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Abstract: In modern power systems, high-precision power parameter measurement has occupied an important 
position for power quality in power grids. This paper presents a high-precision intelligent power parameter 
measurement device, which can collect parallel alternative current parameter values among 0 to 250 V in 
3-channel easily and quickly, and improve the measurement accuracy by using the power spectral correction 
algorithm for sample parameters. The ATT7022B chip is used as the front-end of the data acquisition, and we 
use STM32 chip as the processor, which is easy to implement the algorithm on this platform. Results obtained 
from test application of the entire system show that the system has advantages of stable performance, small size, 
high reliability, and excellent accuracy. Copyright © 2014 IFSA Publishing, S. L. 
 
Keywords: Power parameters, Power spectral density, High-precision, Measurement, ATT7022B. 
 
 
 
1. Introduction 

 

Electrical energy has become a part of our life; 
therefore, and power quality is related to all aspects 
of our social life. The measurements of these 
parameters are directly reflected in the power quality 
of the power supply, therefore monitoring power 
parameters in power grids has important practical 
significance [2]. Due to the wide coverage of power 
grids, there is a considerable number of disperse 
nodes need to detect. Therefore that how to monitor 
the power parameters in real-time effectively is still 
required to be continually studied. According to this 
situation, we designed a high-precision intelligent 
power parameter measurement device which can 
quickly and easily achieve a single system of parallel 
acquiring parameter values from 0 to 250 V in  
3-channel; the power parameter measurement in this 
paper mainly discusses the measurements of voltage 

RMS (URMS), the current RMS (IRMS), the 
apparent power (S), the active power (P), the power 
factor (σ) and other parameters of alternative current 
working at 50 Hz, then correct the sampled 
parameters by using power spectral algorithm to 
improve the electric parameter measurement 
accuracy. The results show that the system has 
advantages of stable performance, small size, high 
reliability, and excellent accuracy. 
 
 
2. Hardware Design  
 
2.1. System Design 
 

According to the demand for measuring power 
parameter, we build a wireless network monitoring 
system. The structure is shown in Fig. 1. 

http://www.sensorsportal.com/HTML/DIGEST/P_2456.htm
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Fig. 1. Measurement error characteristics of sensor. 
 
 

As is shown in Fig. 1, the system uses 
STM32F103RET6 as the main module, which has 
rich on-chip resources of peripheral module, to 
expand trunk RS232 (UART), Power Measurement 
Module (SPI) and other functions. The main function 
of the system is to complete the parameter 
measurement of power equipment in operation in 
real-time and reach the target of real time monitoring. 
Therefore, the module of power parameter 
measurement is an important part of the system. In 
order to getting more comprehensive parameters of 
power equipment operation, we decided to use 
specific single-chip solution, with digital signal 
processing methods simultaneously capture three-
wire power line voltage, current and other  
parameters [5]. 

We choose STM32F103RET chip as the 
processor, which based on the ARM®Cortex™-M3 
32-bit RISC core operating at a 72 MHz frequency, 
high-speed embedded memories (Flash memory up to 
512 Kbytes and SRAM up to 64 Kbytes), and an 
extensive range of enhanced I/Os and peripherals 
connected to two APB buses. All devices offer three 
12-bit ADCs, four general-purpose 16-bit timers plus 
two PWM timers [8], as well as standard and 
advanced communication interfaces: up to two I2Cs, 
three SPIs, two I2Ss, one SDIO, five USARTs, an 
USB and a CAN. These properties can meet the 

control, acquisition, processing algorithms design 
requirements. Besides, its high performance to price 
ratio also is the one of reasons why we choose it. 

ATT7022B chip is used to acquire power 
parameter data in our system. ATT7022B is highly 
accurate three-phase power metering chip, for three-
phase three-wire and three-phase four-wire 
applications; integration of six second-order sigma-
delta ADC, voltage reference circuit and all the 
digital signal processing circuits of power, energy, 
voltage and current RMS, power factor and 
frequency measurement. This chip provides an SPI 
interface, which can easily transmit the data of 
measurement parameters and table parameters 
between the external MCU and itself. Besides, its 
internal voltage monitoring circuit can guarantee it 
working properly when the chip power on and off. 
The chip can directly measure the power parameters, 
but accuracy is not ideal. Therefore, we must use 
power spectral density algorithm to correct 
acquisition parameters [9]. 
 
 

2.2. Power Parameter Acquisition Circuit 
Design  

 

ATT7022B is a semiconductor integrated chip so 
that it cannot directly connect high voltage or high 
current signal for power parameters. In order to 
measure these parameters, we isolate the signal from 
power grid, at the same time, the strong signal is 
converted to small one, and then put these converted 
signal into ATT7022B for measuring. ATT7022B 
peripheral circuit is referred to the chip manual, we 
can see it in Fig. 2. Avoiding unnecessary 
interference, we let part of unused pins disconnect or 
connect ground; the chip SPI communication 
interface connect to the STM32 I/O ports for 
transmitting command or data. 
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Fig. 2. ATT7022B peripheral circuit. 
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ATT7022B analog input circuit shown in  
Fig. 3. Firstly, the voltage directly access into circuit, 
through the voltage divider, and then superimposed 
on a reference voltage signal. Finally, this signal will 
be transmit into A/D converter for sampling. 

 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 3. (a) The measured voltage input interface; 
(b) current detection input interface. 

 
 

From ATT7022B chip manual, we know that 
ATT7022B voltage channel input range from 0 V to 
1 V, the current channel input range from 2 mV  
to 1 V. And its sampling rate is 3.2 kHz, therefore, 
the input frequency greater than 1.6 kHz will form 
aliasing frequency at low frequency band; we usually 
choose a simple RC filter to filter these high 
frequency components. For power chip, the useful 
signal only near by the sampling frequency of the 
signal, so the bandwidth is generally from  
0 to 2 KHz. The filter cutoff frequency is fL=1.3k, by 
the formula are: 
 

 1
=

2
fL

RCπ
, (1) 

 
where R=12k. 

In ATT7022B, each of the AC input channel 
requires a superposition of a DC bias voltage, as 
shown in Fig. 4. The REFO resistor is used to 
provide the DC bias voltage, and the DC bias voltage 
can be obtained by the chip voltage reference voltage 
output, or can be provided from an external reference 
voltage. 

ATT7022B has a SPI serial communication 
interface, which communicates in slave mode having 
two control lines and two data lines: CS, SCLK, DIN, 
and DOUT. Considering the SPI transmission signal 
line may be disturbed or jitter, so we put a small 
resistor (10Ω) in series with the signal line. This 

resistor and IC input parasitic capacitance C can be 
combined to become a low-pass filter to eliminate 
any oscillation of SPI interface signals. 

 
 

 
 

Fig. 4. Reference voltage input interface. 
 
 

2.3. Processor Circuit Design 
 

Fig. 5 illustrates the mini-system circuit design of 
STM32, which includes a reset circuit, clock circuit, 
and STM32 processor circuit. As we can see, STM32 
not only controls logic controller to send the data, but 
also communicate with the PC via RS232 or RS485 
interface.  

 
2.4. PCB Layout Design  
 

We design two-layers PCB board for our system 
by using Altium Designer, the PCB board size is 
supposed to meet the size requirements of external 
mechanical structure, the system board layout shown 
in Fig. 6. System board layout, the minimum line 
width of 8mil, the minimum line spacing 8mil, 
smallest hole is 16mil, is a high wiring density on the 
PCB board. 

 
 

3. Power Spectral Density Correction 
Algorithm 

 
According to electrical theory, valid values of 

periodically changing voltage and current signals: 
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where T is the period of the signals. 

We discretize Equation (2) and Equation (3), we 
have 
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Fig. 5. Mini-system circuit design of STM32. 
 
 

 
 

Fig. 6. System board layout. 
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where u(n) and i(n) are the discrete sequences, which 
is transformed from measured voltage and current 
signals respectively by the sampling, holding and 
A/D conversion. N is a frequency period of sampling 
points. Single-phase active power is: 
 

 cosP UI φ= , (6) 
 
 
where U and I are the voltage and current RMS, cosϕ 
is the power factor of the load. Besides, active power 
can also be calculated by the following formula: 
 

 

0

1
( ) ( )

T
P u t i t dt

T
=  , (7) 

 
Discretizing Equation (7), we have 
 

 1

0

1
( ) ( )

N

n

P u n i n
N

−

=

=  , (8) 

 
In the three-phase four-wire circuit, the total 

active power equal to sum of each phase of active 
power, can be written as: 
 

 
A B CP P P P= + + , (9) 

 
In three-phase three-wire circuit, the total active 

power can be measured by two-Wattmeter method: 
 

 
AC BCP P P= + , (10) 

 

Power parameters of the sampling system can 
provide fundamental, harmonics and voltage of each 
phase and three-phase full-wave RMS voltage vector, 
and a full-wave current RMS, and RMS phase current 
vector. Grid voltage signal is converted to the 
sampling values by ADC of ATT7022B chip; and 
then, it can be sent to the STM32 processor family 
unit operation; finally, we can get its RMS value. 
After reading the corresponding value of the register, 
we right 13 bit to obtain the required measurements. 
Measurement block diagram shown in Fig. 7: 
 
 

 
 

Fig. 7. RMS measurement block diagram. 
 
 

When we remove the DC component from the 
voltage or current signals, after a series of 
multiplications, additions, and digital filtering; we 
can get the active power of each phase. Voltage and 
current sampling data contains 21-order harmonic, 
and based formula is: 
 

 ( ) ( )
= 0

1 N

n

P U n I n
N

=  , (11) 

 

Calculating active power contains at least  
21-order harmonic information. Active power 
measurement block diagram shown in Fig. 8, is  

 

= + +t a b cP P P P . 

 

 
 

Fig. 8. Active power measurement block diagram. 
 
 
4. Testing  
 

When we calibrate the power meter of power 
parameter measurement, we must provide a standard 
meter. Compared with standard meter, only the active 
should be calibrated and reactive power does not 
require calibration. After calibrated, accuracy of 
active power measurement can achieve up to 0.5s. 
Power correction is divided into ratio error correction 
and phase error correction. Ratio error correction 
removes the ratio error in transformer. Nonlinear of 
transformer ratio error cannot be ignored when it 
needs precision measurement. ATT7022B offers 

register Iregchg, compensation can be set based on 
the current size of the staging area. Besides, phase 
error correction also can be corrected segmentally. In 
applications, the segments do not need to separate too 
small. Phase error correction should do after 
completing ratio error correction. Ratio error 
correction should be performed when power factor 
equal to 1.0, and phase error correction should be 
performed at 0.5 L [10]. 

We can read register HFConst directly from 
ATT7022B to know the pulse frequency of output 
CF, which is selected to calibrate the meter. HF 
Const cannot be written more than 0x000D00 of 
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parameter values. The constant frequency pulse is 
EC, rated input voltage is Un, rated input current is 
Ib, voltage of sampling voltage channel is Vu, 
voltage of sampling current channel is Vi, 
ATT7022B gain is G. Therefore, we calculate the 
value of HF Const: 
 

 2

= 5760000000 u I
Const

n b

G V V
HF INT

U I EC

 × ×× × × 
, (12) 

 
where INT[] means to take the integer part. 

When Ugain=0, voltage correction register can be 
read directly from ATT7022B by SPI interface, the 
value is DataU. Then, we can read the actual input 
voltage RMS Ur from standard meter. We know 
actual input voltage RMS is Ur, measuring voltage 
RMS is  
 

10 232 2rmsU DataU= × , so we have 

 
 = -1gain r rmsU U U , (13) 

 
If  

0gainU ≥ , 232gain gainU INT U = ×  , 

gainU <0 , 24 23INT 2 + 2gain gainU U = ×  . 

 
The RMS output register of ATT7022B is 

supplementary code, the highest bit is the sign bit; 
RMS is always greater than or equal to 0, so the 
maximum sign bit is always equal to 0. The 24-bit 
data Vrms convert to actual voltage RMS is 
 

 10 23= 2 2rms rmsU V × , (14) 

 
The reference power spectral density correction 

algorithm to correct for acquisition parameters, the 
main process of calibration: Parameter settings, A 
phase correction, B phase correction, C phase 
correction. Where the parameter set is divided into: 
the voltage channel ADC gain select, high-frequency 
pulse output setting, ratio error compensated area 
setting, phase compensation area setting, loss of 
pressure threshold setting, the starting current setting, 
energy accumulation mode setting, and the other 
parameters of the phase correction steps: Power gain 
correction (Pf=1.0), phase error correction (Pf=0.5 L), 
voltage correction (rated voltage), current correction 
(rated current). Test environment: Laboratory 
temperature Test objects: 220 V/25 W incandescent, 
220 V/60 W incandescent, transformers power 
supply. 

As we can see from the Table 1, the power 
parameters, which correct by power spectral density 
power correction algorithm, differ from the nominal 
value. But the result is same with the test values of 
standard correction meter, indicating that the system 
is able to achieve high-precision measurement of 
power parameters [11]. 

Table 1. Test Results. 
 

Test object 
Voltage 
RMS 

Current 
RMS 

Power 

220 V/25 W 
incandescent 

213.3 V 0.12 A 25 W 

220 V/60 W 
incandescent 

212.5 V 0.27 A 57 W 

9 W transformers 
power supply 

217.6 V 0.04 A 9 W 

 
 

5. Conclusion  
 

This paper presents a developing method of 
high-precision power parameter measurement 
equipment based on power spectral density 
correction. This method can correct power parameter 
error, and has high precision in correction. Besides, 
the algorithm is simple and is very suitable for high-
precision measurement of power parameters. 
However, because the power parameter measurement 
device itself can only collect three voltage and 
current values, the accuracy of the data must be 
referred to standard measuring instruments and it 
cannot achieve self-correcting, which leads to the 
range of application of high-precision power 
parameter measurement devices in some extent will 
be restricted. 
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