
Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 240

SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss

© 2014 by IFSA Publishing, S. L.
http://www.sensorsportal.com

Remote Holes Detection Algorithms
for Wireless Sensor Networks

1, 2 Kai-Biao Lin, 2, 3 K. Robert Lai, 2 Chiao-Yun Liu

1 Department of Computer Science & Technology, Xiamen University of Technology,
Xiamen 361024, P. R. China

2 Department of Computer Science and Engineering, Yuan Ze University,
Taoyuan 32026, Taiwan, ROC

3 Innovation Center for Big data and Digital Convergence, Yuan Ze University,
Taoyuan 32003, Taiwan

Tel.: +86-592-6291518, fax: +86-592-6291390
E-mail: kblin@xmut.edu.cn, krlai@cs.yzu.edu.tw

Received: 29 August 2014 /Accepted: 29 August 2014 /Published: 30 September 2014

Abstract: This paper develop a practical and energy-efficient distributed algorithm for the detection of coverage
holes in a wireless sensor network. It assumes that the location of sensor nodes is available. We do this in two
phases. First we want to identify a set of nodes of which encircle a coverage hole. This is done by introducing a
concept of mono-covered arc, which represents the circumference of a non-overlapping region of the sensing
disc of a sensor node. That is, a coverage hole or insufficient coverage region will be along the right-hand side
of these directed mono-covered arcs. Based on this notion, a graph-theoretic distributed algorithm can then be
developed to identify every simple boundary and interior hole locally. Furthermore, this graph-theoretic
information can also be forwarded to the sink or base station to recognize the geometric characteristics among
these coverage holes existing in the network fabric remotely. Copyright © 2014 IFSA Publishing, S. L.

Keywords: Coverage hole, Wireless sensor network, Distributed algorithm.

1. Introduction

Wireless sensor network (WSN) is composed of
inexpensive and battery-powered sensing devices
having ability of collecting, storing, processing, and
communicating data with each other [1, 2]. These
tiny sensing devices are often deployed in the target
field in large numbers and then collaborate to form a
wireless ad-hoc network capable of reporting the
data, phenomenon, or event to a remote data
collection point, namely sink or base station [3].
Popular and successful applications of wireless
sensor networks can be seen in such domains as
object tracking, surveillance, environmental and

structural monitoring, health related monitoring,
traffic control, factory automation and inventory
management etc. [4-6].

But these myriad of applications also present
various challenges for the task of designing scalable,
self-organizing, and energy-efficient sensor
networks. The task becomes even more demanding if
we consider the constraints of lightweight and low-
capability sensor nodes with limited processing
power, memory space, battery life, radio ranges, and
communication bandwidth [7-9]. Additionally, the
design of wireless sensor networks can also be
greatly affected by the geometric distribution of the
sensors deployed in the underlying environment. In

http://www.sensorsportal.com/HTML/DIGEST/P_RP_0187.htm

http://www.sensorsportal.com

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 241

practice, distributions of sensor nodes in a wireless
sensor network are usually far from being uniform
due to random aerial deployment, terrain variation,
presence of obstructions, position changing, and node
failures caused by power depletion or external forces.
That is, the real sensor networks usually have
coverage holes indicating the regions without enough
working sensors.

The presence of holes in the underlying geometric
environment could have important consequences on
the performance of the sensor network at many
levels [10, 11]. For perception applications such as
object tracking, environmental monitoring, and
military surveillance, the networks require sufficient
coverage over the region of interest [12]. The shape
or topology of the sensor field often indicates
important features of the underlying environment.
Thus, the identification of the holes in sensor
networks is of primary interest because its presence
often has physical correspondence and may also map
to one of the special events that are being monitored
by the sensor networks.

On the other hand, holes are also important
indicators of the general health of a sensor network.
Especially, understanding the global geometry and
topology of the sensor field could have important
implications for the design of several basic
networking functionalities such as routing and data
gathering mechanisms. For instance, the presence of
such holes changes the topology of the networks and
creates a communication void that has adverse effect
on routing algorithms. Additionally, for information
flow, the hole could also affect the overall capacity of
the network.

Depending on the application environments and
level of information constraints, algorithms for
identifying various coverage holes in sensor networks
can be generally classified into three categories:
computational geometry approach, statistical
approach, and topological method. The
computational geometry method [13-15] uses
the coordinates of the sensor nodes and
standard geometric tools to determine the
coverage characteristics.

One feature of this approach is that the precise
geometry of the domain and exact location of the
nodes must be available. In statistical method [16], it
assumes a randomly and uniformly distributed
collection of sensor nodes. The main idea is the
nodes that encircle the holes should have much lower
average degrees than that of other nodes in the
interior of the networks. That is, with sufficient high
density, it usually exhibits bi-modal behavior and
thus can be used to detect the holes. The drawback of
these probabilistic approaches is the need for dense
and uniformly distribution of sensor nodes. For
topological methods [17-19], the main feature was
based on the network topology or connectivity
information to identify the holes. These methods are
attractive particularly for a large scale of sensor
network in which the location information is
not available.

2. System Model

2.1. Assumptions

Consider a set of n sensors denoted by

1 2 1
{ , ,..., , }

n n
S S S S S and are deployed over a

rectangular monitoring region R. Let, (,)
i i i

s x y

be the position of i-th sensor, for i=1~n. It is to be
assumed that T1~T4 are the vertices of the
rectangular region R as shown in Fig. 1, whose
coordinates are known and are given by

(,)
i Ti Ti

T X Y , for i=1~4. Each sensor has its

location information. We consider a homogeneous
sensor network, where each sensor has uniform

sensing ()
s

r and communication ()
c

r range and

2
c s

r r . Throughout our work, the term

“boundary” means the boundary of the monitoring
region R.

2.2. Definitions

Definition 1 [Sensing Disc] Sensing disc is the

disc with radius of
s

r and centered at an active sensor.

Any object within the sensing disc can be perfectly
detected by a sensor. Throughout the paper, radius of

the sensing disc is referred to as sensing range()
s

r .

Definition 2 [Boundary/Non-Boundary Sensor]
If sensing disc of any sensor intersects with the
boundary of the monitoring region, the sensor is a
boundary sensor. Otherwise, it is a non-boundary

sensor. For example, as shown in Fig. 1, sensors
7

S ,

11
S ,

13
S ,

14
S and

15
S are boundary sensors and the

rest are non-boundary sensors.

Fig.1. Example of a monitoring region R
where 16 sensors deployed.

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 242

Definition 3 [Island/Archipelago Sensor] If a
non-boundary sensor has no neighbor, the sensor is
an island sensor. If a non-boundary sensor has
connecting neighbors, it is an archipelago sensor. For

example, as shown in Fig. 1,
1 6
~S S ,

8
S ,

9
S ,

10
S

and S12are archipelago sensors, and S16 is an island
sensor. Through, S15has no neighbor, it is considered
as a boundary sensor, according to our definition.

Definition 4 [Coverage Hole] If any part of the
monitoring region R is not covered by the
sensing disc of a sensor, that part is termed as a
coverage hole.

Definition 5 [Simple/Complex/Boundary/Non-
boundary Coverage Hole] If a coverage hole is
enclosed by single set of connected sensors
(boundary/non-boundary), the coverage hole is
simple. If the coverage hole is enclosed by sensors
(boundary and non-boundary) and boundary of the
monitoring of the monitoring region R, the coverage
hole is a boundary coverage hole. Otherwise, the
coverage hole is a non-boundary one. As shown in
Fig. 1, r3 and r5 are simple and non-boundary
coverage holes, as no boundary sensor encloses the
holes. r1 and r4 are simple and boundary coverage
holes, as boundary of the monitoring region encloses
the holes. r2 is a complex and boundary coverage
hole as it is enclosed by three sets of sensors,

1 2 3 4 6 7 12 13 14
{ , , , , , , , , }S S S S S S S S S ,

15
{ }S , and

16
{ }S , and is enclosed by the boundary of the

monitoring region.

3. Remote Hole Detection Algorithms

The hole detection algorithm comprises two
phases. In the first phase, we introduce a concept,
Mono-covered Arc, which implies a region on the
outside of certain portions of the sensing disk of a
sensor that may remain uncovered, and then, a set of
connected mono-covered arcs collectively can define
the perimeter of a coverage hole. Algorithm 1 is
developed to determine the mono-covered arcs of
each sensor node. Then, in the second phase, we
propose a graph-theoretic hole detection method.
Based on the mono-covered arcs information,
Algorithm 2 proceeds to build a directed graph which
is used to detect every simple hole existing in the
network. Additionally, these graph-theoretic
information are ultimately send back to the sink or
base station to recognize the extent of coverage holes
in the network fabric and also to identify the presence
of complex holes which are enclosed by more than
one set of connected mono-covered arcs.

3.1. Mono-covered Arc

In the random distribution of sensor nodes, it is
obvious that the sensing disc of a sensor may be fully
or partially overlapping (or disjoint) with other

sensors. In our work, the arc pertaining to a non-
overlapping region of the sensing disc of a sensor is
termed as a mono-covered arc, as shown in Fig. 1,

defined by three sets of end points {(,)
i j

p p ,

(,)
m n

p p , and (,)}
l k

p p , measured in

counterclockwise direction. Besides,
5

S has no

mono-covered arc as its sensing disc is fully covered

by other sensors. Since,
16

S is an island sensor, its

whole sensing disc is considered as the mono-
covered arc per the definition.

Note that the end points of the mono-covered arc
are represented by an ordered pair of points and the
mono-covered arc is measured in counterclockwise
direction taking those pair of pints. We develop an
algorithm to determine the mono-covered arc of each
sensor as described in the following subsection. Prior
to execution of this algorithm, each sensor broadcasts
packet with its location information to its one hop
neighbors. Upon receiving location information from
neighbors, each sensor constructs a neighbor table
and executes the following schemes: End Points
Estimation and Mono-covered Arc Selection.

3.1.1. End Points Estimation

The sensor who receives location information
from the neighbors has to determine the end points
and the neighbors associated with those end points.
Note that island sensors do not have neighbors and
therefore they do not estimate any end points. Each
boundary or archipelago sensor chooses one neighbor
and calculates the points of intersection of its sensing
disc with its neighbors. If that point of intersection is
inside R and is not covered by any other neighbors,
those intersection points become member of the End
Point Set P and the corresponding neighbors
associated with those points become member of the
Associated Neighbors Set N.

Let, any sensor
i

s island sensor has to estimate

the end points. First,
i

s chooses one neighbor
j

s

from its neighbor set and calculates the intersection

points
i

p ,
j

p . If
i

p or
j

p is inside R and is not

covered by any other neighbors of
i

s ,
i

p or
j

p

become elements of the end points set P. Besides,
j

s

is selected as the member of the associated neighbors

set N. This process continues for all neighbors of
i

s .

For example, as shown in Fig. 1, if we consider

sensor
9

s , its end points set can be given as

9
() { , , , , , }

j m n l k i
P s p p p p p p . Besides, its

associated neighbors set can be given
as

9 10 1 8
() { , , }N s s s s .

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 243

3.1.2. Mono-covered Arc Selection

In this phase, a sensor determines the mono
covered arc elements taking end points set and the
associated neighbors set into consideration. Each

sensor
i

s calculates another points set |Q q Q 

q is a point on the line
i j

s s and

| | , ()}
i s j i

s q r s N s   . In other words, if
j

s is

an associated neighbor of
i

s , and q is point on the

line joining the location of
i j

s s , then| |
i s

s q r .

After finding the points of set Q , all points of P

and Q are placed on the circumference of the

sensing disc of the sensor. The pair of points of P
that does not contain any point of Q is considered as

a mono covered arc. For example, as shown in

Fig. 2(a),
10

s ,
1

s and
8

s are associated neighbors of

9
s and

j
p ,

m
p ,

n
p ,

l
p

k
p and

i
p are end points

set of
9

s .

As per the algorithm described above,
a

q ,
b

q

and
c

q become the elements of set Q. Hence, as

shown in Fig. 2(b), the end points

{ , , , , , }
i j k l m n

p p p p p p and points { , , }
a b c

q q q

are placed on the circumference of the sensing disc of

9
s . Considering in counterclockwise direction, any

pair of end points are selected such that neither
a

q

nor
b

q , nor
c

q lies in between any pair of end points.

Thus,(,)
i j

p p , (,)
m n

p p and (,)
m n

p p become the

mono covered arc.

(a) (b)

Fig.2. Example of Mono Covered Arc. (a) Estimation
of end points set and points belong to set Q. (b) Decision

of mono covered arc.

The complete algorithm for estimating the end
points set, associated neighbors set and finally
selecting the mono covered arcs is given in Fig. 3.

Algorithm 1: Mono-covered Arc Selection of node i

Notation:
Nr: Nr={s| s is the neighbor of i};
 N: the associated neighbors set;
 P: the end points set of i;
 Q: q points set of i;

MCArc (i): the mono-covered arcs set of node i.
End Point Estimation (Nr), return P,N

Set P=N=;
Foreach sensor jNr do
ComputeIntersectionPoints(i, j)
 return intersection points set p[];
for (k=0~(Size(p[])-1))
 if (CheckIsNotCoveredAndInsideR(p[k]));
 P=Pp[k];
 N=Nj;
if (i boundary sensor);
 ComputeIntersectionBounaryPoints(i),
 return intersection with boundary points set b[];
for (k=0~(Size(b[])-1)))
 if (CheckIsNotCoveredAndInsideR(b[k]));
 P=Pb[k];
Mono-Covered Arc(P,N), return MCArc(i)
Set Q=
 if (P )
 foreach sensor jN do
 compute q points, Q=Qq
 foreach pi, pjP, and (pi, pj)
 is one sequential pair of counterclockwise order do
If (CheckNoQBetweenAndInsideR(pi, pj))
 MCArc(i) = MCArc(i)  (pi, pj);
else set MCArc(i)=

Fig.3. Algorithm for Determining Mono-covered Arc.

3.2. Graph-theoretic Hole Detection

This part describes how to use the concept of
mono-covered arc information to build a directed
graph for identifying the coverage holes. Note that
each boundary and archipelago sensors have their
own mono-covered arc information and the
corresponding end points set. However, the island
sensor only knows their location information. It is
assumed that each sensor, upon getting the mono-
covered arc information, forms the directed graphs
which represent the geometric characteristics of
coverage holes in the network. And locally this
information can be used to detect the holes, which
exist along the right hand side of each directed graph.
To further identify the complex holes and their extent
at a remote location, the graph-theoretic information
is forwarded to the sink.

3.2.1. Construction of Graph

Let, S be the set of sensors deployed over the

monitoring region R , and
Arc

MC be the set of

mono-covered arcs of all nodes of the network, i.e.

{(,) | (,) (), }
Arc i j i j Arc

MC p p p p MC s s S    .

Let, (,)G V E be a non-empty directed graph of a pair

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 244

of disjoint sets (,)V E .  a directed edge e from

vertex
i

p to
j

p , e E  ,
i

p and
j

p V , such that

initial vertex ()
i

init e p and terminal vertex

()
j

ter e p , where(,)
i j Arc

p p MC . Based on this

assumption, first, we construct
different directed graphs (,)G V E as per the

following definitions.
Definition 6 [Single Vertex] Let, G (V, E) be a

directed graph of non-empty alternating sequence

0 1
, ,...,

n
v v v V , and

1
(,)

i i i
e v v E  , for all

i<n. In (,),
i

G V E v V  ,
i

v is a Single Vertex, if

and only if no directed edge is initiated from or

terminated at
i

v , and
i

v is formed by an island sensor.

In other word, single vertex
i

v is an isolated point.

As shown in Fig. 4(b),
1

SV and
2

SV are a single

vertices, which are formed due to presence of an
island sensor.

Definition 7 [Path] If
0 1 1 2 2 3

... ,
n n

v e v e v e e v are

the alternating sequence of vertices and edges of

directed graph (,)G V E , such that
0

v and
1

v are on

the boundary of the monitoring region R, the graph

formed by the directed edges
1

(,)
i i i

e v v E  , for

all i n is called a Path. As shown in Fig. 4(b),
1

p ,

2
p ,

3
p ,

4
p and

5
p are different path formed from

the original topology given in Fig. 4(a).

Definition 8 [Cycle] If
0 1 1 2 2 3

... ,
n n

v e v e v e e v are

the alternating sequence of vertices and edges of

directed graph (,)G V E , such that
0 n

v v , the graph

formed by the directed edges
1

(,)
i i i

e v v E  , for

all i n is called a Cycle. As shown in Fig. 4(b),
1

c ,

2
c ,

3
c ,

4
c ,

5
c ,

6
c and

7
c are different Cycles

formed from the original topology given in Fig. 4(a).

(a) (b)

Fig. 4. (a) Original topology of the sensor network with
coverage holes. (b) Construction of directed graphs G(V,E)

as per our definitions.

Note that each sensor knows its end points set and
the associated neighbors set to form its mono-covered
arcs. Prior to detecting the holes, each sensor has to
construct the types of graph with respect to its
associated neighbors, which is ultimately forwarded
to the sink to analyze the nature and presence of the

holes. In our work, it is assumed that any sensor
i

s

initiates the graph construction phase by unicasting
its own mono-covered arcs which the initial vertex is
on the boundary as the initiator. Each sensor appends
the mono-covered information of its associated
neighbor to its own mono-covered arcs data and
reconstructs the graph. The process of contrasting
graph is terminated until it reaches at the boundary
vertex (in this case a Path is formed), or the process
reaches at the initiator vertex (in this case a Cycle is
formed). In case of island sensor, only Single Vertex
is formed and therefore only location information of
the sensor is forwarded to the sink using higher
power level. The complete algorithm of the graph
construction is given in Fig.5, and example of
formation of different types of graphs is given
in Fig. 3. In this algorithm, we think the
EdgeTraversal function can be implementing in each
sensor easily by means of message passing, and for
the end point, where sensor can determine the graph

form. Note that, we use P , C and
s

V to represent the

set of paths, cycles, and single vertices, respectively
in our algorithm. And the island sensors represent
their location as one set of the same points.

Algorithm 2: Construction of Graph
Notation:
 MCArc: MCArc ={(pi, pj)| (pi, pj)MCArc(s),sS};
: ={p|(p,*) or (*,p)  MCArc and p is on the

boundary};
 g: subset of edges. g⊆ MCArc, g={(uk, vk)|k=0~n}
InE(): function to choose an initial edge, which is
initiated at the boundary point has highest priority;

NEE (): function to choose the next edge which is
connected to the previous one;

Construction of Graph(MCArc), return P,C
While(MCArc)
 g=EdgeTraversal(MCArc);
 if (u0and vn)
P=Pg;
 Else if (u0==vn)
 C=Cg;
MCArc= MCArc-g;
EdgeTraversal(MCArc), return g
g=;
(u0,v0)=InE(MCArc);
g=g(u0,v0);
set k=0;
while (vk and u0vk)
(uk+1,vk+1)=NEE(MCArc);
k=k+1;
 g=g(uk, vk);
return g;

Fig.5. Graph Construction Algorithm.

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 245

Corollary 1 In a random deployment of nodes,
any form of graph does not exist, other than a single
vertex, path, or cycle.

Proof. Per our definitions and as shown in
Fig. 4(b), single vertex is formed due to an island
sensor. It can be observed every boundary vertex has
only one directed edge either started from or
terminated at.

This implies any graph that is initiated at a
boundary vertex must be ended at another
boundary vertex and forms a path. Additionally, it
also can be observed every interior vertex is
associated with two directed edges of which one is
started from and, at the same time, another is
terminated to. In other words, any graph that is
initiated at an interior vertex must be terminated at
itself and thus forms a cycle.

This proof is also consistent with a touch point,
which indicates a sensing disk is intersected with that
of neighboring nodes or the boundary at a single
point. For an interior touch point vertex, it has a total
of four directed edges associated with. Of these four
edges, two are going out and the other two are
coming from neighboring vertices. For a boundary
touch point vertex, there are a pair of directed edges
associated with. Of these two edges, one is starting
from and the other is entering to the vertex.

3.2.2. Hole Detection Schemes

In the following subsection, we would
prove certain lemmas which are used to detect the
coverage holes.

Corollary 2 directed edge e E , there exists
a hole along right side of that edge e.

Proof. ,e e E  , suppose (,)
i j

e p p .

=> There is a mono-covered (,)
i j

arc p p .

Assume (,) ()
i j Arc

p p MC s . By the definition,

mono-covered arc is a section of sensing circle of
sensor s, and is inside R and is not covered by any
other sensors.

=> There is a hole besides(,)
i j

p p . Since, mono-

covered (,)
i j

arc p p has recorded in

counterclockwise order; sensing disk of s is totally in

the left side of the (,)
i j

arc p p .

=> The hole must be in the right side of(,)
i j

p p .

Since, (,)
i j

p p represents a directed edge e in

(,)G V E , the hole is still in the right of e .

Lemma 1  path p P , there exists

a boundary coverage hole along right side of that
path p .

Proof. Let,
0 0 1 1 1 1

...
n n n

p v e v e v e v  be a path.

Hence,
0

v and
n

v must be on the boundary and

1
. . () ()

i i i i
e p s t e init v ter v    .

=> From Corollary 3.2, a hole along right side

of each
i

e , as union of 1, ~
i

p e i n  .

=>  A coverage hole enclosed by boundary

points
0

v and
n

v

=> a boundary coverage hole along right side
of path p .

Lemma 2  cycle c C , if c encloses any
region r in a clockwise direction, there exists a non-
boundary coverage hole along cycle c .

Proof. Let
0 0 1 1 1 1 0

...
n n n n

c v e v e v e v e v  is a

cycle.
=> from Corollary 3.2, a hole along right side

of each
i

e , since union of 1, ~
i

c e i n  , and

c encloses r in the clockwise direction.
=> r is bounded by c and along right side of it.
=>  a non-boundary coverage hole along c

in r .
Lemma 3  cycle c C , if c encloses any

region r in a counterclockwise direction, there exists
a coverage hole along c in R r .

Proof. Let,
0 0 1 1 1 1 0

...
n n n n

c v e v e v e v e v  be

a cycle.
=> From Corollary 3.2,  a hole along right side

of each
i

e , since union of 1, ~
i

c e i n  , and

c encloses r in the counterclockwise direction.
=> r is bounded by c and in the left side of c .

=> R r is in the right side of c .
=> a coverage hole along c .

Lemma 4 All coverage holes exist in R are along
at least one path or cycle in (,)G V E , if there exists

more than one coverage holes in R .
Proof. We prove it by contradiction. Suppose

there are n coverage holes in R , i.e.

1 2
2, ,..., ,

n
r r r n  , and each coverage holes are

isolated. Let, there exists a coverage hole
i

r enclosed

by a single vertex and a loop, except for the
boundary.

=> Since, single vertex cannot separate R into

isolated parts,
i

r cannot be isolated from other

coverage holes.
() If there exists more than one

coverage holes.
=>All coverage holes must be along with at least

one path or cycle.

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 246

Lemma 5 If there exists only one path p in

(,)G V E , without existence of any other forms of

graph, there exists only one simple boundary
coverage hole r along right side of p .

Proof. (Existence and boundary part) From
lemma 3.1, there is a coverage hole with boundary in
the right side of p .

(Only one part) prove by contradiction. Suppose
 another coverage hole r , r r  .

=>from lemma 3.4, r is along one path or cycle.

=>If r is beside a cycle, s.t. ()C   .

=> If r is beside a path p , and ()p p   .

=> If r is beside a path p , and s.t.,p p r 

is in the right side of p , then ()r r   .

(Simple part) prove by contradiction. Suppose r
is complex.

=>except for p , another single vertex, or path,

or cycle() .

Lemma 6 If there is only one clockwise cycle c

in (,)G V E , without existence of any other forms of

graph, and c close a region r , there exist only one
simple non-boundary coverage hole r .

Proof. (Existence and non-boundary part) From
Lemma 3.2, there is a non-boundary coverage hole
which is bounded by c along c in r .

(Only one part) prove by contradiction. Suppose
 another coverage hole ,r r r  .

=>from lemma 3.4, r is along one path or cycle.

=>If r is beside a path s.t. 0, ()p P   .

=> If r is beside a cycle c , and ()c c   .

=> If r is beside a cycle c , and

s.t., ()c c r r    .

(Simple part) prove by contradiction. Suppose r
is complex.

=>except for c , another single vertex, or path,

or cycle() .

Lemma 7 If there is only one counterclockwise
cycle c in (,)G V E , without existence of any other

forms of graph, and in c close a region in r , there
exist only one simple boundary coverage hole
in R r .

Proof. (Existence part) From Lemma 3, there is a
coverage hole which is along c in R r .

(Only one part) prove by contradiction. Suppose
 another coverage hole r , r R r   .

=>from lemma 3.4, r is beside one path
or cycle.

=>If r is beside a path s.t 0, . ()p P   .

=> If r is beside a cycle c , and ()c c   .

=> If r is beside a cycle c , and c c  ,

s.t. ()r R r    .

(Simple part) prove by contradiction. Suppose r
is complex.

=>except for c , there exist another single vertex,

or path, or cycle() .

(Boundary part) Because R r include
the boundary, therefore R r is a boundary
coverage hole.

Lemma 8 If there is no path and cycle in

(,)G V E , and 0V  , there is only one boundary

coverage hole.

Proof. (Existence part) (1) if 0E  , s.t. all

vertices VS .
=>all vertices are the island sensors.

=>coverage hole existing (2) if 0E  , s.t.

there are mono-covered arcs.
=> Coverage hole existing

(Only one part) because 0P  and 0C  ,

there R is not divided into different isolated parts,
and the whole R is seen as one coverage hole

(Boundary part) prove by contradiction if
the boundary is covered totally, s.t. there will be a
cycle () .

=>the boundary is not covered totally.
=>the hole is a boundary coverage hole.

4. Performance Analysis

4.1. Simulation Setups

We considered a convex monitoring region of
size 200*200 m2 and have simulated our algorithms
using ns-2.33. About 300 to 1000 sensors are
distributed randomly over the monitoring region. The
simulation parameters are setup according to IEEE
802.15.4 MAC/PHY specification and radio
characteristics of IEEE 802.15.4 compliant product
CC2420 [20] along with AODV routing protocol and
TwoRayGround propagation model. Initially, each
node is assumed to have fixed amount of 50J
reserved energy and energy cost due to forwarding of
each control packet is taken as 0.3J. Based on the
variable number of deployed nodes, density of the
nodes is considered as 1, 3, and 5 nodes/m2.
Throughout our simulation, sensing range and
communication ranges are set to be 10 m and 20 m,
respectively. The traffic data rate is kept as
250 00Kbps and control packets are sent in every
0.2 seconds to detect the neighbors, which is
continued to get the final list of one-hop neighbors of
each node.

In the simulation, holes are generated randomly
among multi-hop and fully connected nodes such that

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 247

they can form different groups of disjoint set of
nodes. All types of situations such as simple with
boundary, complex with boundary and simple with
non-boundary types of holes are consider getting the
real time hole detection environment. In order to
implement the mono-covered arc and graph
construction algorithms, all nodes are given location
information to estimate the endpoint set and associate
neighbors of each node. The mono-covered arc
information of each node is unicast to the one-hop
neighbors to construct the graph.

4.2. Simulation Results

In this part we discuss the simulation results of
our hole detection schemes. We separate our
simulation results into two different parts such as
hole information topology and performance
evaluation of our work. In the performance
evaluation part, we compare our hole detect methods
with some known hole detection algorithms. Details
of our simulation results are given as follow.

4.2.1. Topological Hole Formation

In order to get real picture of our simulations
based on our hole information schemes, we generated
different types of holes as shown in Fig. 6, Fig. 7
and Fig. 8.

(a) (b) (c)

Fig.6. Original topology, connectivity figure,
and the construction of graphs from our algorithms

with average 1 node/ m2.

We have simulated for different densities of
nodes with (a) original topology of the network,
(b) connectivity among nodes, and (c) construction of
graphs based on our algorithms. As shown in Fig. 6,
density of the network is considered as 1 node/m2,
which implies that each unit square area of the
monitoring region is covered by one node on average.
There are 9 paths and one island, where 3 paths and
one island enclose the one coverage hole. Besides,
there are 7 boundary coverage holes, out of which 6
are simple, and 1 is complex. And for Fig. 7, density
of the network is considered as 3 node/m2, there are
6 paths and 3 cycles, where 6 simple boundary
coverage holes, and 3 simple non-boundary coverage
holes. For Fig. 8, density of the network is considered
as 5 node/m2, there are 2 paths and 1 cycle, where
2 simple boundary coverage holes, and 1 simple non-

boundary coverage hole. We find that our work can
show the coverage holes exactly and even if the
connectivity is interrupted. Thus we think our work is
complete, and no need to assume the density of
network or the connectivity.

(a) (b) (c)

Fig.7. Original topology, connectivity figure,
and the construction of graphs from our algorithms

with average 3 node/ m2.

Fig.8. Original topology, connectivity figure,
and the construction of graphs from our algorithms

with average 5 node/m2.

4.2.2. Performance Evaluation

Here, we analyze the performance and efficiency
of our algorithms. If n is the total number of

deployed sensors and M is the maximum number of
neighbors of any sensor, each sensor has to calculate
the intersection point sets with its neighbors. Hence,
each node requires M units of time for calculation.
Each sensor checks if the intersection points are
covered by other neighbors or not, for which it needs
at most 1()M  unit times of calculation. Hence,

computational complexity of our hole detection

algorithm can be estimated as 20(.)n M .

In order to get the practical insight of our
schemes, we simulate our algorithms to find average
number of neighbors for different number of holes, as
shown in Fig. 9. It is found that more number of
neighbors have to participate to execute the hole
formation algorithm, if number of coverage holes are
increased. We consider two criteria to evaluate
performance of our algorithms. They are the average
hole detection time and average power consumption
for detecting the holes. We use the number of
coverage holes and average density of the nodes to
evaluate those parameters, as shown in Fig. 10,
Fig. 11 and Fig. 12.

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 248

Fig.9. Relationship between average numbers of neighbors
for different number of coverage holes.

Fig.10. Average hole detection time for different number of
holes with different node densities.

Fig.11. Average hole detection time for different number of
average neighbors and different number of nodes.

Fig.12. Average amount of power consumption
for different densities of the nodes and different

number of holes.

As shown in Fig. 10, it is observed that the
average hole detection time increases with increase in
different number of holes, which is quite obvious.
Besides, the hole detection time also increases with
increase in density of the nodes. This is due to
exchange of more control packets among the densely
deployed nodes. If there are n sensors in the network,
where m is the average number of neighbors of each

sensor and T represents average package delivery
time, then time cost for delivering each packet can be
estimated as (. .)n mT . As shown in Fig. 11, the

average hole detection time increases with increase in
different number of nodes. The hole detection time is
also increased with increase in the average number of
neighbors. It is due to estimation of more end points
and associated neighbors to find the mono-covered
arc. The average power consumption for detecting
different number of holes is given in Fig. 12. If P
represents average power consumption for delivering

each packet,
idle

P is the average power consumption

during idle period of the whole process and m is the
average number neighbors of each sensor, then
average power consumption for each sensor can be

estimated as(.)
idle

m P P . From Fig.12, it is found

that average power consumption for detecting the
holes is increased with increase in the number of
holes. The average power consumption is also higher
if density of the nodes over the network is increased.

Here, we compare our work with similar hole
detection algorithms [21-23]. The hole detection
algorithms mentioned in [21, 22], require fully
connectivity of somewhere. They can’t use the
communication graph or connectivity information to
detect the coverage holes. The Distributed Hole
Coverage (DHC) algorithm [23], introduces similar
idea with ours. They use the notation of coverage of
the sensing disc to detect the holes. However, as
shown in Fig.13(a) is the result of DHC to detect all
nodes which enclose the holes, and Fig.13(b) is our
result, it is obviously that DHC is unable to detect the
nodes which beside the boundary coverage holes. It
can only detect the nodes beside non-boundary
coverage holes, and therefore hole detection using
DHC is totally limited. Compare to our work, we can
find all nodes beside all coverage holes correctly.

It is to be noted that the Topological Boundary
Recognition (TBR) algorithm uses topological
method to detect the coverage hole. And another
distributed algorithm Path Density (PS) algorithm use
the density of each path from the same node to decide
which one pass the coverage hole, and detect the
coverage hole by means of these information. Both
algorithm need to use flood the network twice to
define the coverage hole. As shown in Fig.14, under
the same situation which there are several number of
nodes in R , TBR needs more time to construct the
tree structure and to get shortest path. And for PS, it
needs time to broadcast the density messages, and
return the hole information by means of broadcast

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 249

way. Although DHC need less time than our work in
local part, that is because they do not form the
meaningful graph to define the coverage hole. The
same situation occurs when considering energy, as
shown in Fig. 15, our method also consume less
energy than TBR and PS. Although, the more energy
we need than DHC, but not much and can make our
method more distributed and define the coverage
holes more definitely.

(a) (b)

Fig.13. Comparison of hole detection methods
of our algorithm with DHC.

Fig.14. Average hole detection time for different number of
sensors.

Fig.15. Average power consumption for different number
of nodes.

5. Conclusions

In this paper, we propose a distributed hole
detection scheme that can detect the coverage holes
remotely. We propose algorithms to how get the
mono-covered arc information of the nodes from the
location information of the neighboring nodes. Using
local mono-covered arc information, each node can

construct the graphs, which is later forwarded to the
sink. Finally, we propose several rules in form of
lemmas so that sink can analyze the nature and
position of the coverage holes remotely. Our remote
hole detection schemes can any type of holes such as
boundary or non-boundary holes. As compared to
similar hole detection algorithms, our algorithm can
detect holes efficiently with least hole detection time.
Hence, implementation of our algorithms can give
more beneficial results as compared to other
centralized methods.

Acknowledgments

The work is partially supported by the
Department of Housing and Urban-Rural
Development Project under Grant No. 2013-K8-34,
Xiamen University of Technology's International
Cooperation and Exchange Project under Grant
No. E201300200.

References

[1]. O. Banimelhem, M. Mowafi, and W. Aljoby, Genetic

algorithm based node deployment in hybrid wireless
sensor networks, Communications and Network,
Vol. 5, Issue 4, 2013, pp. 273-279.

[2]. C. Zhu, C. L. Zheng, L. Shu, and G. J. Han, A survey
on coverage and connectivity issues in wireless
sensor networks, Journal of Network and Computer
Applications, Vol. 35, Issue 2, March 2012,
pp. 619-632.

[3]. H. S. Rajat Bhardwaj, Aman Singh, Coverage hole
removal in WSNs, International Journal of Smart
Sensors and Ad Hoc Networks, Vol. 3, Issue 1, 2013,
pp. 40-43.

[4]. S. Babaie and S. S. Pirahesh, Hole detection for
increasing coverage in wireless sensor network using
triangular structure, IJCSI International Journal of
Computer Science, Vol. 9, Issue 1, No. 2, 2012,
pp. 213-218.

[5]. B. Wang, H. B. Lim, and D. Ma, A survey of
movement strategies for improving network coverage
in wireless sensor networks, Computer
Communications, Vol. 32, Issue 13-14, 2009,
pp. 1427-1436.

[6]. H. Mahboubi, K. Moezzi, A. G. Aghdam,
K. Sayrafian-Pour, and V. Marbukh, Distributed
deployment algorithms for improved coverage in a
network of wireless mobile sensors, IEEE
Transactions on Industrial Informatics, Vol. 10,
Issue 1, 2014, pp. 163-174.

[7]. C.-F. Hsin and M. Liu, Randomly duty-cycled
wireless sensor networks: dynamics of coverage,
IEEE Transactions on Wireless Communications,
Vol. 5, Issue 11, 2006, pp. 3182-3192.

[8]. W. Peng-Jun and W. Chih, Coverage by randomly
deployed wireless sensor networks, IEEE
Transactions on Information Theory, Vol. 52,
Issue 6, 2006, pp. 2658-2669.

[9]. I. H. Peng and Y.-W. Chen, Energy consumption
bounds analysis and its applications for grid based
wireless sensor networks, Journal of Network and
Computer Applications, Vol. 36, 2013, pp. 444-451.

Sensors & Transducers, Vol. 179, Issue 9, September 2014, pp. 240-250

 250

[10]. S. S. K. N. Ahmed, and S. Jha, The holes problem in
wireless sensor networks: a survey, Mobile
Computing and Communications Review, Vol. 9,
Issue 2,2005, pp. 4-18.

[11]. X. X. Nan Qu, Fang-Ming Shao, Coverage hole
problem under sensing topology in wireless sensor
network, in Proceedings of the International
Conference on Software Engineering and Computer
Science (ICSECS2013), 2013, pp. 55-58.

[12]. S. Karmakar and A. Roy, Holes detection in wireless
sensor networks: a survey, International Journal of
Modern Education and Computer Science, Vol. 6,
Issue 4, 2014, pp. 24-30.

[13]. Y.-C. T. Chi-Fu Huang, The coverage problem in a
wireless sensor network, Mobile Networks and
Applications, Vol. 10, Issue 4, 2005, pp. 519-528.

[14]. G. Wang, G. Cao, and T. F. La Porta, Movement-
assisted sensor deployment, IEEE Transactions on
Mobile Computing, Vol. 5, Issue 6,2006,
pp. 640-652.

[15].H.-C. Ma, P. Kumar Sahoo, and Y.-W. Chen,
Computational geometry based distributed coverage
hole detection protocol for the wireless sensor
networks, Journal of Network and Computer
Applications, Vol. 34, Issue 5, 2011, pp. 1743-1756.

[16]. P. B. Benyuan Liu, Olivier Dousse, Mobility
improves coverage of sensor networks, in
Proceedings of the 6thACM International Symposium
on Mobile ad hoc Networking and Computing, 2005,
pp. 300-308.

[17]. V. d. S. a. R. Ghrist, Homological Sensor Networks,
Notices of the American Mathematical Society,
Vol. 54, Issue 1, 2007, pp. 10-17.

[18]. D. Dong, X. Liao, K. Liu, Y. Liu, and W. Xu,
Distributed coverage in wireless ad hoc and sensor
networks by topological graph approaches, IEEE
Transactions on Computers, Vol. 61, Issue 10, 2012,
pp. 1417-1428.

[19]. M. Vecchio, R. López-Valcarce, and F. Marcelloni,
A two-objective evolutionary approach based on
topological constraints for node localization in
wireless sensor networks, Applied Soft Computing,
Vol. 12, Issue 7, 2012, pp. 1891-1901.

[20]. Data sheet for CC2420 2.4 GHz IEEE
802.15.4/ZigBee RF transceiver (http://www.ti.com/
lit/ds/symlink/cc2420.pdf).

[21]. R. P. Peter Corke, Daniela Rus, Finding holes in
sensor networks, in Proceedings of the Workshop on
Omniscient Space: Robot Control Architecture
Geared Toward Adapting to Dynamic Environments
at ICRA, 2007, (http://cmc.cs.dartmouth.edu/
cmc/papers/corke:holes.pdf).

[22]. Y. Wang, J. Gao, and J. S. B. Mitchell, Boundary
recognition in sensor networks by topological
methods, in Proceedings of the 12th Annual
International Conference on Mobile Computing and
Networking, 2006, p. 122.

[23]. M. K. Watfa and S. Commuri, Energy-efficient
approaches to coverage holes detection in wireless
sensor networks, in Proceedings of the IEEE
International Symposium on Intelligent Control,
2006, pp. 137-142.

2014 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved.
(http://www.sensorsportal.com)

http://www.sensorsportal.com/HTML/BOOKSTORE/Digital_Sensors.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

