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Abstract: This document presents a sliding window algorithm for the calculation of the empirical mode 
decomposition for long signals. The spline calculation of very long signals requires a long computation time. Our 
aim is to improve the calculation time of the empirical mode decomposition for Long signals. Some authors have 
used sliding windows for the whole decomposition. Our main contribution is to reduce the computation time 
calculating each intrinsic mode function on a sliding window basis. That ensures the obtained intrinsic mode 
function has no discontinuities on the junction regions between consecutive windows. Moreover, the sliding 
window size changes adaptively according to the number of extrema in the previous intrinsic mode function. The 
effectiveness of the proposed method increases with the length of the signal obtaining computation times of the 
order of 30 % of the time required to obtain the decomposition using only a window as in the classical manner. 
Those results are important to apply the empirical mode decomposition to long signals. Particularly, to biomedical 
signals like long-term ECG or long term EEG. Copyright © 2016 IFSA Publishing, S. L. 
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1. Introduction 

 

The Empirical Mode Decomposition (EMD), as 
was proposed initially by Huang, et al. [1] is a signal 
decomposition algorithm based on a successive 
removal of elemental signals: the Intrinsic Mode 
Functions (IMF). These are continuous functions such 
that at any point, the mean value of the envelope 
defined by the local maxima and the envelope defined 
by the local minima is zero. They are obtained through 
an iterative procedure called sifting that is a way of 

removing the dissymmetry between the upper and 
lower envelopes in order to transform the original 
signal into an amplitude modulated (AM) signal. 
Moreover, as the instantaneous frequency can change 
from instant to instant, it can be said that each IMF is 
a simultaneously amplitude and frequency modulated 
signal (AM/FM). So, the EMD is nothing else than a 
decomposition into a set of AM/FM modulated signals 
[2-5]. 

It must be emphasized that EMD is merely a 
computational algorithm that expresses a given signal 
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as a sum of simpler components. It cannot be said that 
the obtained components are true parts of the signal at 
hand.  

The original algorithm had some implicit 
difficulties [3, 6]: extrema location, the end effect and 
the stopping criterion are critical. Some solutions were 
proposed in [3] and implemented in an algorithm that 
can be found at [7] ((hereinafter referred as “the 
reference algorithm”). The location and amplitude of 
the extrema were estimated using a parabolic 
interpolation. To render less severe the end effect, the 
maxima and the minima were extrapolated by both 
sides. A new stopping criterion in the sifting procedure 
by introducing two resolution factors  
was defined. 

In the last years, several modifications have been 
proposed to increase the performances of EMD,  
[8-18]. It is important to question if the introduced 
complexity compensates the quality increase. In this 
work, it will be preserved the simplicity of the original 
algorithm while it is increased the reliability and 
applicability of the decomposition. 

In practical applications, there are several tradeoffs 
among resolution, signal length, the number of IMFs 
and running time. In fact, an increase in signal length 
produces two unwanted side-effects. On the one hand, 
it leads generally to a corresponding increase in the 
number of IMFs. Consequently, the running time may 
become so high, that the algorithm will be useless. The 
increase in the number of IMFs is a very important 
drawback because it may originate “false” 
components that are added to one IMF and subtracted 
to another one or appear isolated. So, in general, there 
are no guarantees to have IMFs that are really present 
in the original signal. On the other hand analyzing long 
signals with EMD is time-consuming or even 
impossible in a reasonable time [19] due to the fact, 
that spline interpolation of a large number of points 
takes a lot of computer resources. In applications to 
long signals [20, 21] the number of components and 
the running time would be so high that the algorithm 
would be almost useless. This problem was recently 
considered in [19], where the need of a more efficient 
and faster algorithm to deal with long signals was 
stated. 

Most of the algorithms present in the literature are 
not prepared to deal with long signals as they use only 
one window with the length of the signal. In Section 
2.1 it is shown the increase in processing time with 
increasing lengths. In some applications like EEG or 
ECG processing we may have to process signals with 
lengths above 106. The processing time makes the 
existing algorithms almost useless. This suggests it is 
important to have an algorithm with the same 
characteristics but faster. In order to reach such goal, 
a sliding window EMD is proposed where consecutive 
windows overlap over a pre-specified amount. While 
[19] proposes to obtain a full EMD at every window, 
this approach can cause errors when dealing with 
signals that have fast changes in their frequency 
composition. In such case, it could be impossible to 
obtain decomposition with the same number of IMFs 

in all the segments. Our solution follows a different 
approach. Each IMF is calculated in sliding windows 
to ensure the number of obtained IMFs components is 
the same for the whole length of the signal. While [19] 
proposes to increase the size of the sliding window by 
a fixed quantity, here it is proposed to duplicate the 
size of the window when necessary. In that manner, 
fewer steps are involved for very long signals. Such 
implies that the length of the signal must be a power 
of two of the initial window size. Finally, a sliding 
window algorithm has an overload in the computation 
of the EMD for signals with a small number of 
samples. So, the minimum window size must have a 
lower threshold, corresponding to the length for which 
the sliding window EMD is slower than the whole 
length EMD. All these factors together led to an 
adaptive algorithm. Both, the length of the sliding 
windows and the length of the overlapping region 
depend on the length of the whole signal. Also, the 
overlapping region is tapered to improve the junction 
between adjacent windows.  

The paper outlines as follows. In Section 2, the 
EMD and some of its drawbacks are discussed. An 
example is shown in Section 2.1. In Section 3.1, the 
problems that arise in analyzing long signals are 
presented and in Section 3.2, a new method, to analyze 
long signals, based on a sliding window is proposed. 
In Section 4, some illustrating results of the new 
method are presented. An application to the fan heater 
example and a comparison with the method in [3] is 
presented. 

 
 

2. The EMD and its Drawbacks 
 
A large number of papers published in the last 

years remarked the usefulness of the EMD. One of the 
most important advantages of EMD is the ability to 
decompose a complex signal into a finite set of 
narrowband signals without introducing any particular 
constraint on its characteristics. This makes easier the 
spectral estimation and creation of simple models. 
Some important aspects to be considered are: 

Firstly, it is necessary to reflect about the meaning 
of the IMFs: In general, it is not possible to establish 
any special connection between a given IMF and the 
structure (eventually tied with the underlying physics) 
of the original signal. This does not mean that it cannot 
be done in some particular situations. 

Secondly, another problem is the existence of false 
components in the IMFs. This is a consequence of the 
numerical errors in sifting: one component is added in 
one IMF and subtracted in another one. 

Finally, the number of IMFs depends on the length 
of the signal. In fact, the number of components 
increases with the length of the signal. This may be an 
unwanted feature of the algorithm that is connected 
with the false component generation and increases the 
time required to do the decomposition. 

It can be concluded that the main drawbacks of 
EMD are the false components and the large 
computational time for long signals. In the following, 
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we will propose a solution for the second problem that 
alleviates the first. 

 
 

2.1. An Example 
 

In a search for long range processes, an experiment 
with the electric circuit of a heater fan was carried out. 
The signal was sampled during two hours with a 
sampling interval of 10 ms. The EMD for increasing 
length segments, using the reference algorithm, is 
computed and the results for 2 different resolutions  
(45 and 50) are shown in Table 1. 

 
 

Table 1. Number of IMF and computational time  
vs. length of the signal for a heater fan signal. 

 

Resol Length 
L 

Factor 
IMFs 

Time 
(s) 

T 
Factor 

45 11.400  14 28  
45 27.600 2.42 15 41 1.46 
45 114.000 4.13 18 363 8.85 
45 340.800 2.98 20 1.057 2.91 
45 691.800 2.03 22 3.075 2.91 
50 11.400  13 29  
50 27.600 2.42 16 69 2.37 
50 114.000 4.13 19 602 8.72 
50 340.800 2.98 22 1.774 2.94 
50 691.800 2.03 22 5.195 2.92 

 
 

Computations were carried out on a PC using 
Matlab. It is possible to reduce the computational time 
by compiling the Matlab code. However, we will make 
all the measurements without compilation. 

Fig. 1 shows a tidal signal and it’s EMD. 
Regarding the meaning of the IMFs, it can be observed 
that the most important IMFs are the two upper ones. 
The Fourier transform confirms such assumption since 
the peak frequencies of such IMFs correspond to the 
frequencies of the main components in the tidal signal: 
the positions of the Moon and the Sun relative to Earth 
and the Earth’s rotation. The first has a period of about 
12 hours and 25 minutes and the second has a period 
of 24 hours. These are clearly identified in the pictures. 
Even with a careful study it would be more difficult to 
give some meaning to some of the other components. 

Regarding the existence of false components, it 
can be observed in Fig. 2 that the strips 5 and 6 share 
an important part of their spectrum. That is an 
indication than they are not really independent 
components. 

Regarding the number of IMFs, it depends on the 
length of the signal. In fact, the number of components 
and the computation time increases with the length of 
the signal. This may be an unwanted feature of the 
algorithm that is connected with the false component 
generation. 

The increase in time computation can be observed 
in Table 1. Resol represents the minimum resolution 
to obtain an IMF. Length represents the length of the 
signal. L Factor is the rate between the actual length 
and the previous one. IMFs is the number of IMFs for 
each trial. Time is the time in seconds. The “L Factor” 
represents the increase in length of the signal, while 
the “T factor” represents the factor by which the 
previous time must be multiplied for.  

 
 

 
 

Fig. 1. EMD using the reference algorithm for a tidal signal. 
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Fig. 2. Spectrum of the EMD decomposition of the tidal signal. 
 
 
For 114.000 samples, a region with slow 

convergence appears in the signal, so the time 
increases much more than the number of samples. It 
can be observed that while for small lengths a 
multiplication by two, changes the computation time 
by approximately 1.5, for longer signals a duplication 
in size implies an increase factor near to 3. That is due 
to the fact that the detection of extrema and the spline 
computation increases faster than the signal length. 
 
 
3. Decomposing Long Signals 
 

The objective of this paper is to propose an 
algorithm that can be used with long signals with 
significative reduction in the processing time and 
eventually in the number of IMFs. In first place, the 
problem is raised. In second place, the solution 
proposed is presented. 
 
 
3.1. The Problem 
 

Let x(t) be a given signal to be decomposed by 
EMD. The number of IMFs is not known in advance 
and normally grows up with increasing the length of 
x(t). This increments the computational burden, 
leading in some situations to very large computational 
times making the algorithm useless unless suitable 
actions are developed – see Table 1. One obvious 
procedure is to cut the signal into segments. However, 
this can lead to poor results due to several factors. 
First, different segments can produce a different 
number of IMF in the decomposition. Secondly, the 
end effect introduces discontinuities at the junction 

points. Finally, a reduced number of extremes lead to 
poor quality envelopes. 
 
 
3.2. The Solution: Adaptive Sliding Window 

EMD Algorithm 
 

As it has been indicated one of the drawbacks in 
analyzing long signals is the computational load. The 
extrema detection and the spline interpolation of a 
large number of points take a lot of computer resources 
[20]. 

For this reason, the use of the sliding window EMD 
is proposed [22]. The underlying idea to all the 
algorithms that use sliding windows is to use a divide 
and conquer strategy. The computation time for spline 
interpolation is dramatically reduced using smaller 
segments. However, each EMD needs a minimum 
time to be computed. So, an excessive number of 
windows could have a detrimental effect. A balance 
must be found among the number of windows and its 
length. Most of the sliding window algorithms 
compute a whole EMD for each window. Our 
algorithm is based on calculating each IMF by sliding 
windows in order to obtain better quality 
decomposition. As it can lead to an excessive number 
of windows, three conditions are stablished. Firstly, a 
threshold for the window size is stablished. This 
threshold is set by the user. Secondly, the window 
length is restricted to be a power of two. Thirdly, the 
window length is duplicated when a lower threshold in 
the number of extrema is reached. In that manner, the 
EMD is computed in an adaptive manner where lower 
frequencies are analyzed with a smaller number of 
windows than high frequencies.  
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As referred above, the main idea of the algorithm 
is to apply the EMD sifting segment to segment to 
obtain only one IMF at a time. This procedure is done 
along the whole signal. This ensures that a real EMD 
is obtained. A pseudocode of our algorithm is shown 
in List 1. 

 
 
List 1. Adaptive Sliding Window EMD pseudocode. 

 
INPUT: 

Filename 
Startingsample 
SignalLength 
Resolution (dB) 
OverlapPercentage 
MinWindowSize 
MinOscStop 
MinOscEndStop 

START: 
OptimumSizeWindow=f1(SignalLength) 
OverlapSamples=f2(MinWindowSize, 
OverlapPercentage) 
OSC  Inf 
MINOSC  MinOscStop 

BODY: 
WHILE (Osc > MINOSC) 

IF (WindowSize<Length) 
MINOSC  MinOscEndStop 
SWEMD(1:Length, L0, 
MINOSC) 

ELSE 
MINOSC  MinOscEndStop 
EMD(L, MINOSC) 

ENDIF 
ENDWHILE 

 
 

For a general formulation consider a signal of 
length L. Select the segment length N and the 
overlapping M points. 

1) Determine the starting window size, the number 
of samples in the overlap region, and the number of 
residual samples that do not fit in an integer number of 
windows. 

2) Start a loop to obtain the whole set of IMF. 
a) Start a loop to obtain an IMF on a sliding 

window basis. 
b) The first window size determines the number of 

iterations of the sifting process for the rest of the IMF. 
The stopping criterion for a given IMF is the resolution 
in dB as proposed in [3]. 

c) The process stops when the last segment is 
processed and the whole IMF is obtained 

d) Continue obtaining IMFs until the stopping 
criteria for small windows is reached and duplicate the 
window size. 

3) Once the window size equals the whole length, 
the process continues with a fixed size until the 
number of obtained extrema is less or equal than two. 

4) Obtain the residual of the decomposition to have 
the whole EMD decomposition. 

The main part of the algorithm is the outer While 
loop. It controls the stopping criteria for the EMD. The 
user must set how many oscillations are allowed in the 
last stage of the actual level. Once it is reached, the 
window size is duplicated. The process enlarges the 
size of the window adaptively as it is needed to 
analyze components with bigger wavelengths. 
Moreover, enlarging the window size allow a better 
interpolation between distant extrema. 

Each IMF is calculated with a sliding window if 
the window size is smaller than the whole signal 
length. This situation is evaluated in the first part of 
the IF statement. The situation in which there is only 
one window for the whole signal is evaluated in the 
ELSE part. 

Tapering segments applying a complementary 
symmetrical window to avoid discontinuities at the 
boundaries was studied. However, averaging the 
samples in the overlapping region produces good 
enough results with lower computation times. So, the 
criterion adopted was to average the samples in the 
overlapping region by both sides. 

To implement this process it is necessary to take 
into account the following observations: 

1) A minimal window size must be imposed to 
avoid an excessive number of partitions. The starting 
window size is correlated to the length of the signal to 
be analyzed. A simple possibility is making the 
starting segment a sub-power 2−k of the signal length. 
In this manner, the last window will cover the whole 
length signal. It must be taken into account that, 
dividing the signal length by powers of two can lead 
to a non-integer size of the starting window; the 
integer part of the quotient is used. So the signal length 
is covered by an integer number of windows and a 
residual. Depending on its size this residual can be 
assigned to the last window, enlarging its size or 
constitute a new window, usually with different size to 
the previous one. 

2) Regarding the criterion to determine when to 
enlarge the signal, it must be taken into account the 
fact that the minimum frequency to be analyzed 
depends on the window size (as it has been indicated 
before). As the sifting process requires oscillatory 
signals, it must be ensured that the window contains at 
least a minimum number of periods that can be 
selected by the user. The criterion adopted to change 
the window size is: The window length is duplicated 
the window size when the number of extrema in the 
previous IMF is lower than a user selected threshold. 

3) Concerning the overlap region, it must be taken 
into account that it is necessary to reduce the 
undesirable end effects. Extrapolation is not used, 
since there are enough number of samples outside the 
actual segment. That implies that overlapping 
consecutive windows solve both, boundary and  
end effects. 
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4. Results 
 

To evaluate the performance of the algorithm, it 
must be compared with the decomposition obtained by 
the reference algorithm (shown in Fig. 3). Secondly, 

the same signal is decomposed using the method 
proposed in this paper. The result can be observed in 
Fig. 4. A comparison of the computation time and the 
number of IMF obtained with both algorithms is 
presented in Table 2. 

 
 

 
 

Fig. 3. EMD using reference algorithm. 
 
 

 
 

Fig. 4. EMD using algorithm proposed in this paper. 
 
 

It must be taken into account that any error in a 
given IMF is propagated to the rest of the 
decomposition. As subsequent components have 
smaller amplitudes, the errors have greater 
importance. Our algorithm has shown a good behavior 
as it can be observed in 4. That is due to the fact that 

averaging the overlapped region between two 
consecutive windows smooths the result. As the 
number of samples in the overlapping region is based 
on a fixed percentage of the window size, the number 
of samples changes with the window size.  
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Comparing Fig. 3 and Fig. 4, it can be observed 
that Fig 4. Shows one component more in the region 
of low frequencies. That is due to increase the window 
length when low frequencies are reached. 

In Table 2, it can be observed that the performance 
of the algorithm increases with time. While for 11,400 
samples the sliding window computation time is 79 % 
of the EMD calculated as in the reference algorithm, 
for 691,800 samples the computation time is only 27 
%. That is due to the fact that the window size 
increases by powers of two, which results in smaller 
running times for very long signals. Despite of the fact 
of using many windows for the calculation, the 
obtained IMFs show a high quality as no 
discontinuities can be observed in the last IMFs for a 
signal with more than 600,000 samples. 

 
 

Table 2. Time comparison for both algorithms. 
 

Resol Length IMFs 
Time 

(s) 
IMFs 

Time 
(s) 

45 11.400 14 28 14 17 
45 27.600 15 41 14 37 
45 114.000 18 363 16 159 
45 340.800 20 1.057 19 452 
45 691.800 22 3.075 20 923 
50 11.400 13 29 12 23 
50 27.600 16 69 15 50 
50 114.000 19 602 18 217 
50 340.800 22 1.774 20 669 
50 691.800 22 5.195 21 1.414 

 
 

5. Conclusions 
 

The Empirical Mode Decomposition is a 
technique to decompose any signal into a finite set of 
narrowband components, the Intrinsic Mode 
Functions. The number of components and 
computational time increase dramatically when the 
length of the signal becomes large. Proposals for 
solving this problem had been done, but without the 
required quality. A modified sifting algorithm to deal 
with long signals was proposed here. It is based on 
computing every IMF using a sliding window. The 
algorithm is adaptive as both, the length of the sliding 
windows and the overlapping region depends on the 
signal to be analyzed. The change on the length of the 
sliding window by powers of two has two positive 
consequences. On one hand, the final window will 
cover the whole length of the signal in a few steps. On 
the other hand, the effectiveness of the proposed 
method increases with the length of the signal. 
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