions are proposed to make system stable, and 
observe gains are also acquired.  

 
 

2. Problem Formulation 
 
Consider a type of sensor monitoring system, 

which is composed of several sensor nodes, and the 
dynamic system with uncertainty and disturbance can 
be described as shown in (1): 

 
( 1) ( ) ( )

( )

( ) ( ( ))

( ) ( )

i i

d i

g i

i i

x k A A x k

A x k

Bu k E g x k

y k Cx k

+ = + Δ
 + − τ
 + +
 =

, (1) 

 

where ( ) n
ix k R∈  denotes the state of ith node, 

( ) n
ix k R− τ ∈  denotes the state delay of the node, 

( ( )) n
ig x k R∈  denotes the nonlinear disturbance, 

( ) unu k R∈  is the system input, ( ) n
iy k R∈  

denotes system output, AΔ  is internal perturbation 
arising from uncertain factors, A, dA , gE , B and C 
are constant matrices with appropriate dimensions. 

Here we make the following assumption for 
system model (1). 

 
Assumption 1.  
Perturbation parameter of the model satisfies: 
 

( )A GD k HΔ =  (2) 

 
Respectively, G and H are known constant 

matrix, ( )D k  is time delay uncertain matrix, yet 

Lebesgue-measurable, and ( ) ( )TD k D k I≤ . 

Assumption 2.  
State delay has an upper bound, which satisfies 
0 d≤ ≤τ . 
 

Assumption 3.  
System nonlinear factor g(⋅) satisfies the following 
Lipschitz condition: 
 

( ) ( )1 2 1 2( )g x g x x x− ≤  − , 

 

where   is the constant matrix with proper 

dimensions, and ( )0 =0g . 

Next, a state observer for the ith node  
is constructed. 
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where ˆ ( )ix k  and ˆ ( )iy k  are the observed value of 

( )ix k  and ( )iy k , respectively. n
ijK R∈  is the gain 

of observer to be designed. 
In this case, the states error and output error are 

defined as: 
 

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )
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= −
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, (4) 

 

where  

1
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 (5) 

 

By utilizing the Kronecker product, the error 
dynamics governed by (5) can be rewritten as: 

 

( 1) ( ) ( )
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g x f
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  ,

 (6) 

 

where NA I A= ⊗ , ( )ij n n
K k

×
= , NC I C= ⊗ , 

NA I AΔ = ⊗ Δ , d N dA I A= ⊗ , g N gE I E= ⊗ , 

f N fE I E= ⊗ . By employing an augmented vector 

( ) ( ) ( )
TT TZ k x k e k =  , so we have augmented system: 
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(7) 
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where  
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Furthermore, some important lemmas will be 
used in this paper are listed below. 

Lemma 1. For any , nx y R∈ , 0μ > , the 

following equation holds. 
 

1
2 T T Tx y x x y y≤ μ +

μ
 

 

Lemma 2. Let TY Y= , M , N , and ( )Dt  be real 

matrix of proper dimensions, and ( ) ( )TD t D t I≤ , 

then inequality ( ) 0TY MDN MDN+ + <  holds if 

there exists a constant ε , which makes the following 
inequality holds. 

 
1 0T TY NN M M−+ ε + ε <  

 
 

3. Main Results 
 
In this part, two sufficient conditions are 

proposed to make augmented system (7) stable, in 
addition, the gains of observer can also be acquired. 

Theorem 1. For the augmented system  
as shown in (7), it is said to be asymptotically stable 
if there exists positive definite matrix 

{ }1 2,P diag P P= , Q  and a constant ε , make the 

following inequality holds.  
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Proof: By constructing the following Lyapunov-
Krasovslii functional 
 

1 2( ) ( ) ( )V k V k V k= + , (8) 
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So the forward difference of ( )V k  along (7) is: 
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By the use of Lemma 1, we can obtain: 
 

2 ( ) ( )

( ) ( )

( ) ( )

T T
d

T T

T T T
d d

Z k A PA Z k

Z k A PAZ k

Z k A PA Z k

− τ

≤
+ − τ − τ

 (10) 

 

2 ( ) ( )

( ) ( )

( ) ( )

T T
d

T T

T T T
d d

Z k A PA Z k

Z k A PAZ k

Z k A PA Z k

− τ

≤
+ − τ − τ

 (11) 

 
2 ( ) ( ( ))

( ) ( )

( ( )) ( ( ))

T T
g

T T

T T
g g

Z k A PE g Z k

Z k A PAZ k

g Z k E PE g Z k

≤
+

 (12) 



Sensors & Transducers, Vol. 180, Issue 10, October 2014, pp. 44-50 

 47
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According to assumption 3, nonlinear disturbance 
can be rewritten into the form:  
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(17) 

 

By substituting (9) to (17) into (8), we have: 
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According to Schur complement, 0Y <  equals to: 
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where 
 

1 (1 ) 4 TY P d Q= − + + + λ   
 

Multiply { , , , , }diag I I P P P  on both sides  

of the inequality, the following inequality can  
be acquired. 
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According to Lemma 2 and the notation defined 
in the theorem, result can be easily acquired, so the 
proof of Theorem 1 is complete. 

Theorem 1 only demonstrate the stability of error 
system (7), however, observer gains can’t be 
acquired, so the following theorem is given. 

Theorem 2. For the augmented system  
as shown in (7), it is said to be asymptotically stable 
if there exists positive definite matrix 

{ }1 2,P diag P P= , Q  and a constant ε , make the 

following inequality holds.  
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where  
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Ω , H , P , G  have the same meaning as defined 
in Theorem 1, and the gain of observe is: 
 

1
2

TK P S−=  
 

Proof: Setting 2
TK P S= , so 1

2
TK P S−= , by 

substituting 2
TK P S=  into Theorem 1, we can get 

the result easily. 
 
 

4. Numerical Example 
 

In this part, a numerical example is given to show 
the effectiveness of proposed method. Transform the 
case on [11], parameters in (1) are given as: 
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The initial states of each sensor nodes are: 
 

1 2 3

3.2 2.2 2.72
, ,

3.5 1.6 3.25
x x x

     
= = =     − −     

 

Observer gain can be obtained based on 
Theorem 1 and Theorem 2, we have: 

 

11 22 33

0.4067 1.3663

0.3762 1.2581
k k k

− 
= = =  − 

 

 

Simulation results are given in Fig. 1, where red 
lines denotes for real system state, blue dashed line 
denotes for observed value. From the result, we can 
see that observed value tracks system states well, 
which can fully demonstrate the effectiveness of 
proposed method. Estimation error is shown in Fig. 2, 
which is much smaller than the method proposed in 
[12], compared with Fig. 3. 

 
 

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

No. of samples, k
x1

(1
) a

nd
 o

bs
er

ve
d 

va
lu

e

 

real value
observed value

0 5 10 15 20 25 30 35 40 45 50
-6

-4

-2

0

2

No. of samples, k

x1
(2

) a
nd

 o
bs

er
ve

d 
va

lu
e

 

 

real value
observed value

 
 

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

2

3

No. of samples, k

x2
(1

) a
nd

 o
bs

er
ve

d 
va

lu
e

 

 
real value
observed value

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

No. of samples, k

x2
(2

) a
nd

 o
bs

er
ve

d 
va

lu
e

 

 

real value
observed value

 
 

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

2

3

No. of samples, k

x3
(1

) a
nd

 o
bs

er
ve

d 
va

lu
e

 

 
real value
observed value

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

No. of samples, k

x3
(2

) a
nd

 o
bs

er
ve

d 
va

lu
e

 

 
real value
observed value

 
 

Fig. 1. System states and observed value. 
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Fig. 2. Estimation error for system states. 
 
 

5. Conclusions 
 
This paper deals with the state estimation 

problem for a class of sensor monitoring system, 
which contains system uncertainty and nonlinear 
disturbance. By establishing proper Lyapunov–
Krasovskii functional, sufficient conditions are 
proposed to guarantee the stability of error system, 
and the gains of observes are also acquired. Finally, 
an illustrated example shows the effectiveness of 
proposed method. 
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Fig. 3. Method proposed in [12]. 
 
 

Acknowledgements 
 

This work has been supported by the Production 
Research funding of joint innovation of Jiangsu 
Province of China (Grant No. BY2014004-08). 
 
 
References 
 
[1]. Yurish S. Y., Smart sensors systems design: new 

curricula based on Marie Curie Chairs Excellence 



Sensors & Transducers, Vol. 180, Issue 10, October 2014, pp. 44-50 

 50 

(EXC) project’s results, Measurement, Vol. 43, 
Issue 1, 2010, pp. 21-30. 

[2]. Wu L., Shi P., Gao H., State estimation and sliding-
mode control of Markovian jump singular systems, 
IEEE Transactions on Automatic Control, Vol. 55, 
Issue 5, 2010, pp. 1213-1219.  

[3]. Rubinov M., Sporns O., Complex network measures 
of brain connectivity: uses and interpretations, 
Neuroimage, Vol. 52, Issue 3, 2010, pp. 1059-1069. 

[4]. Yurish S. Y., Smart and Intelligent Optoelectronic 
Sensor Systems: OEM Design Approach, in 
Proceedings of the 2nd International Conference on 
Sensor Device Technologies and Applications 
(SENSORDEVICES’11), 2011, pp. 38-43. 

[5]. Kandepu R., Foss B., Imsland L., Applying the 
unscented Kalman filter for nonlinear state 
estimation, Journal of Process Control, Vol. 18, 
Issue 7, 2008, pp. 753-768.  

[6]. Singh R., Pal B. C., Jabr R. A., Choice of estimator 
for distribution system state estimation, IET 
Generation, Transmission & Distribution, Vol. 3, 
Issue 7, 2009, pp. 666-678. 

[7]. Fridman L., Shtessel Y., Edwards C., et al., Higher-
order sliding-mode observer for state estimation and 

input reconstruction in nonlinear systems, 
International Journal of Robust and Nonlinear 
Control, Vol. 18, Issue 4-5, 2008,  
pp. 399-412.  

[8]. Gharamti M. E., Hoteit I., Valstar J., Dual states 
estimation of a subsurface flow-transport coupled 
model using ensemble Kalman filtering, Advances in 
Water Resources, Issue 60, 2013, pp. 75-88.  

[9]. Sirbiladze G., Problems of States Estimation 
(Filtration) of Extremal Fuzzy Processes, Extremal 
Fuzzy Dynamic Systems. Springer New York, 2013, 
pp. 255-288. 

[10]. Ogawa Y., Wang Z., Wada T., et al., Building 
Human Motion Map with human states estimation in 
indoor dynamic environments, in Proceedings of the 
IEEE International Conference on Robotics and 
Biomimetics (ROBIO), 2011, pp. 1090-1095. 

[11]. F. Gouaisbaut, M. Dambrine, J. Richard, Robust 
control of delay systems: a sliding mode control 
design via LMI, Systems & Control Letters, Vol. 46, 
Issue 4, 2002, pp. 219-230. 

[12]. Chen W., Mehrdad S., Observer design for linear 
switched control systems, in Proceedings of the 
American Control Conference, 2004, pp. 5796-5801. 

 
___________________ 

 
2014 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved. 
(http://www.sensorsportal.com) 
 
 
 
 
 
 
 
 

 

http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
http://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm

