
Sensors & Transducers, Vol. 178, Issue 9, September 2014, pp. 99-105

 99

SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss

© 2014 by IFSA Publishing, S. L.
http://www.sensorsportal.com

A Novel CAN Tree Coordinate Routing
in Content-Addressable Network

1 Zhongtao Li, 2 Shuai Zhao, 3 Chuan Ge, 4 Shichao Gao

1 University Duisburg-Essen, Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften
Fachgebiet Verteilte Systeme Duisburg, 47048, Germany

2 University Duisburg-Essen, Germany,
3 Shandong University, China,

4 China Mobile Communications Group Terminal Company Limited Shandong branch, China
1 Tel.: 0049-17638215891

1 E-mail: li.zhongtao@hotmail.com

Received: 22 May 2014 /Accepted: 29 August 2014 /Published: 30 September 2014

Abstract: In this paper, we propose a novel approach to improve coordination routing while minimizing the
maintenance overhead during nodes churn. It bases on “CAN Tree Routing for Content-Addressable Network”
[1] which is a solution for peer-to-peer routing. We concentrated on coordinate routing in this paper. The key
idea of our approach is a recursion process to calculate target zone code and search in CAN tree [1]. Because the
hops are via long links in CAN, it enhances routing flexibility and robustness against failures. Nodes
automatically adapt routing table to cope with network change. The routing complexity is ()nO log , which is

much better than a uniform greedy routing, while each node maintains two long links in average. Copyright ©
2014 IFSA Publishing, S. L.

Keywords: Coordinate routing, P2P routing, CAN routing CAN Tree, CAN, CANS.

1. Introduction

The structured approach of P2P architectures are

based on analogous designs, while their search and
management strategies differ. Ring-based approaches
such as Pastry [3], and Chord [4] all use similar
search algorithms such as binary ordered B*-tree.
Content Addressable Networks (CAN) bases on the
geometric space [2, 5]. The original routing of CAN
has the lowest efficiency among the aforementioned
structured Peer-to-Peer systems [8, 10-11]. Routing
hops of Chord is O(log n) in average for a Chord
circle with n participating nodes. In Pastry with n
nodes, the destination is reached in)(log

2
nb hops.

CAN can forward messages using only immediate-
links. Hence, greedy routing [2] is not very efficient,

particularly in large scale dynamic CAN; and CAN
routing complexity is ()dndO /1⋅ in a d-dimensional

key space [1].
In “CAN Tree Routing for Content-Addressable

Network” [1], we have proposed an approach to
improve peer-to-peer routing. However, we need to
forward a message to a point in space without target
peer information. It’s coordinate routing. In this
paper, we proposed a novel approach to enhance
coordination routing. The routing complexity
is O(log n).

2. Zone Code and CAN Tree

Instead of greedy routing, we route in a tree
network. The key idea is to establish a P2P tree

http://www.sensorsportal.com/HTML/DIGEST/P_2359.htm

http://www.sensorsportal.com

Sensors & Transducers, Vol. 178, Issue 9, September 2014, pp. 99-105

 100

(CAN tree) [6] via long links. Each node of CAN is a
node of the CAN tree. Since each node only connects
with its parent and child nodes in the tree network, it
needs more information to choose the routing target
node. For this purpose, we introduce the zone code.

We have proposed the zone code in “Using Zone
Code to Manage a Content-Addressable Network for
Distributed Simulations” [7]0. It’s a binary string. A
zone code records the splitting history of its
corresponding zone. We can obtain the zone code
(Fig. 1. (a) by traversing the partition tree (Fig. 1.
(b)). The partition tree is a binary tree and records the
reassignment process. In order to obtain a zone code,
we perform a traversal from root to leaf in the
partition tree. It’s analogous to Hoffman code [12].
Going left is a 0, going right is a 1. A zone code is
only completed when a leaf node is reached [7, 13].
Fig. 1. (b) illustrates how to establish zone codes via
the partition tree. Combining all our insights, we
deduced the following observation.

Fact 1: The zone code is a prefix code.

1
000

8
001

2
100

6
101

3
0100 4

011
5

11 7
0101

(a) CAN

(b) Partition tree

Fig. 1. CAN and partition tree.

In practice, we don’t need the partition tree to
generate a zone code. When a node p shares its half
zone to a new node c, node c copies p’s zone code.
And then node p and c append “0” and “1”

respectively. Let pδ denote the zone code of node p.
Then, after node c joining, the new zone code of node

p is)0,(pδ and the zone code of c is)1,(pδ .

Hence, zone code grows simultaneous with zone
splitting. The more splits, the longer zone code
becomes [7]. Combining all our insights, we deduced
the following observation.

Fact 2: In partition tree, the zone code of node p
is the prefix of zone codes of all nodes in the sub-tree
rooted at node p.

For example, the node marked with shade in
Fig. 1(b) as zone code (0,1). Thus, the zone codes of
nodes in the sub-tree have a common prefix (0,1).

By Fact 2, we can route in the partition tree.
However, the internal nodes in the partition tree do
no longer exist, but were split at some previous time.
The children of a node are the two nodes into which
their parent node was split. Thus, we cannot establish
this partition tree via long links in practice. We need
the CAN tree to realize the long links.

CAN tree is a variation of the partition tree. Both
of them are representations of the zone splitting
process. There are some duplicate nodes that have the
same name but different zone codes in the partition
tree (Fig. 1(b)). If we merge duplicate nodes into one
node that is parent of duplicate nodes’ child nodes, it
becomes CAN tree (Fig. 2). CAN tree is not a binary
tree, but each node exists in CAN tree. Thus, we can
implement high efficient routing in CAN tree.

Fig. 2. CAN tree.

We build the CAN tree via parent-child long
links. When a new node c forwarded JOIN request
and node p shares half its zone with node c, node c
becomes the child of node p. All “parent-child”
relations constitute a distributed CAN tree. In order
to route, each node must store its original zone code

*δ and current zone code δ . Therefore, when a
new node c joins in CAN and obtains zone from node
p, node p and c must act as follows (Fig. 3):

1. Node p splits its allocated zone in half,
retaining half and handing the other half to node c.

2. Node p becomes parent of node c. Both of them
augment long links to establish a “parent-child”
relation in the CAN tree.

3. Node c copies p’s current zone code (δδ =p).
And then, node p and c append “0” and “1”
respectively, i.e. new)0,(δδ =p and)1,(δδ =c .

4. Node c sets)1,(* δδ =c , Node p is not a new

node, hence *pδ does not change.

Sensors & Transducers, Vol. 178, Issue 9, September 2014, pp. 99-105

 101

(a) Before joining

(b) After joining

Fig. 3. New peer c joins CAN.

Let *pδ denote the original zone code of node p.
*pδ is the first zone code of node p, and *pδ is

constant. If node p shared its zone to a new node,
pp δδ =!* . For example in Fig. 2,)0,0,1,0(3 =δ

and)1,0(*3 =δ . *pδ is the prefix of pδ .

Consequently, *pδ is also the prefix of zone code of
children of node p. Combining all our insights, we
deduced the following observation.

Fact 3: In CAN tree, a node p has the original

zone code *pδ . The *pδ is the prefix of zone codes
of nodes in the sub-tree rooted at node p.

For example in Fig. 2 the *3δ is the prefix of zone
code of all nodes in sub-tree rooted at node 3. The

*1δ is null, it’s the prefix of any zone code of nodes
in the CAN tree. Since a new node obtains its zone
code via copying and extending the zone code of its
parent, we deduce the following:

Fact 4: If *pδ of node p is the prefix of the cδ
of node c, node c is in the sub-tree rooted at node p.

Let *pδ denote the original zone code of current

node p and dδ is the zone code of the destination
node d. Consequently, our routing scheme is that

node p checks whether its *pδ is prefix of dδ .
If it is, node p forwards the message to its child

which shares the longest common prefix with dδ .
If not, node d is not in the sub-tree rooted at
node p and then node p forwards the message to its
parent node.

Fig. 2 illustrates the routing from node 5
to node 7. If the destination node is not in the sub-
tree rooted at current node, we expand the
searching sub-tree until it covers the destination
node. Afterwards, we shrink the searching
sub-tree until the current node is the destination.
If the destination node is in the sub-tree rooted at
current node, we only shrink the searching
region. During shrinking, the destination node is
always in the sub-tree rooted at the current
node. Thus, the routing must eventually
terminate successfully.

3. Routing Mechanism

3.1. Routing Table

The routing table consists of the short links
toward the neighbors and the long links toward the
parent and child nodes in the CAN tree, and the

original zone code *δ (Fig. 4). In this section, we
propose the detail of how to establish and maintain
the routing table. The routing procedure is addressed
in the next section.

CAN maintains short links by exchanging
heartbeat messages between immediate neighbors.
For d-dimensional CAN, a node maintains O(d)
neighbors in average. This is analogous to original
CAN.

Long links are a part of CAN tree. It’s central to
our scheme. They are established during new nodes
joining. When a new node joins in CAN via
Bootstrapping [14-15], an existing node splits its
zone into two sub-zones, retaining one and handing
the other to the new node [2]. This is same with
original CAN. However, the two nodes are parent-
child relationship in CAN tree. We establish long
links between them, i.e. they augment a long link set
in its routing table respectively. They are distant
neighbors. The entry of routing table is consisted of
distant neighbor information, e.g. node ID, IP
address, and zone code δ (Fig. 4).

We will discuss the system responsiveness during
network churn in other paper.

(a) Node 1

(b) Node 2

(c) Node 3

(d) Node 4

(e) Node 5

(f) Node 6

(j) Node 7

(h) Node 8

Fig. 4. Routing tables.

Sensors & Transducers, Vol. 178, Issue 9, September 2014, pp. 99-105

 102

3.2. Get Zone Point Set Via Zone Code

By definition all zones with the same zone code
length have the same size. The zone code of node p
(()pppp ccc 321 ,,=δ) is divided into d parts. The

sub-set of the zone code ()p
j

p
j

p
j

p
i ccc

321
,,=δ

(idjn =mod) records the splitting process along the

ith axis.
Given that the zones are halved along one

dimension during split, this implies that their sizes
are also proportional to the inverse cof powers of 2.

p
iδ is the length of p

iδ , and the proportion of p’s

width to space’s width on the ith dimension is p
iδ

2

1
.

Let ()10
p

iδ denote the decimal representation for
p

iδ and width iw denote CAN’s key space width on

the ith dimension. Then ()
p

i

i
p

i w
δ

δ

2

10 ⋅ is p’s low boundary

on the ith dimension, and then ()()
p

i

i
p

i w
δ

δ

2

110 ⋅+ is p’s

upper boundary on the ith dimension (Fig. 5).

i

iw
δ2 i

iw
δ2

2 ()
i

i
p

i w
δ

δ
2

10 ⋅
iw()()

i

i
p

i w
δ

δ
2

110 ⋅+

Fig. 5. Zone boundaries on one dimension.

For example, 2-dimensional CAN has the width w
and height h. The zone code of p is divided into the

partial zone codes p
xδ and

p
yδ which record

the x-axis and y-axis splitting process respectively.

The zones are defined as a set of points
p

yxZ , :

()() () () ()








⋅+<≤⋅⋅+<≤⋅=
||10||10||10||10,

2
)1(

22
)1(

2
, p

y
p
y

p
x

p
x

h
y

hw
x

w
yxZ p

y
p
y

p
x

p
x

p
yx δδδδ

δδδδ

Equation 1 Zone point set in 2-dimensional key space

Therefore, if node 6 has zone code)1,0,1(6 =δ in

CAN (w=800 and h=600 shown in Fig. 6), it follows:

()
()





=
=








=
=

=
0

3

0

11
101

10

6
10

6

6

6
6

y

x

y

x

xyx δ
δ

δ
δ

δ and






=
=

1||

2||
6

6

y

x

δ
δ

()() () () ()

()

(){ }3000800600,

2

600
)10(

2

600
0

2

800
)13(

2

800
3,

2
)1(

22
)1(

2
,

6
,

1122
6
,

||10

6

||10

6

||10
6

||10
66

, 6666

<≤<≤=








⋅+<≤⋅⋅+<≤⋅=









⋅+<≤⋅⋅+<≤⋅=

yxyxZ

yxyxZ

h
y

hw
x

w
yxZ

yx

yx

yyxxyx
yyxx δδδδ

δδδδ

Fig. 6. CAN (width: 800 and height: 600).

3.3. Routing to a Point via Routing Table

The current node c sends a message to a point p in
the key space, and we assume the destination is node
e whose zone covers point p. In CAN tree coordinate

routing, we also need the zone code eδ of node e.
However, the current node c does not have any

information about node e. We can calculate the zone
code via reversing the aforementioned derivation in
Section 3.2, and then, forward the message to the
next node. Routing is as follows:

1. Calculate eδ : We calculate eδ via reversing
the aforementioned derivation in Section 3.2, e.g. in

2-dimensional key space, eδ is deduced from
Equation 1 . However, Equation 1 depends on the
length eδ of zone code of node e, which is an

unknown factor. We assume that node c and e have

the same length zone codes, i.e. ce δδ = .

Consequently, eδ can be deduced from Equation 1.
2. Choose next node: The current node c checks

its routing table whether its *cδ is the prefix of eδ .
If it is, it forwards the message to its child node that

shares the longest common prefix with eδ . If not, it
forwards the message to its parent node.

Sensors & Transducers, Vol. 178, Issue 9, September 2014, pp. 99-105

 103

For example, node 5 in Fig. 6 has)1,1(*5 =δ

and)1,1(5 =δ , and forwards a message to

point (100, 500). The routing procedure is as follows:

1. Node 5 assumes that node e is the destination.

Since 25 =δ , set 2=eδ . Thus, calculate

eδ as follows:

()() () () ()








⋅+<≤⋅⋅+<≤⋅=
||10||10||10||10,

2
)1(

22
)1(

2
, e

y
e
y

e
x

e
x

h
y

hw
x

w
yxZ e

y
e
y

e
x

e
x

e
yx δδδδ

δδδδ






==
==








=
=

=
1||

1||

1

1
11

5

5

5

5
5

y
e
y

x
e
x

y

x

yx δδ
δδ

δ
δ

δ
,

then

() ()() () () ()
() ()

)1,0(

1

0

22

10

2

600
)1(

2

600

2

800
)1(

2

800
,500,100

5

1010

110110110110

=







=
=



==

==






 ⋅+<≤⋅⋅+<≤⋅∈

e

e
y

e
x

e

e
y

e
x

e
y

e
y

e
x

e
x

and

yxyx

δ

δ
δ

δδ

δδ

δδδδ

Since)1,1(*5 =δ is not the prefix of)1,0(=eδ , it

forwards the message to its parent node 2.
2. Node 2 calculates and obtains)0,1,0(=eδ

dependent on 32 =δ (same as 1st step). Since

)1(*2 =δ is not the prefix of)0,1,0(=eδ , it forwards

the message to its parent node 1.
3. Node 1 calculates and obtains)0,1,0(=eδ

dependent on 31 =δ . Since it is root node, it

forwards the message to child node 3 whose
)0,0,1,0(3 =δ shares the longest common prefix

with eδ .
4. Node 3 calculates and obtains)1,0,1,0(=eδ

dependent on 43 =δ . Since)1,0(*3 =δ is the prefix

of eδ , it forwards the message to child node 7 which
is the destination. Thus, routing is finished.

4. Evaluation

Our solution did not re-design CAN Tree routing,
but extended it. By this novel approach, we could
forward a message to an unbeknown point.

The routing procedure always converges, since each
step forwards the message to a node which shares a
longer prefix than the last step, each step moves
closer to the destination.

The complexity depends on the tree structure. In
order to demonstrate the effectiveness of our design
in terms of routing performance, we have
implemented a CAN tree routing scheme in C# and
conducted a set of experiments via distinct schemes
on networks with up to 16000 nodes. We run CAN
tree routing against original CAN greedy and RCAN
routing to offer comparative measurements. These
measures include essentially: path length to cope with
different network size, path length distribution, and
number of long links per node.

Fig. 7(a) and Fig. 7(b) plot respectively the
average and the maximum path length with respect to
network size. The path length is measured by the
number of hops traversed during each lookup request.
Fig. 7 illustrates that both the average and maximum
path length in CAN tree routing are better than in
other routing, and both of them are perfectly
asymptotic to the logarithm of nods. Path length of
greedy routing (Fig. 7) increases much faster.

(a) Average path length

(b) Maximum path length

Fig. 7. Path length with increasing network size.

Sensors & Transducers, Vol. 178, Issue 9, September 2014, pp. 99-105

 104

Fig. 8 illustrates the path lengths distribution of
routing in CAN with 16000 nodes. The path length
distribution of greedy routing is much better than in
other routing.

Fig. 8. Path length distribution.

Except first node, every new node needs two long
links to join in CAN tree. Each parent node needs
one long link pointing to its child; and child nodes
need one long link pointing to its parent. Hence,
number of long links is () 21 ×−n , and average long

links can be calculated as:

()
n

n
Laverage

21 ×−=

2
2)1(limlim

=×−
∞→

=
∞→ n

n

n
L

n average

Thus, each node maintains two long links

in average.
CAN tree coordinate routing has same complexity,

path length distribution and average long links with
CAN Tree peer-to-peer routing [1].

5. Conclusions

CAN tree coordinate routing is distinguished
from peer-to-peer routing. It’s a novel routing
scheme. Current node calculates target zone code and
compare with its zone code to choice next hop.
Therefore, we could forward a message to a point,
while we do not have any information about the
point’s owner.

CAN with CAN tree routing is a completely
decentralized system. CAN tree infrastructure
gracefully adapts itself to cope with any changes in
the network. As a pure peer-to-peer system, nodes
assume equal responsibility. System maintains
nodes’ routing states with minimizing cost even in
the presence of high rate of churn. The critical
contribution is to equip each node with long links
that extremely enhance routing efficiency. The
amount of long links per node is independent of the

network size. The system can scale by several orders
of magnitude without loss of efficiency.

Our routing scheme has more links than original
CAN, which causes a tiny overhead to maintain long
links. It’s proved that the number of long links per
node is 2 in average. However, it also shows the
small extension leads to significant improvements on
routing performance.

Our ongoing work includes the investigation of
advanced mechanisms for load balancing [9] to
improve the system responsiveness during
network churn.

References

[1]. Zhongtao Li, Torben Weis, CAN Tree Routing for

Content-Addressable Network, Sensors &
Transducers, Vol. 162, Issue 1, January 2014,
pp. 124-130.

[2]. Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, Scott Shenker, A Scalable Content
Addressable Network, in Proceedings of the ACM
SIGCOMM, 2001.

[3]. A. Rowstron, P. Druschel, Pastry: Scalable,
Distributed Object Location and Routing for Large-
Scale Peer-to-Peer Systems, in Proceedings of the
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), November 2001,
pp. 329-350.

[4]. I. Stoica, R. Morris, D. Karger, F. Kaashoek,
H. Balakrishnan, Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications, in
Proceedings of the ACM SIGCOMM Conference,
2001, pp. 149–160.

[5]. Ralf Steinmetz, Klaus Wehrle, Peer-to-Peer Systems
and Applications, Springer, 2005.

[6]. Zhongtao Li, Torben Weis, Content-Addressable
Network for Distributed Simulations, in Proceedings
of the International Conference on Communications,
Mobility and Computing (CMC'12), May 2012.

[7]. Zhongtao Li, Torben Weis, Using Zone Code to
Manage a Content-Addressable Network for
Distributed Simulations, in Proceedings of the IEEE
14th International Conference on Communication
Technology (ICCT'12), Nov. 2012.

[8]. Xu Z., Zhang Z., Building low-maintenance
expressways for P2P systems, Technical Report
HPL-2002-41 41, HP Laboratories, Palo Alto, 2002.

[9]. Sahin O. D., Agrawal D., Abbadi A. E., Techniques
for efficient routing and load balancing in content-
addressable networks, in Proceedings of the 5th IEEE
Intl. Conference on Peer-to-Peer Computing (P2P
2005), Los Alamitos, Washington, DC, USA, 2005,
pp. 67–74.

[10]. Sun X., SCAN: a small-world structured P2P overlay
for multi-dimensional queries, in Proceedings of the
16th Intl. Conf. on World Wide Web (WWW'07),
ACM, New York, 2007, pp. 1191–1192.

[11]. Boukhelef D., Kitagawa H., Multi-ring Infrastructure
for Content Addressable Networks, in Proceedings of
the 16th International Conference on Cooperative
Information Systems (CoopIS'08), Lecture Notes in
Computer Science, Vol. 5331, 2008, pp. 193-211.

[12]. David A. Huffman, A Method for the Construction of
Minimum-Redundancy Codes, in Proceedings of the
IRE, 1952.

Sensors & Transducers, Vol. 178, Issue 9, September 2014, pp. 99-105

 105

[13]. Zhongtao Li, Shuai Zhao, A. J. Han Vinck, Ru Jia,
Efficient Codes for Writing Equal-bit Information in
a WOM Twice, Journal of Multimedia, Vol. 9,
Issue 4, Apr. 2014, pp. 477-482.

[14]. M. Knoll, A. Wacker, G. Schiele, T. Weis,
Decentralized bootstrapping in pervasive
applications, in Proceedings of the Fifth Annual
IEEE International Conference on Pervasive

Computing and Communications Workshops
(PerComW'07), 2007, pp. 589-592.

[15]. M. Knoll, A. Wacker, G. Schiele, T. Weis,
Bootstrapping in Peer-to-Peer Systems, in
Proceedings of the 14th International Conference on
Parallel and Distributed Systems (ICPADS'08),
Melbourne, Victoria, Australia, 8-10 December,
2008.

2014 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved.
(http://www.sensorsportal.com)

http://www.sensorsportal.com/HTML/Membership_Form.htm

