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Abstract: This paper develop a practical and energy-efficient distributed algorithm for the detection of coverage 
holes in a wireless sensor network. It assumes that the location of sensor nodes is available. We do this in two 
phases. First we want to identify a set of nodes of which encircle a coverage hole. This is done by introducing a 
concept of mono-covered arc, which represents the circumference of a non-overlapping region of the sensing 
disc of a sensor node. That is, a coverage hole or insufficient coverage region will be along the right-hand side 
of these directed mono-covered arcs. Based on this notion, a graph-theoretic distributed algorithm can then be 
developed to identify every simple boundary and interior hole locally. Furthermore, this graph-theoretic 
information can also be forwarded to the sink or base station to recognize the geometric characteristics among 
these coverage holes existing in the network fabric remotely. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 
 

Wireless sensor network (WSN) is composed of 
inexpensive and battery-powered sensing devices 
having ability of collecting, storing, processing, and 
communicating data with each other [1, 2]. These 
tiny sensing devices are often deployed in the target 
field in large numbers and then collaborate to form a 
wireless ad-hoc network capable of reporting the 
data, phenomenon, or event to a remote data 
collection point, namely sink or base station [3]. 
Popular and successful applications of wireless 
sensor networks can be seen in such domains as 
object tracking, surveillance, environmental and 

structural monitoring, health related monitoring, 
traffic control, factory automation and inventory 
management etc. [4-6]. 

But these myriad of applications also present 
various challenges for the task of designing scalable, 
self-organizing, and energy-efficient sensor 
networks. The task becomes even more demanding if 
we consider the constraints of lightweight and low-
capability sensor nodes with limited processing 
power, memory space, battery life, radio ranges, and 
communication bandwidth [7-9]. Additionally, the 
design of wireless sensor networks can also be 
greatly affected by the geometric distribution of the 
sensors deployed in the underlying environment. In 
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practice, distributions of sensor nodes in a wireless 
sensor network are usually far from being uniform 
due to random aerial deployment, terrain variation, 
presence of obstructions, position changing, and node 
failures caused by power depletion or external forces. 
That is, the real sensor networks usually have 
coverage holes indicating the regions without enough 
working sensors. 

The presence of holes in the underlying geometric 
environment could have important consequences on 
the performance of the sensor network at many 
levels [10, 11]. For perception applications such as 
object tracking, environmental monitoring, and 
military surveillance, the networks require sufficient 
coverage over the region of interest [12]. The shape 
or topology of the sensor field often indicates 
important features of the underlying environment. 
Thus, the identification of the holes in sensor 
networks is of primary interest because its presence 
often has physical correspondence and may also map 
to one of the special events that are being monitored 
by the sensor networks.  

On the other hand, holes are also important 
indicators of the general health of a sensor network. 
Especially, understanding the global geometry and 
topology of the sensor field could have important 
implications for the design of several basic 
networking functionalities such as routing and data 
gathering mechanisms. For instance, the presence of 
such holes changes the topology of the networks and 
creates a communication void that has adverse effect 
on routing algorithms. Additionally, for information 
flow, the hole could also affect the overall capacity of 
the network. 

Depending on the application environments and 
level of information constraints, algorithms for 
identifying various coverage holes in sensor networks 
can be generally classified into three categories: 
computational geometry approach, statistical 
approach, and topological method. The 
computational geometry method [13-15] uses  
the coordinates of the sensor nodes and  
standard geometric tools to determine the  
coverage characteristics.  

One feature of this approach is that the precise 
geometry of the domain and exact location of the 
nodes must be available. In statistical method [16], it 
assumes a randomly and uniformly distributed 
collection of sensor nodes. The main idea is the 
nodes that encircle the holes should have much lower 
average degrees than that of other nodes in the 
interior of the networks. That is, with sufficient high 
density, it usually exhibits bi-modal behavior and 
thus can be used to detect the holes. The drawback of 
these probabilistic approaches is the need for dense 
and uniformly distribution of sensor nodes. For 
topological methods [17-19], the main feature was 
based on the network topology or connectivity 
information to identify the holes. These methods are 
attractive particularly for a large scale of sensor 
network in which the location information is  
not available. 

2. System Model 
 
2.1. Assumptions 
 

Consider a set of n sensors denoted by 

1 2 1
{ , ,..., , }

n n
S S S S S  and are deployed over a 

rectangular monitoring region R. Let, ( , )
i i i

s x y  

be the position of i-th sensor, for i=1~n. It is to be 
assumed that T1~T4 are the vertices of the 
rectangular region R as shown in Fig. 1, whose 
coordinates are known and are given by 

( , )
i Ti Ti

T X Y , for i=1~4. Each sensor has its 

location information. We consider a homogeneous 
sensor network, where each sensor has uniform 

sensing ( )
s

r  and communication ( )
c

r  range and

2
c s

r r . Throughout our work, the term 

“boundary” means the boundary of the monitoring 
region R. 
 
 
2.2. Definitions 
 

Definition 1 [Sensing Disc] Sensing disc is the 

disc with radius of
s

r and centered at an active sensor. 

Any object within the sensing disc can be perfectly 
detected by a sensor. Throughout the paper, radius of 

the sensing disc is referred to as sensing range( )
s

r . 

Definition 2 [Boundary/Non-Boundary Sensor] 
If sensing disc of any sensor intersects with the 
boundary of the monitoring region, the sensor is a 
boundary sensor. Otherwise, it is a non-boundary 

sensor. For example, as shown in Fig. 1, sensors
7

S ,

11
S , 

13
S , 

14
S  and 

15
S  are boundary sensors and the 

rest are non-boundary sensors. 
 
 

 
 

Fig.1. Example of a monitoring region R  
where 16 sensors deployed. 
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Definition 3 [Island/Archipelago Sensor] If a 
non-boundary sensor has no neighbor, the sensor is 
an island sensor. If a non-boundary sensor has 
connecting neighbors, it is an archipelago sensor. For 

example, as shown in Fig. 1, 
1 6
~S S , 

8
S , 

9
S , 

10
S  

and S12are archipelago sensors, and S16 is an island 
sensor. Through, S15has no neighbor, it is considered 
as a boundary sensor, according to our definition. 

Definition 4 [Coverage Hole] If any part of the 
monitoring region R is not covered by the  
sensing disc of a sensor, that part is termed as a 
coverage hole. 

Definition 5 [Simple/Complex/Boundary/Non-
boundary Coverage Hole] If a coverage hole is 
enclosed by single set of connected sensors 
(boundary/non-boundary), the coverage hole is 
simple. If the coverage hole is enclosed by sensors 
(boundary and non-boundary) and boundary of the 
monitoring of the monitoring region R, the coverage 
hole is a boundary coverage hole. Otherwise, the 
coverage hole is a non-boundary one. As shown in 
Fig. 1, r3 and r5 are simple and non-boundary 
coverage holes, as no boundary sensor encloses the 
holes. r1 and r4 are simple and boundary coverage 
holes, as boundary of the monitoring region encloses 
the holes. r2 is a complex and boundary coverage 
hole as it is enclosed by three sets of sensors,

1 2 3 4 6 7 12 13 14
{ , , , , , , , , }S S S S S S S S S , 

15
{ }S , and 

16
{ }S , and is enclosed by the boundary of the 

monitoring region. 
 
 

3. Remote Hole Detection Algorithms 
 

The hole detection algorithm comprises two 
phases. In the first phase, we introduce a concept, 
Mono-covered Arc, which implies a region on the 
outside of certain portions of the sensing disk of a 
sensor that may remain uncovered, and then, a set of 
connected mono-covered arcs collectively can define 
the perimeter of a coverage hole. Algorithm 1 is 
developed to determine the mono-covered arcs of 
each sensor node. Then, in the second phase, we 
propose a graph-theoretic hole detection method. 
Based on the mono-covered arcs information, 
Algorithm 2 proceeds to build a directed graph which 
is used to detect every simple hole existing in the 
network. Additionally, these graph-theoretic 
information are ultimately send back to the sink or 
base station to recognize the extent of coverage holes 
in the network fabric and also to identify the presence 
of complex holes which are enclosed by more than 
one set of connected mono-covered arcs. 
 
 

3.1. Mono-covered Arc 
 

In the random distribution of sensor nodes, it is 
obvious that the sensing disc of a sensor may be fully 
or partially overlapping (or disjoint) with other 

sensors. In our work, the arc pertaining to a non-
overlapping region of the sensing disc of a sensor is 
termed as a mono-covered arc, as shown in Fig. 1, 

defined by three sets of end points {( , )
i j

p p , 

( , )
m n

p p , and ( , )}
l k

p p , measured in 

counterclockwise direction. Besides, 
5

S  has no 

mono-covered arc as its sensing disc is fully covered 

by other sensors. Since, 
16

S  is an island sensor, its 

whole sensing disc is considered as the mono-
covered arc per the definition. 

Note that the end points of the mono-covered arc 
are represented by an ordered pair of points and the 
mono-covered arc is measured in counterclockwise 
direction taking those pair of pints. We develop an 
algorithm to determine the mono-covered arc of each 
sensor as described in the following subsection. Prior 
to execution of this algorithm, each sensor broadcasts 
packet with its location information to its one hop 
neighbors. Upon receiving location information from 
neighbors, each sensor constructs a neighbor table 
and executes the following schemes: End Points 
Estimation and Mono-covered Arc Selection. 
 
 
3.1.1. End Points Estimation 
 

The sensor who receives location information 
from the neighbors has to determine the end points 
and the neighbors associated with those end points. 
Note that island sensors do not have neighbors and 
therefore they do not estimate any end points. Each 
boundary or archipelago sensor chooses one neighbor 
and calculates the points of intersection of its sensing 
disc with its neighbors. If that point of intersection is 
inside R and is not covered by any other neighbors, 
those intersection points become member of the End 
Point Set P and the corresponding neighbors 
associated with those points become member of the 
Associated Neighbors Set N. 

Let, any sensor
i

s island sensor has to estimate 

the end points. First, 
i

s  chooses one neighbor
j

s  

from its neighbor set and calculates the intersection 

points
i

p , 
j

p . If
i

p  or 
j

p  is inside R and is not 

covered by any other neighbors of 
i

s , 
i

p  or 
j

p

become elements of the end points set P. Besides,
j

s  

is selected as the member of the associated neighbors 

set N. This process continues for all neighbors of
i

s . 

For example, as shown in Fig. 1, if we consider 

sensor
9

s , its end points set can be given as

9
( ) { , , , , , }

j m n l k i
P s p p p p p p . Besides, its 

associated neighbors set can be given  
as

9 10 1 8
( ) { , , }N s s s s . 
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3.1.2. Mono-covered Arc Selection 
 

In this phase, a sensor determines the mono 
covered arc elements taking end points set and the 
associated neighbors set into consideration. Each 

sensor 
i

s  calculates another points set |Q q Q 

q is a point on the line 
i j

s s  and

| | , ( )}
i s j i

s q r s N s   . In other words, if
j

s  is 

an associated neighbor of
i

s , and q is point on the 

line joining the location of
i j

s s , then| |
i s

s q r . 

After finding the points of set Q , all points of P  

and Q  are placed on the circumference of the 

sensing disc of the sensor. The pair of points of P  
that does not contain any point of Q  is considered as 

a mono covered arc. For example, as shown in 

Fig. 2(a),
10

s , 
1

s and
8

s  are associated neighbors of

9
s  and

j
p , 

m
p , 

n
p , 

l
p

k
p  and 

i
p  are end points 

set of
9

s . 

As per the algorithm described above, 
a

q , 
b

q  

and
c

q  become the elements of set Q. Hence, as 

shown in Fig. 2(b), the end points

{ , , , , , }
i j k l m n

p p p p p p  and points { , , }
a b c

q q q  

are placed on the circumference of the sensing disc of

9
s . Considering in counterclockwise direction, any 

pair of end points are selected such that neither 
a

q  

nor
b

q , nor
c

q  lies in between any pair of end points. 

Thus,( , )
i j

p p , ( , )
m n

p p  and ( , )
m n

p p become the 

mono covered arc. 
 
 

 
 

(a) (b) 
 

Fig.2. Example of Mono Covered Arc. (a) Estimation  
of end points set and points belong to set Q. (b) Decision  

of mono covered arc. 
 
 

The complete algorithm for estimating the end 
points set, associated neighbors set and finally 
selecting the mono covered arcs is given in Fig. 3. 

Algorithm 1: Mono-covered Arc Selection of node i 

Notation: 
Nr: Nr={s| s is the neighbor of i}; 
  N: the associated neighbors set; 
  P: the end points set of i; 
  Q: q points set of i; 

MCArc (i): the mono-covered arcs set of node i. 
End Point Estimation (Nr), return P,N 

Set P=N=; 
Foreach sensor jNr do 
ComputeIntersectionPoints(i, j) 
   return intersection points set p[]; 
for (k=0~(Size(p[])-1)) 
     if (CheckIsNotCoveredAndInsideR(p[k])); 
       P=Pp[k]; 
       N=Nj; 
if (i boundary sensor); 
  ComputeIntersectionBounaryPoints(i), 
  return intersection with boundary points set b[]; 
for (k=0~(Size(b[])-1))) 
    if (CheckIsNotCoveredAndInsideR(b[k])); 
      P=Pb[k]; 
Mono-Covered Arc(P,N), return MCArc(i) 
Set Q= 
 if (P ) 
   foreach sensor jN do 
      compute q points, Q=Qq 
   foreach pi, pjP, and (pi, pj) 
   is one sequential pair of counterclockwise order do 
If (CheckNoQBetweenAndInsideR(pi, pj)) 
       MCArc(i) = MCArc(i)  (pi, pj); 
else set MCArc(i)= 

 
Fig.3. Algorithm for Determining Mono-covered Arc. 

 
 
3.2. Graph-theoretic Hole Detection 
 

This part describes how to use the concept of 
mono-covered arc information to build a directed 
graph for identifying the coverage holes. Note that 
each boundary and archipelago sensors have their 
own mono-covered arc information and the 
corresponding end points set. However, the island 
sensor only knows their location information. It is 
assumed that each sensor, upon getting the mono-
covered arc information, forms the directed graphs 
which represent the geometric characteristics of 
coverage holes in the network. And locally this 
information can be used to detect the holes, which 
exist along the right hand side of each directed graph. 
To further identify the complex holes and their extent 
at a remote location, the graph-theoretic information 
is forwarded to the sink.  
 
 
3.2.1. Construction of Graph 
 

Let, S be the set of sensors deployed over the 

monitoring region R , and 
Arc

MC  be the set of 

mono-covered arcs of all nodes of the network, i.e.

{( , ) | ( , ) ( ), }
Arc i j i j Arc

MC p p p p MC s s S    . 

Let, ( , )G V E be a non-empty directed graph of a pair 



Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250 

 244

of disjoint sets ( , )V E .   a directed edge e from 

vertex
i

p  to
j

p , e E  ,
i

p  and
j

p V , such that 

initial vertex ( )
i

init e p  and terminal vertex

( )
j

ter e p , where( , )
i j Arc

p p MC . Based on this 

assumption, first, we construct  
different directed graphs ( , )G V E as per the 

following definitions. 
Definition 6 [Single Vertex] Let, G (V, E) be a 

directed graph of non-empty alternating sequence

0 1
, ,...,

n
v v v V , and

1
( , )

i i i
e v v E  , for all 

i<n. In ( , ),
i

G V E v V  , 
i

v is a Single Vertex, if 

and only if no directed edge is initiated from or 

terminated at
i

v , and
i

v is formed by an island sensor. 

In other word, single vertex
i

v  is an isolated point. 

As shown in Fig. 4(b),
1

SV  and
2

SV  are a single 

vertices, which are formed due to presence of an 
island sensor. 

Definition 7 [Path] If
0 1 1 2 2 3

... ,
n n

v e v e v e e v  are 

the alternating sequence of vertices and edges of 

directed graph ( , )G V E , such that
0

v  and
1

v  are on 

the boundary of the monitoring region R, the graph 

formed by the directed edges
1

( , )
i i i

e v v E  , for 

all i n  is called a Path. As shown in Fig. 4(b),
1

p , 

2
p , 

3
p , 

4
p  and 

5
p  are different path formed from 

the original topology given in Fig. 4(a). 

Definition 8 [Cycle] If
0 1 1 2 2 3

... ,
n n

v e v e v e e v  are 

the alternating sequence of vertices and edges of 

directed graph ( , )G V E , such that
0 n

v v , the graph 

formed by the directed edges
1

( , )
i i i

e v v E  , for 

all i n  is called a Cycle. As shown in Fig. 4(b),
1

c , 

2
c , 

3
c , 

4
c , 

5
c , 

6
c  and 

7
c are different Cycles 

formed from the original topology given in Fig. 4(a). 
 
 

 
 

(a) (b) 
 

Fig. 4. (a) Original topology of the sensor network with 
coverage holes. (b) Construction of directed graphs G(V,E) 

as per our definitions. 

Note that each sensor knows its end points set and 
the associated neighbors set to form its mono-covered 
arcs. Prior to detecting the holes, each sensor has to 
construct the types of graph with respect to its 
associated neighbors, which is ultimately forwarded 
to the sink to analyze the nature and presence of the 

holes. In our work, it is assumed that any sensor 
i

s  

initiates the graph construction phase by unicasting 
its own mono-covered arcs which the initial vertex is 
on the boundary as the initiator. Each sensor appends 
the mono-covered information of its associated 
neighbor to its own mono-covered arcs data and 
reconstructs the graph. The process of contrasting 
graph is terminated until it reaches at the boundary 
vertex (in this case a Path is formed), or the process 
reaches at the initiator vertex (in this case a Cycle is 
formed). In case of island sensor, only Single Vertex 
is formed and therefore only location information of 
the sensor is forwarded to the sink using higher 
power level. The complete algorithm of the graph 
construction is given in Fig.5, and example of 
formation of different types of graphs is given  
in Fig. 3. In this algorithm, we think the 
EdgeTraversal function can be implementing in each 
sensor easily by means of message passing, and for 
the end point, where sensor can determine the graph 

form. Note that, we use P , C  and
s

V to represent the 

set of paths, cycles, and single vertices, respectively 
in our algorithm. And the island sensors represent 
their location as one set of the same points. 
 
 

Algorithm 2: Construction of Graph 
Notation: 
  MCArc: MCArc ={(pi, pj)| (pi, pj)MCArc(s),sS}; 
: ={p|(p,*) or (*,p)  MCArc and p is on the 

boundary}; 
  g: subset of edges. g⊆ MCArc, g={(uk, vk)|k=0~n} 
InE(): function to choose an initial edge, which is 
initiated at the boundary point has highest priority; 

NEE (): function to choose the next edge which is 
connected to the previous one; 

Construction of Graph(MCArc), return P,C 
While(MCArc) 
   g=EdgeTraversal(MCArc); 
   if (u0and vn) 
P=Pg; 
   Else if (u0==vn) 
     C=Cg; 
MCArc= MCArc-g; 
EdgeTraversal(MCArc), return g 
g=; 
(u0,v0)=InE(MCArc); 
g=g(u0,v0); 
set k=0; 
while (vk and u0vk) 
(uk+1,vk+1)=NEE(MCArc); 
k=k+1; 
  g=g(uk, vk); 
return g; 

 
Fig.5. Graph Construction Algorithm. 



Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250 

 245

Corollary 1 In a random deployment of nodes, 
any form of graph does not exist, other than a single 
vertex, path, or cycle. 

Proof. Per our definitions and as shown in 
Fig. 4(b), single vertex is formed due to an island 
sensor. It can be observed every boundary vertex has 
only one directed edge either started from or 
terminated at.  

This implies any graph that is initiated at a 
boundary vertex must be ended at another  
boundary vertex and forms a path. Additionally, it 
also can be observed every interior vertex is 
associated with two directed edges of which one is 
started from and, at the same time, another is 
terminated to. In other words, any graph that is 
initiated at an interior vertex must be terminated at 
itself and thus forms a cycle. 

This proof is also consistent with a touch point, 
which indicates a sensing disk is intersected with that 
of neighboring nodes or the boundary at a single 
point. For an interior touch point vertex, it has a total 
of four directed edges associated with. Of these four 
edges, two are going out and the other two are 
coming from neighboring vertices. For a boundary 
touch point vertex, there are a pair of directed edges 
associated with. Of these two edges, one is starting 
from and the other is entering to the vertex. 
 
 
3.2.2. Hole Detection Schemes 
 

In the following subsection, we would  
prove certain lemmas which are used to detect the 
coverage holes. 

Corollary 2  directed edge e E , there exists 
a hole along right side of that edge e. 

Proof. ,e e E  , suppose ( , )
i j

e p p . 

=> There is a mono-covered ( , )
i j

arc p p . 

Assume ( , ) ( )
i j Arc

p p MC s . By the definition, 

mono-covered arc is a section of sensing circle of 
sensor s, and is inside R and is not covered by any 
other sensors. 

=> There is a hole besides( , )
i j

p p . Since, mono-

covered ( , )
i j

arc p p  has recorded in 

counterclockwise order; sensing disk of s is totally in 

the left side of the ( , )
i j

arc p p . 

=> The hole must be in the right side of( , )
i j

p p . 

Since, ( , )
i j

p p represents a directed edge e  in

( , )G V E , the hole is still in the right of e . 

Lemma 1   path p P , there exists  

a boundary coverage hole along right side of that  
path p . 

Proof. Let,
0 0 1 1 1 1

...
n n n

p v e v e v e v   be a path. 

Hence,
0

v  and
n

v  must be on the boundary and

1
. . ( ) ( )

i i i i
e p s t e init v ter v    . 

=> From Corollary 3.2,  a hole along right side 

of each
i

e , as union of 1, ~
i

p e i n  . 

=>   A coverage hole enclosed by boundary 

points
0

v  and 
n

v  

=>  a boundary coverage hole along right side 
of path p . 

Lemma 2   cycle c C , if c  encloses any 
region r  in a clockwise direction, there exists a non-
boundary coverage hole along cycle c . 

Proof. Let
0 0 1 1 1 1 0

...
n n n n

c v e v e v e v e v   is a 

cycle. 
=> from Corollary 3.2,  a hole along right side 

of each
i

e , since union of 1, ~
i

c e i n  , and

c  encloses r  in the clockwise direction. 
=> r  is bounded by c  and along right side of it. 
=>   a non-boundary coverage hole along c  

in r . 
Lemma 3   cycle c C , if c  encloses any 

region r  in a counterclockwise direction, there exists 
a coverage hole along c  in R r . 

Proof. Let,
0 0 1 1 1 1 0

...
n n n n

c v e v e v e v e v   be  

a cycle. 
=> From Corollary 3.2,   a hole along right side 

of each
i

e , since union of 1, ~
i

c e i n  , and

c  encloses r  in the counterclockwise direction. 
=> r  is bounded by c  and in the left side of c . 

=> R r is in the right side of c . 
=>  a coverage hole along c . 

Lemma 4 All coverage holes exist in R  are along 
at least one path or cycle in ( , )G V E , if there exists 

more than one coverage holes in R . 
Proof. We prove it by contradiction. Suppose 

there are n  coverage holes in R , i.e.

1 2
2, ,..., ,

n
r r r n  , and each coverage holes are 

isolated. Let, there exists a coverage hole
i

r  enclosed 

by a single vertex and a loop, except for the 
boundary. 

=> Since, single vertex cannot separate R into 

isolated parts, 
i

r  cannot be isolated from other 

coverage holes. 
( )  If there exists more than one   

coverage holes. 
=>All coverage holes must be along with at least 

one path or cycle. 
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Lemma 5 If there exists only one path p  in

( , )G V E , without existence of any other forms of 

graph, there exists only one simple boundary 
coverage hole r  along right side of p . 

Proof. (Existence and boundary part) From 
lemma 3.1, there is a coverage hole with boundary in 
the right side of p . 

(Only one part) prove by contradiction. Suppose
  another coverage hole r , r r  . 

=>from lemma 3.4, r  is along one path or cycle. 

=>If r  is beside a cycle, s.t. ( )C   . 

=> If r  is beside a path p , and ( )p p   . 

=> If r  is beside a path p , and s.t.,p p r   

is in the right side of p , then ( )r r   . 

(Simple part) prove by contradiction. Suppose r  
is complex. 

=>except for p ,  another single vertex, or path, 

or cycle( ) . 

Lemma 6 If there is only one clockwise cycle c  

in ( , )G V E , without existence of any other forms of 

graph, and c  close a region r , there exist only one 
simple non-boundary coverage hole r . 

Proof. (Existence and non-boundary part) From 
Lemma 3.2, there is a non-boundary coverage hole 
which is bounded by c  along c  in r . 

(Only one part) prove by contradiction. Suppose
 another coverage hole ,r r r  . 

=>from lemma 3.4, r  is along one path or cycle. 

=>If r  is beside a path s.t. 0, ( )p P   . 

=> If r  is beside a cycle c , and ( )c c   . 

=> If r  is beside a cycle c , and

s.t., ( )c c r r    . 

(Simple part) prove by contradiction. Suppose r  
is complex. 

=>except for c ,  another single vertex, or path, 

or cycle( ) . 

Lemma 7 If there is only one counterclockwise 
cycle c  in ( , )G V E , without existence of any other 

forms of graph, and in c  close a region in r , there 
exist only one simple boundary coverage hole  
in R r . 

Proof. (Existence part) From Lemma 3, there is a 
coverage hole which is along c  in R r . 

(Only one part) prove by contradiction. Suppose
  another coverage hole r , r R r   . 

=>from lemma 3.4, r  is beside one path  
or cycle. 

=>If r  is beside a path s.t 0, . ( )p P   . 

=> If r  is beside a cycle c , and ( )c c   . 

=> If r  is beside a cycle c , and c c  , 

s.t. ( )r R r    . 

(Simple part) prove by contradiction. Suppose r  
is complex. 

=>except for c , there exist another single vertex, 

or path, or cycle( ) . 

(Boundary part) Because R r  include  
the boundary, therefore R r  is a boundary 
coverage hole. 

Lemma 8 If there is no path and cycle in 

( , )G V E , and 0V  , there is only one boundary 

coverage hole. 

Proof. (Existence part) (1) if 0E  , s.t. all 

vertices VS . 
=>all vertices are the island sensors. 

=>coverage hole existing (2) if 0E  , s.t. 

there are mono-covered arcs. 
=> Coverage hole existing 

(Only one part) because 0P   and 0C  , 

there R  is not divided into different isolated parts, 
and the whole R  is seen as one coverage hole  

(Boundary part) prove by contradiction if  
the boundary is covered totally, s.t. there will be a 
cycle ( ) . 

=>the boundary is not covered totally. 
=>the hole is a boundary coverage hole. 

 
 
4. Performance Analysis 
 

4.1. Simulation Setups 
 

We considered a convex monitoring region of 
size 200*200 m2 and have simulated our algorithms 
using ns-2.33. About 300 to 1000 sensors are 
distributed randomly over the monitoring region. The 
simulation parameters are setup according to IEEE 
802.15.4 MAC/PHY specification and radio 
characteristics of IEEE 802.15.4 compliant product 
CC2420 [20] along with AODV routing protocol and 
TwoRayGround propagation model. Initially, each 
node is assumed to have fixed amount of 50J 
reserved energy and energy cost due to forwarding of 
each control packet is taken as 0.3J. Based on the 
variable number of deployed nodes, density of the 
nodes is considered as 1, 3, and 5 nodes/m2. 
Throughout our simulation, sensing range and 
communication ranges are set to be 10 m and 20 m, 
respectively. The traffic data rate is kept as 
250 00Kbps and control packets are sent in every 
0.2 seconds to detect the neighbors, which is 
continued to get the final list of one-hop neighbors of 
each node. 

In the simulation, holes are generated randomly 
among multi-hop and fully connected nodes such that 
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they can form different groups of disjoint set of 
nodes. All types of situations such as simple with 
boundary, complex with boundary and simple with 
non-boundary types of holes are consider getting the 
real time hole detection environment. In order to 
implement the mono-covered arc and graph 
construction algorithms, all nodes are given location 
information to estimate the endpoint set and associate 
neighbors of each node. The mono-covered arc 
information of each node is unicast to the one-hop 
neighbors to construct the graph. 
 
 

4.2. Simulation Results 
 

In this part we discuss the simulation results of 
our hole detection schemes. We separate our 
simulation results into two different parts such as 
hole information topology and performance 
evaluation of our work. In the performance 
evaluation part, we compare our hole detect methods 
with some known hole detection algorithms. Details 
of our simulation results are given as follow. 
 
 

4.2.1. Topological Hole Formation 
 

In order to get real picture of our simulations 
based on our hole information schemes, we generated 
different types of holes as shown in Fig. 6, Fig. 7  
and Fig. 8.  
 
 

 
 

(a) (b) (c) 
 

Fig.6. Original topology, connectivity figure,  
and the construction of graphs from our algorithms  

with average 1 node/ m2. 
 
 

We have simulated for different densities of 
nodes with (a) original topology of the network, 
(b) connectivity among nodes, and (c) construction of 
graphs based on our algorithms. As shown in Fig. 6, 
density of the network is considered as 1 node/m2, 
which implies that each unit square area of the 
monitoring region is covered by one node on average. 
There are 9 paths and one island, where 3 paths and 
one island enclose the one coverage hole. Besides, 
there are 7 boundary coverage holes, out of which 6 
are simple, and 1 is complex. And for Fig. 7, density 
of the network is considered as 3 node/m2, there are 
6 paths and 3 cycles, where 6 simple boundary 
coverage holes, and 3 simple non-boundary coverage 
holes. For Fig. 8, density of the network is considered 
as 5 node/m2, there are 2 paths and 1 cycle, where 
2 simple boundary coverage holes, and 1 simple non-

boundary coverage hole. We find that our work can 
show the coverage holes exactly and even if the 
connectivity is interrupted. Thus we think our work is 
complete, and no need to assume the density of 
network or the connectivity. 
 
 

 
 

(a) (b) (c) 
 

Fig.7. Original topology, connectivity figure,  
and the construction of graphs from our algorithms  

with average 3 node/ m2. 
 
 

 
 

Fig.8. Original topology, connectivity figure,  
and the construction of graphs from our algorithms  

with average 5 node/m2. 
 
 
4.2.2. Performance Evaluation 
 

Here, we analyze the performance and efficiency 
of our algorithms. If n  is the total number of 

deployed sensors and M  is the maximum number of 
neighbors of any sensor, each sensor has to calculate 
the intersection point sets with its neighbors. Hence, 
each node requires M  units of time for calculation. 
Each sensor checks if the intersection points are 
covered by other neighbors or not, for which it needs 
at most 1( )M   unit times of calculation. Hence, 

computational complexity of our hole detection 

algorithm can be estimated as 20( . )n M . 

In order to get the practical insight of our 
schemes, we simulate our algorithms to find average 
number of neighbors for different number of holes, as 
shown in Fig. 9. It is found that more number of 
neighbors have to participate to execute the hole 
formation algorithm, if number of coverage holes are 
increased. We consider two criteria to evaluate 
performance of our algorithms. They are the average 
hole detection time and average power consumption 
for detecting the holes. We use the number of 
coverage holes and average density of the nodes to 
evaluate those parameters, as shown in Fig. 10, 
Fig. 11 and Fig. 12. 
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Fig.9. Relationship between average numbers of neighbors 
for different number of coverage holes. 

 
 

 
 

Fig.10. Average hole detection time for different number of 
holes with different node densities. 

 
 

 
 

Fig.11. Average hole detection time for different number of 
average neighbors and different number of nodes. 

 
 

 
 

Fig.12. Average amount of power consumption  
for different densities of the nodes and different  

number of holes. 

As shown in Fig. 10, it is observed that the 
average hole detection time increases with increase in 
different number of holes, which is quite obvious. 
Besides, the hole detection time also increases with 
increase in density of the nodes. This is due to 
exchange of more control packets among the densely 
deployed nodes. If there are n  sensors in the network, 
where m  is the average number of neighbors of each 

sensor and T  represents average package delivery 
time, then time cost for delivering each packet can be 
estimated as ( . . )n mT . As shown in Fig. 11, the 

average hole detection time increases with increase in 
different number of nodes. The hole detection time is 
also increased with increase in the average number of 
neighbors. It is due to estimation of more end points 
and associated neighbors to find the mono-covered 
arc. The average power consumption for detecting 
different number of holes is given in Fig. 12. If P  
represents average power consumption for delivering 

each packet,
idle

P  is the average power consumption 

during idle period of the whole process and m  is the 
average number neighbors of each sensor, then 
average power consumption for each sensor can be 

estimated as( . )
idle

m P P . From Fig.12, it is found 

that average power consumption for detecting the 
holes is increased with increase in the number of 
holes. The average power consumption is also higher 
if density of the nodes over the network is increased. 

Here, we compare our work with similar hole 
detection algorithms [21-23]. The hole detection 
algorithms mentioned in [21, 22], require fully 
connectivity of somewhere. They can’t use the 
communication graph or connectivity information to 
detect the coverage holes. The Distributed Hole 
Coverage (DHC) algorithm [23], introduces similar 
idea with ours. They use the notation of coverage of 
the sensing disc to detect the holes. However, as 
shown in Fig.13(a) is the result of DHC to detect all 
nodes which enclose the holes, and Fig.13(b) is our 
result, it is obviously that DHC is unable to detect the 
nodes which beside the boundary coverage holes. It 
can only detect the nodes beside non-boundary 
coverage holes, and therefore hole detection using 
DHC is totally limited. Compare to our work, we can 
find all nodes beside all coverage holes correctly. 

It is to be noted that the Topological Boundary 
Recognition (TBR) algorithm uses topological 
method to detect the coverage hole. And another 
distributed algorithm Path Density (PS) algorithm use 
the density of each path from the same node to decide 
which one pass the coverage hole, and detect the 
coverage hole by means of these information. Both 
algorithm need to use flood the network twice to 
define the coverage hole. As shown in Fig.14, under 
the same situation which there are several number of 
nodes in R , TBR needs more time to construct the 
tree structure and to get shortest path. And for PS, it 
needs time to broadcast the density messages, and 
return the hole information by means of broadcast 
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way. Although DHC need less time than our work in 
local part, that is because they do not form the 
meaningful graph to define the coverage hole. The 
same situation occurs when considering energy, as 
shown in Fig. 15, our method also consume less 
energy than TBR and PS. Although, the more energy 
we need than DHC, but not much and can make our 
method more distributed and define the coverage 
holes more definitely. 
 
 

 
 

(a) (b) 
 

Fig.13. Comparison of hole detection methods  
of our algorithm with DHC. 

 
 

 
 

Fig.14. Average hole detection time for different number of 
sensors. 

 
 

 
 

Fig.15. Average power consumption for different number 
of nodes. 

 
 

5. Conclusions 
 

In this paper, we propose a distributed hole 
detection scheme that can detect the coverage holes 
remotely. We propose algorithms to how get the 
mono-covered arc information of the nodes from the 
location information of the neighboring nodes. Using 
local mono-covered arc information, each node can 

construct the graphs, which is later forwarded to the 
sink. Finally, we propose several rules in form of 
lemmas so that sink can analyze the nature and 
position of the coverage holes remotely. Our remote 
hole detection schemes can any type of holes such as 
boundary or non-boundary holes. As compared to 
similar hole detection algorithms, our algorithm can 
detect holes efficiently with least hole detection time. 
Hence, implementation of our algorithms can give 
more beneficial results as compared to other 
centralized methods. 
 
 

Acknowledgments 
 

The work is partially supported by the 
Department of Housing and Urban-Rural 
Development Project under Grant No. 2013-K8-34, 
Xiamen University of Technology's International 
Cooperation and Exchange Project under Grant  
No. E201300200. 
 
 

References 
 
[1]. O. Banimelhem, M. Mowafi, and W. Aljoby, Genetic 

algorithm based node deployment in hybrid wireless 
sensor networks, Communications and Network, 
Vol. 5, Issue 4, 2013, pp. 273-279. 

[2]. C. Zhu, C. L. Zheng, L. Shu, and G. J. Han, A survey 
on coverage and connectivity issues in wireless 
sensor networks, Journal of Network and Computer 
Applications, Vol. 35, Issue 2, March 2012,  
pp. 619-632. 

[3]. H. S. Rajat Bhardwaj, Aman Singh, Coverage hole 
removal in WSNs, International Journal of Smart 
Sensors and Ad Hoc Networks, Vol. 3, Issue 1, 2013, 
pp. 40-43. 

[4]. S. Babaie and S. S. Pirahesh, Hole detection for 
increasing coverage in wireless sensor network using 
triangular structure, IJCSI International Journal of 
Computer Science, Vol. 9, Issue 1, No. 2, 2012, 
pp. 213-218. 

[5]. B. Wang, H. B. Lim, and D. Ma, A survey of 
movement strategies for improving network coverage 
in wireless sensor networks, Computer 
Communications, Vol. 32, Issue 13-14, 2009, 
pp. 1427-1436. 

[6]. H. Mahboubi, K. Moezzi, A. G. Aghdam, 
K. Sayrafian-Pour, and V. Marbukh, Distributed 
deployment algorithms for improved coverage in a 
network of wireless mobile sensors, IEEE 
Transactions on Industrial Informatics, Vol. 10, 
Issue 1, 2014, pp. 163-174. 

[7]. C.-F. Hsin and M. Liu, Randomly duty-cycled 
wireless sensor networks: dynamics of coverage, 
IEEE Transactions on Wireless Communications, 
Vol. 5, Issue 11, 2006, pp. 3182-3192. 

[8]. W. Peng-Jun and W. Chih, Coverage by randomly 
deployed wireless sensor networks, IEEE 
Transactions on Information Theory, Vol. 52, 
Issue 6, 2006, pp. 2658-2669. 

[9]. I. H. Peng and Y.-W. Chen, Energy consumption 
bounds analysis and its applications for grid based 
wireless sensor networks, Journal of Network and 
Computer Applications, Vol. 36, 2013, pp. 444-451. 



Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250 

 250

[10]. S. S. K. N. Ahmed, and S. Jha, The holes problem in 
wireless sensor networks: a survey, Mobile 
Computing and Communications Review, Vol. 9, 
Issue 2,2005, pp. 4-18. 

[11]. X. X. Nan Qu, Fang-Ming Shao, Coverage hole 
problem under sensing topology in wireless sensor 
network, in Proceedings of the International 
Conference on Software Engineering and Computer 
Science (ICSECS2013), 2013, pp. 55-58. 

[12]. S. Karmakar and A. Roy, Holes detection in wireless 
sensor networks: a survey, International Journal of 
Modern Education and Computer Science, Vol. 6, 
Issue 4, 2014, pp. 24-30. 

[13]. Y.-C. T. Chi-Fu Huang, The coverage problem in a 
wireless sensor network, Mobile Networks and 
Applications, Vol. 10, Issue 4, 2005, pp. 519-528. 

[14]. G. Wang, G. Cao, and T. F. La Porta, Movement-
assisted sensor deployment, IEEE Transactions on 
Mobile Computing, Vol. 5, Issue 6,2006,  
pp. 640-652. 

[15].H.-C. Ma, P. Kumar Sahoo, and Y.-W. Chen, 
Computational geometry based distributed coverage 
hole detection protocol for the wireless sensor 
networks, Journal of Network and Computer 
Applications, Vol. 34, Issue 5, 2011, pp. 1743-1756. 

[16]. P. B. Benyuan Liu, Olivier Dousse, Mobility 
improves coverage of sensor networks, in 
Proceedings of the 6thACM International Symposium 
on Mobile ad hoc Networking and Computing, 2005, 
pp. 300-308. 

[17]. V. d. S. a. R. Ghrist, Homological Sensor Networks, 
Notices of the American Mathematical Society, 
Vol. 54, Issue 1, 2007, pp. 10-17. 

[18]. D. Dong, X. Liao, K. Liu, Y. Liu, and W. Xu, 
Distributed coverage in wireless ad hoc and sensor 
networks by topological graph approaches, IEEE 
Transactions on Computers, Vol. 61, Issue 10, 2012, 
pp. 1417-1428. 

[19]. M. Vecchio, R. López-Valcarce, and F. Marcelloni, 
A two-objective evolutionary approach based on 
topological constraints for node localization in 
wireless sensor networks, Applied Soft Computing, 
Vol. 12, Issue 7, 2012, pp. 1891-1901. 

[20]. Data sheet for CC2420 2.4 GHz IEEE 
802.15.4/ZigBee RF transceiver (http://www.ti.com/ 
lit/ds/symlink/cc2420.pdf). 

[21]. R. P. Peter Corke, Daniela Rus, Finding holes in 
sensor networks, in Proceedings of the Workshop on 
Omniscient Space: Robot Control Architecture 
Geared Toward Adapting to Dynamic Environments 
at ICRA, 2007, (http://cmc.cs.dartmouth.edu/ 
cmc/papers/corke:holes.pdf). 

[22]. Y. Wang, J. Gao, and J. S. B. Mitchell, Boundary 
recognition in sensor networks by topological 
methods, in Proceedings of the 12th Annual 
International Conference on Mobile Computing and 
Networking, 2006, p. 122. 

[23]. M. K. Watfa and S. Commuri, Energy-efficient 
approaches to coverage holes detection in wireless 
sensor networks, in Proceedings of the IEEE 
International Symposium on Intelligent Control, 
2006, pp. 137-142. 

 

___________________ 
 

2014 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved. 
(http://www.sensorsportal.com) 
 
 
 

 
 

http://www.sensorsportal.com/HTML/BOOKSTORE/Digital_Sensors.htm


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


