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Abstract: The interference signal in magneto-hydro-dynamics (MHD) may be the disturbance from the power 
supply, the equipment itself, or the electromagnetic radiation. Interference signal mixed in normal signal, brings 
difficulties for signal analysis and processing. Recently proposed S-Transform algorithm combines advantages 
of short time Fourier transform and wavelet transform. It uses Fourier kernel and wavelet like Gauss window 
whose width is inversely proportional to the frequency. Therefore, S-Transform algorithm not only preserves the 
phase information of the signals but also has variable resolution like wavelet transform. This paper proposes a 
new method to establish a MHD signal classifier using S-transform algorithm and radial basis function neural 
network (RBFNN). Because RBFNN centers ascertained by k-means clustering algorithm probably are the local 
optimum, this paper analyzes the characteristics of k-means clustering algorithm and proposes an improved k-
means clustering algorithm called GCW (Group-cluster-weight) k-means clustering algorithm to improve the 
centers distribution. The experiment results show that the improvement greatly enhances the RBFNN 
performance. Copyright © 2014 IFSA Publishing, S. L. 
 
Keywords: S-Transform algorithm, Magneto-hydro-dynamics (MHD), Radial basis function neural network, 
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1. Introduction 
 
In HT-7 Tokamak discharge tests, the 

magnetohydrodynamics (MHD) signals acquisition is 
by using Maher probes. The magnetic field plasma 
flow makes the saturation ion current at the direction 
of paralleling to the Maher probe surface unequal to 
that at the inverse direction. Maher probes use this 
unequal to measurement the plasma flow velocity. 
The definition of the plasma Maher number 
paralleling to the magnetic field direction is: 

 
2/1]/)(/[/ ieizsz mCCkvvvH +== , (1) 

iC is the ion temperature, εC is the electron 

temperature, im is the ion mass, K is the Boltzmann 

constant, zv  is the ion drift velocity, and sv  is the 

ion velocity.  
Fig. 1 expresses the Maher probes used in the 

Tokamak HT-7. Probe No. 1 and No. 7 distributed 
function is metering upstream and downstream 
saturation ion current value. The physical distance 
between probe No. 5 and probe No. 6 is 5 mm. 
According to delay time, the plasma poloidal rotation 
velocity can be calculated through their 
measurement. 
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Fig. 1. Schematic diagram of the Maher probe model. 

 
 
Because the discharge and acquisition equipment 

working environment is not a vacuum environment, 
the collected signals often contain interference 
signals. These disturbance signals sometimes can 
cause mutation of the output signals. It has great 
difficulties to distinguish the mutation signals which 
are caused by the magnetic fluid instability from 
those caused by interference. Fig. 2 is one of signals 
acquisition results. The No. 1 signal mutation is 
caused by the magnetic fluid instability, another  
No. 2 is the mutation signal caused by composition of 
magnetic fluid instability and interference, and the 
third mutation is caused by signal interference. 

 
 

 

 
Fig. 2. Discharge sampling magnetic fluid unstable signal. 

 
 
To distinguish the interference signal is very 

important for plasma discharge. In recent research, 
wavelet transform (WT) is widely applied in 
analyzing unstable signals for enhancing signals 
quality assessment [2-4]. Although the identification 
efficiency is significantly improved, the effect of 
disturbance signals does not give full consideration in 
many cases. [5] shows that MLP neural network on 
the basis of wavelet transform has poor performance 
because of the disturbance of noise. [6] proposes a 
noise-reduction method to increase the efficiency of 
signal pattern recognition. In paper [7], it presents 
two frequency-domain implementations of the shift-
invariant periodic discrete wavelet transform (SI-
DWT) and it’s inverse. The paper experimentally 
demonstrates the reduction in computation time 
achieved by the direct frequency domain 

implementation of the SI-DWT for wavelet filters 
with non-compact support. 

The method of this article is to apply an improved 
S-transform algorithm to distinguish interference 
pulse spikes from instability ones. The S-transform 
algorithm (ST) proposed by Stockwell [8] in 1996, 
which is the development of Gabor and wavelet 
transform. ST adopts variable width Gauss window, 
whose time window width is inversely proportional 
to the variation of the frequency. The time window is 
wider in low frequency, and narrow in high 
frequency, so we can achieve very high time 
resolution. Thus the transform can observe some 
small part of the signal, which overcomes some 
defects of FFT and wavelet transform. At the same 
time, ST has close contact with the Fourier transform, 
whose time frequency has relations with frequency. 
We can use Fourier transform and convolution 
theorem to accomplish ST with the help of existing 
Fast Fourier transform (FFT).  
The ST algorithm is applied in many fields, including 
signal processing, fault diagnosis, vibration power, 
earthquake prediction, medicine and other fields, and 
many papers have been published [9-11]. The 
paper[12] proposes a novel high-performance 
classification system based on the S-transform and a 
probabilistic neural network (PNN). The original 
power quality signals are analyzed by the S-transform 
and processed into a complex matrix named the S-
matrix. Eighteen types of time–frequency features are 
extracted from the S-matrix. The simulation results 
show that 8 types of PQ disturbance signals with 2 
types of complex disturbances are classified precisely 
and that the new PNN-based approach more 
accurately classified PQ disturbances compared to 
back propagation neural network (BPNN) and radial 
basis function neural network (RBFNN) approaches. 
Power quality is one of the major issues in the 
modern electrical power world. The widespread 
usage of power electronic devices and non-linear 
loads make the power system more vulnerable to the 
power quality disturbances. As the power grids are 
expanding more and more because of the renewable 
sources, it necessitates responsive detection and 
accurate classification of power quality disturbances 
for corrective measures. Paper[13] presents a new 
approach for power quality analysis using an 
orthogonal time–frequency representation of S-
transform called Discrete Orthogonal S-transform 
(DOST). Different power quality disturbances have 
been analyzed using the short time Fourier transform 
(STFT), discrete wavelet transform (DWT), S-
transform (ST) and DOST. Different case studies 
validate the superiority of DOST over other 
transforms in a more efficient way to monitor the 
power quality disturbances. 

 
 

2. The Improved S-transform Algorithm 
 

The S-Transform of signal )(th is defined as an 
equation (2). 
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If S-Transform indeed represents the local 

spectrum, we can simply obtain the Fourier spectrum 
on the local spectrum average in the time axis. In 
equation (3), )( fH  is the Fourier transform of 

)(th .  
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)(th  can be recovered by ),( fS τ . 
 

 { } dfedfSth fti πττ 2),()(  
∞

∞−

∞

∞−
=

, 
(4) 

 

From here we can see that the obvious difference 
between S-Transform and wavelet transform.  
S-Transform is an instant frequency (IF) extended to 
the wideband signal. The one dimensional function 

and the fixed parameter 1f  of variable τ  defined by 

the ),( 1fS τ  is called a sound. The sound with 

specified frequency 1f  can be defined as: 
 

 )1,(
11 ),(),( fiefAfS τττ Φ= , (5) 

 

Because a sound expresses a divided special 
section, we can define the instantaneous frequency of 
IF using phase: 
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S-Transform can be rewritten using )(th  Fourier 

spectrum signal )(tH as: 
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The discrete simulation of equation (7) uses the 
convenience and convolution theory of fast Fourier 
transform (FFT) to compute the discrete  
S-Transform. Do not need to transform into a cosine 
curve, S-Transform can calculate the real and 
imaginary part of the amplitude spectrum and phase 
spectrum. 

1,,1,0],[ −= NkkTh   represents the signal 
discrete sampling points, and the sampling interval is 
T . The discrete Fourier transform can be written as: 
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Discrete S-Transform is a vector which is defined 
by dispersing ][kTh  into a series of derived vector 
along the time axis. These derivative vectors are not 
orthogonal to each other, and are not independent. 
Each basis vector is partitioned into N local vectors. 
The segmentation method is through N adjustable 
Gauss window. The sum of N segmented local vector 
is the original basis vector. Discrete signal ][kTh   
S-Transform can be defined as 

( jTandNTnf →→ τ/ ): 
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When 0=n the equation (9) is equivalent to: 
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(10) 
 
The above formula brings the average time series 

values into a zero frequency sound, so that the 
inverse transform is accurate. Discrete S-Transform 
has the same sampling and finite length problem, thus 
it lengthens the implicit cycle of the time and 
frequency domain. The discrete S-Transform 
transform inversion is: 

 
1 1

2 /

0 0

1
[ ] ,

N N
i nk N

n j

n
h kT S jT e

N NT
π

− −

= =

  =     
 

, 

(11) 

 
Fourier transform spectrum using the Gauss 

window with a particular parameter n is called Gauss 
sound. Any S-Transform sound can be calculated by 
the time axis of the Fourier spectrum and Gauss 
sound. The Gauss sound is defined as: 
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Because the sampling is carried out on a time 

axis, so the discrete spectrum has timeliness. 
This paper has introduced the basic principle of  

S-Transform, and showed the advantages of  
S-Transform algorithm in the analysis of signals. But 
the S-Transform algorithm resolution in the high 
frequency is still not clear. Standard deviation of 
Gauss window depends on the frequency, so the 
standard deviation is adjusted to improve the energy 
concentration. 

Standard deviation is the function of frequency, it 
is defined in the Stockwell S-Transform algorithm 
article in 1996: 
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Equation (2) can be rewritten as: 
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The S-Transform result is showed in Fig. 3. The 
result shows the high frequency resolution is not high 
enough. 

 
 

 

 
Fig. 3. S-Transform ending. 

 
 
In the Sejdic, Djurovic, and Jiang 2008's article, 

window standard variance was adjusted as below: 
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The adjusted S-Transform is: 
 

2( )
22( , ) ( )

2

pp t f
i ftf

S f h t e e dt
τ

πτ
π

− −
∞ −

−∞
=  , (16) 

 
The parameter p acts like a switch. When p=0, the 

equation (16) is the short time Fourier transform, if 
p=1, it is the S-Transform. But experiments show an 
interesting phenomenon that the change of parameter 
p between the 0 and 1 makes transformation 
obtaining the better time-frequency resolution. p<0 
cannot be used, because it would cause the standard 
variance proportional to frequency which is out of 
line with S-Transform definition. 

The improvement by adjusting the window size 
enhances the high frequency resolution. Experiments 
show that p=0.8 gains the best high frequency 
resolution (Fig. 4). From the resolution image, this 
paper can draw a comprehensive conclusion that the 
improved S-Transform algorithm obtains optimal 
signal resolution. 

Frequency features are extracted from the  
S-transform matrix. Then these features are provided 
to radial basis function neural network for 
classification as input vectors. 

 
 

 

 
Fig. 4. p=0.8, S-Transform ending. 

 
 

3. Radial Basis Function Neural Network 
(RBFNN) Algorithm 
 

3.1. RBFNN Architecture 
 
RBFNN is a novel and efficient adaptive feed 

forward neural network, it has the best fitting ability, 
the faster training speed, no problem of immersing 
into the partial least point. All these merits make 
RBFNN be widely used in non-linear time series 
prediction. Powell proposed multivariate 
interpolation Radial-Basis Function (RBF) algorithm 
in 1985. Broomhead and Lowe applied RBF to 
designing neural networks. RBFNN mappings low-
dimensional input vectors in high-dimension data 
space, and uses weighted summation of the outputs of 
hide cells to get the final result. 

Feed forward RBFNN had three layers. The first 
one is input-layer composed of signal source nodes. 
The second one is the hide-layer. In this layer, nodes 
transform function is a local distribution of 
nonnegative nonlinear function which is the center-
point radial symmetry and attenuation. The numbers 
of hide-layer nodes are determined by the questions. 
The third layer is the output-layer. The consequences 
of the output-layer are hiding-layer results linear 
weight numbers. The transformation from the input 
space to hide-layer space is nonlinear but it is linear 
from hiding-layer space to output-layer space. The 
RBFNN architecture is expressed in Fig. 4. 

[ ]T
i NixX ,2,1| ==  is a input vector, 

( ){ }mixi ,2,1| =ϕ  is a group of radial basis 

functions, { }miwi ,2,1| =  is a set of weightings, 

b is offset. 
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Fig. 5. RBFNN Architecture. 

 
 

3.2. RBFNN Algorithm 
 
The RBFNN accepts training samples 

[ ]T
i

NiX x ,2,1| == and approximation 

function is an equation (17) 
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{ }miwi ,2,1| =  is a set of weightings, and 

they are linearly independent each other. 

||)(||)( ii txGx −=ϕ , mi ,2,1=  is a center set 

which is needed to be confirmed. )(⋅G  usually uses 
Gauss function because of simple representation, 
radial symmetry, good smoothness with any number 
derivatives. The cost function is expressed as an 
equation (18): 
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When regularization parameter λ approaches 

zero, weight vector w is expressed as 
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4.2. Methods of Ascertaining RBFNN 
Centers 

 
In the learning process of radial basis function 

network, it should adopt different learning strategies 
on the activation function centers and linear weight 
because the hidden layer activation function center 
updating is very slow and the linear weight connected 
to the output layer is quick because of the optimal 
learning and updating strategies. According to the 
activation function center updating methods, it can 
use different learning strategies to construct radial 
basis function neural networks. The main 
construction ways include that constant center 
specification randomly, self organizing center 
selection method and supervisory center selection 
method. 

 
 

4.3. Applying K-means Algorithm  
to Ascertain RBFNN Centers 

 
K-Means algorithm is a kind of non-supervision 

indirect clustering method which is based on 
sampling data similarity-rate. It divides data n into k 
clustering which has high similarity in the same class 
and low similarity in different classes. The K-means 
algorithm is 

Input: the cluster number k, data matrix N 
Output: clustering k which has the least square 

error 
1) Selecting k vectors randomly as original 

clustering centers. ccc k

11

2

1

1
,,,   

2) Computing distances from every vector to 
clustering centers. 

( ) ( )
2

1 , 1 , 1
ij

p i n j k pi jd v c= = = =−    

Selecting the smallest distance min and classifying 

the vi
 into cluster cpj  

3) Calculating the average of all objects as new 
clustering centers for every class. 

4) Redistributing all data and objects according to 
the distance to clustering centers. 

5) p=p+1, return to 3 until the objective function 
is no longer changed. 

 
 

4.4. Applying Improved Algorithm GCW-k-
Means Algorithm to Ascertain RBFNN 
Centers 

 
GCW-k-means algorithm is an improved k-means 

algorithm which grouped and clustered the training 
data and adjusted the centers by weight which 
provided by experts. The GCW-k-means is: 

Input: the cluster number k, group number g, data 
matrix N, 
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Output: clustering k which has the least square 
error. 

1) Dividing training data to group g by sampling. 
2) For every group q (q=1 to g), selecting k 

vectors randomly as original clustering centers, 

)1(,,,
11

2

1

1
gtoqccc qkqq

=  

3) Applying k-means algorithm on every group 
and then obtaining every group clustering centers 
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21
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p

qk

p

q

p

q
=  

4) For every group centers, experts provided an 
evaluation weight vector 

)1](,[ 21 gtoqwwwew qkqqq ==  according 

to the group centers. 
5) The final k clustering centers are ascertained by 
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The experiments showed in Figs. 6-7. 
 
 

 

 
Fig. 6. The sample points are divided into 4 class  

using GCW-k-means algorithm. 
 
 

 

 
Fig. 7. The sample points are divided into 6 class  

using GCW-k-means algorithm. 

5. Discussion 
 
This paper has proposed an approach for 

diagnosing, classifying and characterizing of non-
stationary nuclear fusion discharging device signals 
using the improved S-transform and modified 
RBFNN classifier. The S-transform was used to 
generate frequency-amplitude distributions and key 
features are derived for classification. But depending 
on S-transform solely could not distinguish 
disturbance signals from normal ones completely. 
Radial Basis Function Neural Network is applied to 
recognize the disturbance. The determination of 
centers is adopted GCW-k-means algorithm which 
derived from k-means algorithm. Experiment shows 
RBFNN with GCW-k-means algorithm has a better 
recognition deviation 
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