IEEE 1451
TEDS Sensors, IEEE 1451 Standards

International Frequency Sensor Association Publishing
Sensors & Transducers

Volume 96
Issue 9
September 2008

Editor-in-Chief: professor Sergey Y. Yurish, phone: +34 696067716, fax: +34 93 4011989,
e-mail: editor@sensorsportal.com

Editors for Western Europe
Meijer, Gerard C.M., Delft University of Technology, The Netherlands
Ferrari, Vittorio, Università di Brescia, Italy

Editors for North America
Datskos, Panos G., Oak Ridge National Laboratory, USA
Fabien, J. Josse, Marquette University, USA
Katz, Evgeny, Clarkson University, USA

Editor South America
Costa-Felix, Rodrigo, Inmetro, Brazil

Editor for Eastern Europe
Sachenko, Anatoly, Ternopil State Economic University, Ukraine

Editor for Asia
Obayma, Shungi, Tokyo Institute of Technology, Japan

Editorial Advisory Board

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia
Ahmad, Mohd Noor, Northern University of Engineering, Malaysia
Annamalai, Karthigeyan, National Institute of Advanced Industrial Science and Technology, Japan
Arcega, Francisco, University of Zaragoza, Spain
Arguel, Philippe, CNRS, France
Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea
Arndt, Michael, Robert Bosch GmbH, Germany
Ascoli, Giorgio, George Mason University, USA
Atalay, Selcuk, Inonu University, Turkey
Atghiacc, Ahmad, University of Tehran, Iran
Augustis, Vygantas, Kaunas University of Technology, Lithuania
Avachit, Patana, RF Arrays Systems, India
Basu, Sukumar, Jadavpur University, India
Beck, Stephen, University of Sheffield, UK
Ben Bouzid, Sihem, Institut National de Recherche Scientifique, Tunisia
Binnie, T. David, Napier University, UK
Bischoff, Gerlinde, Inst. Analytical Chemistry, Germany
Bodas, Dhananjay, Agilent Laboratories, USA
Bodas, Hansanayj, IMTEK, Germany
Borges Carval, Nuno, Universidade de Aveiro, Portugal
Bousbia-Salah, Mounir, IMT Atlantique, France
Boutet, Marcel, CNRS – UPMC, France
Bruzdowski, Kazimierz, Warsaw University of Technology, Poland
Cai, Chenzhuo, Nanjing Normal University, China
Cai, Qingyun, Hunan University, China
Campanella, Luigi, University La Sapienza, Italy
Carvalho, Vitor, Minho University, Portugal
Cecelja, Franjo, Brunel University, London, UK
Cerda Belmonte, Judith, Imperial College London, UK
Chakravarty, Chandan Kumar, Universiti Tenaga Nasional, Malaysia
Chakravorty, Dipankar, Association for the Cultivation of Science, India
Changbai, Ru, Harbin Engineering University, China
Chaudhari, Gajanan, Shri Shivaji Science College, India
Che, Jiming, Zhejiang University, China
Che, Rongshun, National Tsing Hua University, Taiwan
Cheng, Kuo-Sheng, National Cheng Kung University, Taiwan
Chiriac, Horia, National Institute of Research and Development, Romania
Chowdhuri, Arjunit, University of Delhi, India
Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan
Corres, Jesus, Universidad Publica de Navarra, Spain
Cortes, Camilo A., Universidad Nacional de Colombia, Colombia
Coutris, Christian, Universite de Valenciennes, France
Cusano, Andrea, University of Sannio, Italy
D’Amico, Arnaudo, Università di Tor Vergata, Italy
De Stefano, Luca, Institute for Microelectronics and Microsystems, Italy
Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India
Dickert, Franz L., Wuhan University, Austria
Dieguez, Angel, University of Barcelona, Spain
Dimotopoulos, Panos, University of Thessaly, Greece
Ding Jian, Ning, Jiangsu University, China
Djordjevic, Alexandar, City University of Hong Kong, Hong Kong
Ko, Sung Choon, Electronics and Telecommunications Research Institute, South Korea

Donato, Nicola, University of Messina, Italy
Donato, Patricio, Universidad de Mar del Plata, Argentina
Dong, Feng, Tianjin University, China
Drljaca, Predrag, Insersema Sensoric SA, Switzerland
Dubey, Venkatesh, Bournemouth University, UK
Enderle, Stefan, University of Ulm and KTB Mechatronics GmbH, Germany
Erdem, Gursun K. Arzum, Ege University, Turkey
Erkmen, Aydan M., Middle East Technical University, Turkey
Estelle, Patrice, Insa Rennes, France
Estrada, Horacio, University of North Carolina, USA
Faiz, Adil, INSA Lyon, France
Ferriean, Sorin, Balluff GmbH, Germany
Fernandes, Joana M., University of Porto, Portugal
Francisco, Luca, CNR-IMM Institute for Microelectronics and Microsystems, Italy
Francis, Laurent, Universite Catholique de Louvain, Belgium
Fu, Weiling, South-Western Hospital, Chongqing, China
Gaura, Elena, Coventry University, UK
Geng, Yanfeng, China University of Petroleum, China
Gole, James, Georgia Institute of Technology, USA
Gong, Hao, National University of Singapore, Singapore
Gonzalez de la Rosa, Juan Jose, University of Cadiz, Spain
Granel, Annette, Goteborg University, Sweden
Graff, Mason, The University of Texas at Arlington, USA
Guan, Shun, Eastman Kodak, USA
Guillet, Bruno, University of Caen, France
Guo, Zhen, New Jersey Institute of Technology, USA
Gupta, Narendra Kumar, Napier University, UK
Hadjiloucas, Sillas, The University of Reading, UK
Hashsham, Syed, Michigan State University, USA
Hernandez, Alvaro, University of Alcalá, Spain
Hernandez, Wilmar, Universidad Politecnica de Madrid, Spain
Homentcovschi, Dorel, SUNY Binghamton, USA
Horstman, Tom, U.S. Automation Group, LLC, USA
Hsiai, Tzung (John), University of Southern California, USA
Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan
Huang, Star, National Tsing Hua University, Taiwan
Huang, Wei, PGS Design Center, USA
Hui, David, University of New Orleans, USA
Jaffe, Renault, Nicole, Ecole Centrale de Lyon, France
Jalma Calvo-Galleg, Jaime, Universidad de Salamanca, Spain
James, Daniel, Griffith University, Australia
Janting, Jakob, DELTA Danish Electronics, Denmark
Jiang, Luilli, University of Southampton, UK
Jiang, Wei, University of Virginia, USA
Jiao, Zheng, Shanghai University, China
John, Joachim, IMEC, Belgium
Kalach, Andrew, Voronezh Institute of Ministry of Interior, Russia
Kang, Moonho, National University of Korea, South Korea
Karray, Pu, National Institute of Advanced Industrial Science and Technology, Japan
Katoke, Anup, Texas A&M University, USA
Kausel, Wilfried, University of Music, Vienna, Austria
Kavasoglu, Nese, Muba University, Turkey
Ke, Cathy, Tyndall National Institute, Ireland
Khan, Asif, Aligarh Muslim University, Aligarh, India
Kim, Min Young, Koh Young Technology, Inc., Korea South
Research Articles

Design and Fabrication of Micromachined Absolute Micro Pressure Sensor
P. A. Alvi, J. Akhtar, K. M. Lal, S. A. H. Naqvi and A. Azam .. 1

A Micromechanical Sensor of Temperature Based on Surface Plasmons Resonance
Juriy Hastanin, Yvon Renotte, Karl Fleury-Frenette, Serge Habraken .. 8

Recent Advances in Lactate Estimation and Lactate Sensors for Diagnosis of Diseases
Suman and Ashok Kumar... 18

Sensitivity Evaluation of a Love Wave Sensor with Multi-guiding-layer Structure for Biochemical Application, Wen Wang, Shitang He ... 32

Morphological and Humidity Sensing Studies Of WO3 Mixed With ZnO And TiO2 Powders
N. K. Pandey, Anupam Tripathi, Karunesh Tiwari, Akash Roy, Amit Rai, Priyanka Awasthi, Aradhana Mishra, Alok Kumar .. 42

A Bioelectrical Impedance Analysis Device for Monitoring Haemoglobin Status in Dengue Patients, Herlina Abdul Rahim, Fatimah Ibrahim, Mohd Nasir Taib And Ruzairi Abdul Rahim 47

Studies on Gas Sensing Performance of Pure and Li2O-modified CdIn2O4Thick Film Resistors, L. A. Patil, M. D. Mahanubhav ... 56

Benzene and Toluene Vapor Sensing Properties of Sr(II)-added Barium Aluminate Spinel Composites, B. Jeyaraj, L. John Kennedy, G. Sekaran and J. Judith Vijaya. .. 68

Direct Monitoring and Control of Transformer Temperature in Order to Avoid its Breakdown Using FOS, Deepika Yadav, A. K. Nadir and Pragati Kapoor .. 81

Multi Channels PWM Controller for Thermoelectric Cooler Using a Programmable Logic Device and Lab-Windows CVI, Eli Flaxer ... 93

Study of A Modified AC Bridge Technique for Loss Angle Measurement of a Dielectric Material, S. C. Bera and D. N. Kole .. 104

Analysis of Programmable Voltage Source Under Power Supply Interference
Sheroz Khan, Salami Femi Abdulazeeez, Lawal Wahab Adetunji ... 112

Assessment of Structural Behavior of Non-corroded and Corroded RCC Beams Using Finite Element Method, Anand Parande, P. Dhayalan, M. S. Karthikeyan, K. Kumar and N. Palaniswamy ... 120

Authors are encouraged to submit article in MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com
Please visit journal’s webpage with preparation instructions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm

International Frequency Sensor Association (IFSA).
Study of a Modified AC Bridge Technique for Loss Angle Measurement of a Dielectric Material

S. C. BERA and D. N. KOLE
Instrumentation Engineering Section, Department of Applied Physics,
University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, W. B. India
E-mail: scb152@indiatimes.com, dnkoley@yahoo.com

Received: 15 April 2008 /Accepted: 19 September 2008 /Published: 30 September 2008

Abstract: A Wheatstone’s bridge network like Schering Bridge, DeSauty Bridge etc measures the loss angle or tangent of loss angle (\(\tan \delta\)) of a dielectric material. In high voltage application this loss angle is generally measured by high voltage Schering Bridge. But continuous measurement of \(\tan \delta\) is not possible by these techniques. In the present paper a modified operational amplifiers based Schering Bridge network has been proposed for continuous measurement of \(\tan \delta\) in the form of a bridge network output voltage. Mathematical analysis of the proposed bridge network has been discussed in the paper and experimental work has been performed assuming the lossy dielectric material as a series combination of loss less capacitor and a resistor. Experimental results are reported in the paper. From the mathematical analysis and experimental results it is found that the output of the proposed bridge network is almost linearly related with \(\tan \delta\). Copyright © 2008 IFSA.

Keywords: Schering bridge, OP-AMP, Loss angle measurement, Dielectric material

1. Introduction

The loss angle of a dielectric material is a very important parameter which is required to be known accurately in dielectric material application [1, 2, 3] such as low voltage and high voltage condensers, insulating material in high voltage equipments like cable, transformer, motor, generator etc. as well as in many other aspects of instrumentation such as low voltage capacitor design, low voltage capacitive transducer design used for the measurement of different process variables like level, flow, pressure etc. In transducer application, the change of capacitance of a capacitive transducer due to change of the process variables is generally very small and may sometimes be comparable with the stray capacitance between transducer probe and ground. In low voltage application the conventional capacitance bridge...
circuits [1, 2, 3] like Schering bridge, DeSauty Bridge etc. can measure both dielectric loss and dielectric constant of a material accurately. But in high voltage application the Schering Bridge combined with Wagner earth mechanism [1] can be taken as one of the accurate bridge networks for the measurement of loss angle and dielectric constants of a material. The effect of stray capacitance between output nodal points and between any nodal point and ground becomes predominant in high voltage application and so the measurement of dielectric parameters by using bridge technique may suffer from errors. In the Schering bridge technique, these errors are minimized by using Wagner earth mechanism [13]. In this mechanism a repeated number of bridge balances are made in both Wagner earth and bridge position of a selector switch. Thus this technique brings the output nodal points of a bridge network almost at the same ground potential. As a result the measurement error due to stray capacitance between the output nodal points is minimized. But the repeated balancing method in each step of measurement may be troublesome during actual experimental work and continuous measurement is not possible.

There are different other techniques proposed by various investigators to minimize the error due to the effect of stray capacitances. Morioli D. et al. [4] and Holmberg P. [5] have proposed self balancing techniques to achieve high accuracy in measurement. Yang W.Q. et al. [6] have suggested an electrical capacitance tomography (ECT) technique for the measurement of change of capacitance of a multi electrode capacitive transducer. Zhi-Niu Xu et al [7] have suggested Hanning windowing interpolation algorithm based on FFT to reduce the error of dielectric loss angle measurement. Ahmed M. [8] presented a very simple electronic circuit for direct measurement of loss angle of a leaky capacitor in terms of pulse count. A self balancing type capacitance to DC converter has been proposed by Hagiwara N. et al [9] for measurement of capacitance in low voltage applications. Bera S.C. et al. [10] have designed an operational amplifier (OP-AMP) based modified Schering bridge for the measurement of dielectric parameters of a material and the capacitance of a capacitive transducer. But this bridge has been used for low voltage measurement whereas the same bridge has been modified by Chattopadhyay S. et al [11] to measure the loss angle of a high voltage transformer. But in this network the bridge output is non-linearly related with tangent of loss angle ($\tan\delta$). An AC bridge measurement technique has been proposed by Xiaoming Zha et al. [12] for precision measurement of loss angle.

In the present work, modified Schering Bridge proposed by Bera S.C. et al [10, 11] has been further modified to obtain a linear relationship between bridge output and $\tan\delta$ in high voltage measurement and the effect of stray capacitance is minimized as stated in [10] and [11]. The theoretical analysis of the proposed network has been described in the present paper which shows that bridge output voltage is linearly related with $\tan\delta$ of a dielectric material. The performance of the network has been experimentally tested at 230V AC, 50Hz using a series combination of a standard capacitance and a resistance. Here the lossy dielectric material is assumed as a series combination of the loss less capacitor and a resistor. The experimental results reported in the paper shows that the output of the bridge network varies linearly with the equivalent value of $\tan\delta$ of a dielectric material.

2. Analysis

The conventional Schering bridge network designed by M/s H.Tinsley & Co. [13] is shown in Fig. 1. It is modified with an operational amplifier based network as shown in Fig. 2. In Fig. 2, A_1 and A_2 are the two high gain OP-AMPs with their non inverting terminals connected to the circuit common which is again connected to the rigid ground point.
Fig. 1. Conventional Schering bridge network with Wagner-earth arrangement designed by M/s Tinsley & Co.

Fig. 2. Modified Schering Bridge network.
Hence the output nodal points B & D of the bridge network are both virtually at the same potential with respect to the ground. Hence the effect of the stray capacitance between the output lead wires and ground may be assumed to be negligibly small. If the bridge arm impedances in the arms BC, CD, AB, and AD, be \(Z_1, Z_2, Z_3 \) and \(Z_4 \) respectively then the currents \(I_1, I_2, I_3 \) and \(I_4 \) through these bridge impedances are given by

\[
I_1 = \frac{V_1}{Z_1}, \quad I_2 = \frac{V_1}{Z_2}, \quad I_3 = \frac{V}{Z_3} \quad \text{and} \quad I_4 = \frac{V}{Z_4},
\]

where \(V \) is the sinusoidal AC supply voltage and \(V_1 \) is output voltage of the amplifier A1. If \(V_{01} \) be the output voltage of the operational Amplifier A2, the current through feed back resistance \(R_f \) is given by

\[
I_f = \frac{V_{01}}{R_f}
\]

From Kirchhoff's current law,

\[
I_3 + I_1 = 0 \quad \text{and} \quad I_4 + I_2 + I_f = 0
\]

Hence from the equations (1), (2) and (3) we get

\[
V_{01} = R_f V \left(\frac{Z_1}{Z_2 Z_3} - \frac{1}{Z_4} \right)
\]

Now for the network shown in Fig. 2,

\[
Z_1 = \frac{R_1}{1 + j \omega C_1 R_1}, \quad Z_2 = \frac{R_2}{1 + j \omega C_2 R_2}, \quad Z_3 = Z_30 + \Delta Z = \frac{I}{j \omega C_3} + \frac{1 + j \omega C_3 R_x}{j \omega C_x} \quad \text{and} \quad Z_4 = \frac{I}{j \omega C_4},
\]

where \(Z_30 = \frac{1}{j \omega C_3} \) and \(\Delta Z = \frac{1 + j \omega C_3 R_x}{j \omega C_x} \)

Now the values of \(R_1, R_2, C_1, C_2, C_3 \) and \(C_4 \) are so selected that in absence of the sample (i.e. \(\Delta Z = 0 \)), the bridge is balanced. i.e. \(Z_2 Z_3 = Z_2 Z_30 \) which is possible when \(R_1 C_3 = R_2 C_3 \) and \(C_2 C_3 = C_1 C_4 \). In the present work \(C_1 = C_2, C_3 = C_4 \) and \(R_1 = R_2 \) are assumed. Now when the test sample (assumed to be the series combination of resistance \(R_x \) and capacitance \(C_x \)) is inserted as shown in Fig. 2 the bridge output voltage is given by

\[
V_{01} = R_f V \left(\frac{Z_1}{Z_2 Z_3} - \frac{1}{Z_4} \right) = R_f V \left(\frac{Z_1 Z_4 - Z_2 Z_30 - Z_3 \Delta Z}{Z_2 Z_3 (Z_30 + \Delta Z)} \right) = -\frac{R_f V \Delta Z}{Z_4(Z_30 + \Delta Z)}
\]

Now tangent of the loss angle of the material is given by \(\tan \delta = \omega C_x R_x \) and the impedance of the sample connected in series with \(C_3 \) is given by

\[
\Delta Z = \frac{(1 + j \omega C_x R_x)}{j \omega C_x} = \frac{(1 + j \tan \delta)}{j \omega C_x}
\]

Hence from equation (6) & (7), \(V_{01} \) is given by

107
\[V_{01} = \frac{R_f V j \omega C_4 (1 + j \tan \delta)}{j \omega (C_3 + C_4) - \omega C_3 \tan \delta} \]

(8)

Since \(C_3 \) is selected to be very small and \(\tan \delta \) is also very small so \((\omega C_3 \tan \delta) \) may be assumed to be negligible. Hence the above equation (8) is reduced to

\[V_{01} = \frac{R_f V j \omega C_4 (1 + j \tan \delta)}{j \omega (C_3 + C_4)} \]

and so,
\[V_{01} = \frac{R_f V j \omega C_4 (1 + j \tan \delta)}{1 + C_3/C_4} \]

(9)

If we assume \(C_x/C_3 \ll 1 \) then the above equation is reduced to

\[V_{01} = - R_f j \omega C_4 V (1 + j \tan \delta) \]

(10)

Now this signal is subtracted from the output \(V_{02} \) of the amplifier circuit consisting of OPAMP A_3 in the differential amplifier circuit consisting of OP-AMP A_4 as shown in Fig. 2. The output \(V_{02} \) of the amplifier circuit consisting of OP-AMP A_3 is given by

\[V_{02} = - R_f^\prime j \omega C_4^\prime V \]

(11)

If \(R_f^\prime \) and \(C_4^\prime \) are selected to be exactly equal to \(R_f \) and \(C_4 \) respectively then \(V_{02} \) is given by

\[V_{02} = - R_f j \omega C_4 V \]

(12)

Thus the final output \(V_0 \) of the differential amplifier circuit is given by

\[V_0 = V_{01} - V_{02} \]

or, \[V_0 = - R_f j \omega C_4 V (1 + j \tan \delta) + R_f j \omega C_4 V \]

or, \[V_0 = R_f V \omega C_4 \tan \delta \]

or, \[V_0 = K \tan \delta \]

(13)

where \(K = R_f V \omega C_4 \). Thus \(V_0 \) is linearly related with \(\tan \delta \). This output voltage may be further amplified, rectified and filtered to drive a DC analog or digital voltmeter calibrated in terms of \(\tan \delta \). Thus the tedious bridge balance method of finding \(\tan \delta \) may be avoided. Moreover from the analysis of the conventional Schering bridge network [1] as shown in Fig. 1, it is observed that the unbalanced bridge output voltage depends non-linearly on \(\tan \delta \) when it is large but becomes almost independent on \(\tan \delta \) when it is small. So continuous measurement of \(\tan \delta \) may not be possible by this conventional network.

3. Experiment

Experiment was performed by using the proposed modified Schering bridge network with a stabilized sinusoidal excitation signal and a high voltage transformer as shown in Fig. 2 using the laboratory standard equipments. The proposed modified Schering bridge circuit was fabricated by assuming
$C_1 = C_2 = 0.1 \, \mu F, \ 3KV$ and $C_3 = C_4 = 0.001 \, \mu F, \ 3KV$ and $R_1 = R_2 = 1 \, M\Omega$ so that in the absence of the test capacitor, the bridge network was at initial balanced condition and the current passing through the ICs was very small within the safety limiting value. The bridge supply voltage was selected to be 230 V, 50Hz. Now a capacitor with a defective dielectric material may be assumed to be equivalent to a series combination of a pure resistance R_x and a pure capacitance C_x as shown in Fig. 2. So in order to test the performance of the proposed bridge network a series combination of variable decade resistance R_x and a continuously variable capacitance C_x was used instead of actual test sample.

The performance of the proposed bridge network was tested and reported in this paper. In Fig. 2 the bridge parameters were so selected that in absence of R_x and C_x the bridge output was attempted to maintain at zero value but due to the deviation from exactly identical values of the bridge components a minimum bridge output voltage was observed. Keeping R_x fixed at a low value, the value of C_x ($C_x \ll C_3$) was varied in steps and the bridge network output AC voltage (V_0) was measured in each step by the 3½ digit DMM and the corresponding value of $\tan \delta$ was calculated. Now a characteristic graph was drawn by plotting V_0 against $\tan \delta$. The experiment was repeated for different values of R_x. The characteristic graphs thus obtained are shown in Fig. 3(a), 3(b), 3(c) and 3(d) respectively. The corresponding percentage deviation from linearity is shown in Fig. 4(a), 4(b), 4(c) and 4(d) respectively.

![Characteristic Graph of Modified Schering Bridge](image)

Fig. 3. Characteristic graphs of modified Schering Bridge network.
4. Discussion

From Fig. 3 it is found that the experimental characteristic graph of the modified bridge network appears to follow a linear characteristic as explained in equation (13) and the percentage deviation curves shown in Fig. 4 reveal that the percentage deviation from linearity of the bridge output characteristic lies within tolerable limit. The major advantage of this technique is that the measurement of \(\tan\delta \) does not require any tedious bridge balance method. The conventional Schering bridge network requires intermittent Wagner Earth balance for compensating stray field effect in high voltage measurement between any two consecutive readings. But the proposed network has two bridge output nodal points at the same virtual ground potential. So the measurement error due to the effect of stray capacitance appears to be minimum. Thus continuous accurate measurement of \(\tan\delta \) may be possible by the proposed network.

During high voltage measurement, proper care should be taken in shielding each bridge component and rigidly connecting each shield to ground to avoid any fatal effect to ICs, output indicator as well as the operator. The values of \(C_1, C_2, C_3 \) and \(C_4 \) and other bridge capacitors as shown in Fig. 2 are selected to have very small value so that the current passing through the OP-AMPs may remain within the safety limiting value. The initial bridge balance must be ensured by using pre-selected identical bridge parameters and no variable bridge component must be present in order to avoid any fatal effect by the incidental high unbalanced voltage. Moreover the sample capacitor \(C_x \) must be so selected that it is much less than \(C_3 \) as stated earlier so that under unbalanced condition of the bridge network due to the presence of the healthy sample, the current passing through IC A1 still remains within safety limiting value.
The proposed method has a limitation regarding the limit of high voltage supply applied to the dielectric sample since the voltage across the dielectric sample becomes less than the supply voltage due to the use of the capacitor C_3 as well as the current limitation of the OP-AMPS. But C_3 has been selected to be much greater than C_x in the proposed network and hence the voltage applied across the test capacitor C_x is nearly equal to the supply voltage. Hence the dielectric material can be tested with high voltage if the current passing through the capacitors C_3 and C_4 lie within the safety limiting current of the OP-AMPS. So very low value vacuum capacitors with high voltage rating may increase the limiting value of high voltage supply of the bridge network. However at low voltage supply higher value capacitors may be used for the bridge network.

Acknowledgement

The authors are thankful to the All India Council of Technical Education (AICTE), MHRD, Government of India for their financial assistance in the present investigation and the Department of Applied Physics, University of Calcutta for providing the facilities to carry out this research work.

References

Plastic Electronics 2008
Conference and Showcase
Monday 27 - Wednesday 29 October 2008
Maritim Hotel Berlin, Germany

The global event where Science and Industry in Plastic Electronics meet

www.plastic-electronics.org/europe
Aims and Scope

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and application specific papers, short notes, letters to Editor and sensors related books reviews as well as academic, practical and commercial information of interest to its readership. Because it is an open access, peer review international journal, papers rapidly published in Sensors & Transducers Journal will receive a very high publicity. The journal is published monthly as twelve issues per annual by International Frequency Association (IFSA). In additional, some special sponsored and conference issues published annually.

Topics Covered

Contributions are invited on all aspects of research, development and application of the science and technology of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- Sensors interfaces, buses and networks;
- Signal processing;
- Frequency (period, duty-cycle)-to-digital converters, ADC;
- Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Submission of papers

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 6-14 pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word (doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript are available from the journal’s webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors must follow the instructions strictly when submitting their manuscripts.

Advertising Information

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit: http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2008.pdf
Smart Sensors Systems Design
A five-day advanced engineering course
10-14 November 2008, Barcelona, Spain

General Information
This course is suitable for engineers who design different digital and intelligent sensors, data acquisition, and measurement systems. It is also useful for researchers, graduate and post graduate students. Course will be taught in English.

Course Description
An advanced engineering course describes modern developments and trends in the field of smart sensor systems and digital sensors design.

After a general overview of data acquisition methods, modern smart, digital and quasi-digital sensors, smart systems details are discussed. A systematic approach towards the design of low-cost high-performance smart sensors systems with self-adaptation and self-identification possibilities is presented.

Contact Person
Susana Escruche
Fundació UPC. Edifici Vértex
Plaça Eusebi Güell, 6, 08034 Barcelona
Tel.: +34 93 401 08 94
E-mail: susana.escruche@fundacio.upc.edu

Course Instructor
Prof. Sergey Y. Yurish,
Centre de Disseny d’Equips Industrials (CDEI),
Universitat Politècnica de Catalunya (UPC-Barcelona)
Tel.: +34 93 401 74 37, fax: +34 93 401 19 89
E-mail: syurish@sensorsportal.com

Online Registration:
Deadline for Registration:
31 October, 2008

www.sensorsportal.com