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Abstract: In this paper, we propose a novel approach to improve coordination routing while minimizing the 
maintenance overhead during nodes churn. It bases on “CAN Tree Routing for Content-Addressable Network” 
[1] which is a solution for peer-to-peer routing. We concentrated on coordinate routing in this paper. The key 
idea of our approach is a recursion process to calculate target zone code and search in CAN tree [1]. Because the 
hops are via long links in CAN, it enhances routing flexibility and robustness against failures. Nodes 
automatically adapt routing table to cope with network change. The routing complexity is ( )nO log , which is 

much better than a uniform greedy routing, while each node maintains two long links in average. Copyright © 
2014 IFSA Publishing, S. L. 
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1. Introduction 
 
The structured approach of P2P architectures are 

based on analogous designs, while their search and 
management strategies differ. Ring-based approaches 
such as Pastry [3], and Chord [4] all use similar 
search algorithms such as binary ordered B*-tree. 
Content Addressable Networks (CAN) bases on the 
geometric space [2, 5]. The original routing of CAN 
has the lowest efficiency among the aforementioned 
structured Peer-to-Peer systems [8, 10-11]. Routing 
hops of Chord is O(log n) in average for a Chord 
circle with n participating nodes. In Pastry with n 
nodes, the destination is reached in )(log

2
nb  hops. 

CAN can forward messages using only immediate-
links. Hence, greedy routing [2] is not very efficient, 

particularly in large scale dynamic CAN; and CAN 
routing complexity is ( )dndO /1⋅  in a d-dimensional 

key space [1]. 
In “CAN Tree Routing for Content-Addressable 

Network” [1], we have proposed an approach to 
improve peer-to-peer routing. However, we need to 
forward a message to a point in space without target 
peer information. It’s coordinate routing. In this 
paper, we proposed a novel approach to enhance 
coordination routing. The routing complexity  
is O(log n). 

 
 

2. Zone Code and CAN Tree 
 

Instead of greedy routing, we route in a tree 
network. The key idea is to establish a P2P tree 
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(CAN tree) [6] via long links. Each node of CAN is a 
node of the CAN tree. Since each node only connects 
with its parent and child nodes in the tree network, it 
needs more information to choose the routing target 
node. For this purpose, we introduce the zone code. 

We have proposed the zone code in “Using Zone 
Code to Manage a Content-Addressable Network for 
Distributed Simulations” [7]0. It’s a binary string. A 
zone code records the splitting history of its 
corresponding zone. We can obtain the zone code 
(Fig. 1. (a) by traversing the partition tree (Fig. 1. 
(b)). The partition tree is a binary tree and records the 
reassignment process. In order to obtain a zone code, 
we perform a traversal from root to leaf in the 
partition tree. It’s analogous to Hoffman code [12]. 
Going left is a 0, going right is a 1. A zone code is 
only completed when a leaf node is reached [7, 13]. 
Fig. 1. (b) illustrates how to establish zone codes via 
the partition tree. Combining all our insights, we 
deduced the following observation. 

Fact 1: The zone code is a prefix code. 
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(a) CAN 

 

 
 

(b) Partition tree 
 

Fig. 1. CAN and partition tree. 
 
 

In practice, we don’t need the partition tree to 
generate a zone code. When a node p shares its half 
zone to a new node c, node c copies p’s zone code. 
And then node p and c append “0” and “1” 

respectively. Let pδ  denote the zone code of node p. 
Then, after node c joining, the new zone code of node 

p is )0,( pδ  and the zone code of c is )1,( pδ . 

Hence, zone code grows simultaneous with zone 
splitting. The more splits, the longer zone code 
becomes [7]. Combining all our insights, we deduced 
the following observation. 

Fact 2: In partition tree, the zone code of node p 
is the prefix of zone codes of all nodes in the sub-tree 
rooted at node p. 

For example, the node marked with shade in 
Fig. 1(b) as zone code (0,1). Thus, the zone codes of 
nodes in the sub-tree have a common prefix (0,1). 

By Fact 2, we can route in the partition tree. 
However, the internal nodes in the partition tree do 
no longer exist, but were split at some previous time. 
The children of a node are the two nodes into which 
their parent node was split. Thus, we cannot establish 
this partition tree via long links in practice. We need 
the CAN tree to realize the long links. 

CAN tree is a variation of the partition tree. Both 
of them are representations of the zone splitting 
process. There are some duplicate nodes that have the 
same name but different zone codes in the partition 
tree (Fig. 1(b)). If we merge duplicate nodes into one 
node that is parent of duplicate nodes’ child nodes, it 
becomes CAN tree (Fig. 2). CAN tree is not a binary 
tree, but each node exists in CAN tree. Thus, we can 
implement high efficient routing in CAN tree. 

 
 

 
 

Fig. 2. CAN tree. 
 
 

We build the CAN tree via parent-child long 
links. When a new node c forwarded JOIN request 
and node p shares half its zone with node c, node c 
becomes the child of node p. All “parent-child” 
relations constitute a distributed CAN tree. In order 
to route, each node must store its original zone code 

*δ  and current zone code δ . Therefore, when a 
new node c joins in CAN and obtains zone from node 
p, node p and c must act as follows (Fig. 3): 

1. Node p splits its allocated zone in half, 
retaining half and handing the other half to node c. 

2. Node p becomes parent of node c. Both of them 
augment long links to establish a “parent-child” 
relation in the CAN tree. 

3. Node c copies p’s current zone code ( δδ =p ). 
And then, node p and c append “0” and “1” 
respectively, i.e. new )0,(δδ =p  and )1,(δδ =c . 

4. Node c sets )1,(* δδ =c , Node p is not a new 

node, hence *pδ does not change. 
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(a) Before joining 

 
 

(b) After joining 
 

Fig. 3. New peer c joins CAN. 
 
 

Let *pδ  denote the original zone code of node p. 
*pδ is the first zone code of node p, and *pδ is 

constant. If node p shared its zone to a new node, 
pp δδ =!* . For example in Fig. 2, )0,0,1,0(3 =δ  

and )1,0(*3 =δ . *pδ is the prefix of pδ . 

Consequently, *pδ  is also the prefix of zone code of 
children of node p. Combining all our insights, we 
deduced the following observation.  

Fact 3: In CAN tree, a node p has the original 

zone code *pδ . The *pδ  is the prefix of zone codes 
of nodes in the sub-tree rooted at node p.  

For example in Fig. 2 the *3δ is the prefix of zone 
code of all nodes in sub-tree rooted at node 3. The 

*1δ  is null, it’s the prefix of any zone code of nodes 
in the CAN tree. Since a new node obtains its zone 
code via copying and extending the zone code of its 
parent, we deduce the following: 

Fact 4: If *pδ  of node p is the prefix of the cδ  
of node c, node c is in the sub-tree rooted at node p. 

Let *pδ  denote the original zone code of current 

node p and dδ  is the zone code of the destination 
node d. Consequently, our routing scheme is that 

node p checks whether its *pδ  is prefix of dδ .  
If it is, node p forwards the message to its child 

which shares the longest common prefix with dδ .  
If not, node d is not in the sub-tree rooted at  
node p and then node p forwards the message to its 
parent node.  

Fig. 2 illustrates the routing from node 5  
to node 7. If the destination node is not in the sub-
tree rooted at current node, we expand the  
searching sub-tree until it covers the destination 
node. Afterwards, we shrink the searching  
sub-tree until the current node is the destination.  
If the destination node is in the sub-tree rooted at 
current node, we only shrink the searching  
region. During shrinking, the destination node is 
always in the sub-tree rooted at the current  
node. Thus, the routing must eventually  
terminate successfully.  

3. Routing Mechanism 
 

3.1. Routing Table 
 

The routing table consists of the short links 
toward the neighbors and the long links toward the 
parent and child nodes in the CAN tree, and the 

original zone code *δ  (Fig. 4). In this section, we 
propose the detail of how to establish and maintain 
the routing table. The routing procedure is addressed 
in the next section. 

CAN maintains short links by exchanging 
heartbeat messages between immediate neighbors. 
For d-dimensional CAN, a node maintains O(d) 
neighbors in average. This is analogous to original 
CAN. 

Long links are a part of CAN tree. It’s central to 
our scheme. They are established during new nodes 
joining. When a new node joins in CAN via 
Bootstrapping [14-15], an existing node splits its 
zone into two sub-zones, retaining one and handing 
the other to the new node [2]. This is same with 
original CAN. However, the two nodes are parent-
child relationship in CAN tree. We establish long 
links between them, i.e. they augment a long link set 
in its routing table respectively. They are distant 
neighbors. The entry of routing table is consisted of 
distant neighbor information, e.g. node ID, IP 
address, and zone code δ  (Fig. 4).  

We will discuss the system responsiveness during 
network churn in other paper. 

 
 

 
(a) Node 1 

 

 
(b) Node 2 

 

 
(c) Node 3 

 

 
 

(d) Node 4 
 

 
(e) Node 5 

 

 
(f) Node 6 

 

 
(j) Node 7 

 
(h) Node 8 

 
Fig. 4. Routing tables. 
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3.2. Get Zone Point Set Via Zone Code 
 

By definition all zones with the same zone code 
length have the same size. The zone code of node p 
( ( )pppp ccc 321 ,,=δ ) is divided into d parts. The 

sub-set of the zone code ( )p
j

p
j

p
j

p
i ccc

321
,,=δ  

( idjn =mod ) records the splitting process along the 

ith axis. 
Given that the zones are halved along one 

dimension during split, this implies that their sizes 
are also proportional to the inverse cof powers of 2. 

p
iδ  is the length of p

iδ , and the proportion of p’s 

width to space’s width on the ith dimension is p
iδ

2

1
. 

Let ( )10
p

iδ  denote the decimal representation for 
p

iδ  and width iw  denote CAN’s key space width on 

the ith dimension. Then ( )
p

i

i
p

i w
δ

δ

2

10 ⋅  is p’s low boundary 

on the ith dimension, and then ( )( )
p

i

i
p

i w
δ

δ

2

110 ⋅+  is p’s 

upper boundary on the ith dimension (Fig. 5). 
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Fig. 5. Zone boundaries on one dimension. 
 
 

For example, 2-dimensional CAN has the width w 
and height h. The zone code of p is divided into the 

partial zone codes p
xδ  and 

p
yδ  which record  

the x-axis and y-axis splitting process respectively. 

The zones are defined as a set of points 
p

yxZ , : 
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Equation 1 Zone point set in 2-dimensional key space 
 

Therefore, if node 6 has zone code )1,0,1(6 =δ  in 

CAN (w=800 and h=600 shown in Fig. 6), it follows: 
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Fig. 6. CAN (width: 800 and height: 600). 
 
 

3.3. Routing to a Point via Routing Table 
 

The current node c sends a message to a point p in 
the key space, and we assume the destination is node 
e whose zone covers point p. In CAN tree coordinate 

routing, we also need the zone code eδ  of node e. 
However, the current node c does not have any 

information about node e. We can calculate the zone 
code via reversing the aforementioned derivation in 
Section 3.2, and then, forward the message to the 
next node. Routing is as follows: 

1. Calculate eδ : We calculate eδ  via reversing 
the aforementioned derivation in Section 3.2, e.g. in 

2-dimensional key space, eδ  is deduced from 
Equation 1 . However, Equation 1  depends on the 
length eδ  of zone code of node e, which is an 

unknown factor. We assume that node c and e have 

the same length zone codes, i.e. ce δδ = . 

Consequently, eδ can be deduced from Equation 1. 
2. Choose next node: The current node c checks 

its routing table whether its *cδ  is the prefix of eδ . 
If it is, it forwards the message to its child node that 

shares the longest common prefix with eδ . If not, it 
forwards the message to its parent node.  
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For example, node 5 in Fig. 6 has )1,1(*5 =δ   

and )1,1(5 =δ , and forwards a message to  

point (100, 500). The routing procedure is as follows: 

1. Node 5 assumes that node e is the destination. 

Since 25 =δ , set 2=eδ . Thus, calculate  

eδ  as follows:  
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Since )1,1(*5 =δ is not the prefix of )1,0(=eδ , it 

forwards the message to its parent node 2. 
2. Node 2 calculates and obtains )0,1,0(=eδ  

dependent on 32 =δ  (same as 1st step). Since 

)1(*2 =δ is not the prefix of )0,1,0(=eδ , it forwards 

the message to its parent node 1. 
3. Node 1 calculates and obtains )0,1,0(=eδ  

dependent on 31 =δ . Since it is root node, it 

forwards the message to child node 3 whose 
)0,0,1,0(3 =δ  shares the longest common prefix  

with eδ . 
4. Node 3 calculates and obtains )1,0,1,0(=eδ  

dependent on 43 =δ . Since )1,0(*3 =δ  is the prefix 

of eδ , it forwards the message to child node 7 which 
is the destination. Thus, routing is finished. 

 
 

4. Evaluation 
 

Our solution did not re-design CAN Tree routing, 
but extended it. By this novel approach, we could 
forward a message to an unbeknown point.  

The routing procedure always converges, since each 
step forwards the message to a node which shares a 
longer prefix than the last step, each step moves 
closer to the destination. 

The complexity depends on the tree structure. In 
order to demonstrate the effectiveness of our design 
in terms of routing performance, we have 
implemented a CAN tree routing scheme in C# and 
conducted a set of experiments via distinct schemes 
on networks with up to 16000 nodes. We run CAN 
tree routing against original CAN greedy and RCAN 
routing to offer comparative measurements. These 
measures include essentially: path length to cope with 
different network size, path length distribution, and 
number of long links per node. 

Fig. 7(a) and Fig. 7(b) plot respectively the 
average and the maximum path length with respect to 
network size. The path length is measured by the 
number of hops traversed during each lookup request. 
Fig. 7 illustrates that both the average and maximum 
path length in CAN tree routing are better than in 
other routing, and both of them are perfectly 
asymptotic to the logarithm of nods. Path length of 
greedy routing (Fig. 7) increases much faster. 

 

 
 

 
(a) Average path length 

 
(b) Maximum path length 

 
Fig. 7. Path length with increasing network size. 
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Fig. 8 illustrates the path lengths distribution of 
routing in CAN with 16000 nodes. The path length 
distribution of greedy routing is much better than in 
other routing.  

 
 

 
 

Fig. 8. Path length distribution. 
 
 

Except first node, every new node needs two long 
links to join in CAN tree. Each parent node needs 
one long link pointing to its child; and child nodes 
need one long link pointing to its parent. Hence, 
number of long links is ( ) 21 ×−n , and average long 

links can be calculated as: 
 

( )
n

n
Laverage

21 ×−=
 

2
2)1(limlim

=×−
∞→

=
∞→ n

n

n
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Thus, each node maintains two long links  

in average.  
CAN tree coordinate routing has same complexity, 

path length distribution and average long links with 
CAN Tree peer-to-peer routing [1]. 
 
 

5. Conclusions 
 

CAN tree coordinate routing is distinguished 
from peer-to-peer routing. It’s a novel routing 
scheme. Current node calculates target zone code and 
compare with its zone code to choice next hop. 
Therefore, we could forward a message to a point, 
while we do not have any information about the 
point’s owner. 

CAN with CAN tree routing is a completely 
decentralized system. CAN tree infrastructure 
gracefully adapts itself to cope with any changes in 
the network. As a pure peer-to-peer system, nodes 
assume equal responsibility. System maintains 
nodes’ routing states with minimizing cost even in 
the presence of high rate of churn. The critical 
contribution is to equip each node with long links 
that extremely enhance routing efficiency. The 
amount of long links per node is independent of the 

network size. The system can scale by several orders 
of magnitude without loss of efficiency. 

Our routing scheme has more links than original 
CAN, which causes a tiny overhead to maintain long 
links. It’s proved that the number of long links per 
node is 2 in average. However, it also shows the 
small extension leads to significant improvements on 
routing performance. 

Our ongoing work includes the investigation of 
advanced mechanisms for load balancing [9] to 
improve the system responsiveness during  
network churn. 
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