Preface
(164 Kb,
)
Contributors
(150 Kb,
)
Chapter 1
Smart Sensors for Smartphones: How to Make it Smarter ?
1.1. MEMS and Sensor Markets for Smartphones and Tablets
1.2. Sensors for Smartphones: Sate-of-the-Art
1.2.1. Physical Sensors
1.2.2. Chemical Sensors and Biosensors
1.3. Design Approach: Gadget or Measuring Instrument ?
1.3.1. Technology Limitation
1.3.2. Traditional Design Approach and Sensor Interfacing
1.3.3. Combo Sensors
1.3.4. Advanced Design Approach
1.4. Summary and the Future Trends
References
Chapter 2
Phase Dynamics, Synchronization and Sensing by SAW Delay
Line Coupling Between Nonlinear SAW Oscillators
2.1. Introduction
2.2. SAW Delayed Self-Feedback Oscillator
2.2.1. SAW Delay Line
2.2.2. SAW Delay Line Oscillator
2.2.3. Amplifier Transfer Function
2.2.4. SAW Delay Line Transfer Response
2.2.5. Delay Differential Equation for SAW Delay Line Oscillator
2.2.6. Delay Differential Equation by Feng and Chicone
2.2.7. Self-Sustained Limit Cycle Oscillations
2.3. SAW Delayed Coupling of SAW Delay Line Oscillators
2.3.1. Two SAW Delay Line Oscillators Coupled by On-Chip
Acoustic Field
2.3.2. Two SAW Delay Line Oscillators Coupled by a SAW Delay
Line
2.3.2.1. Coupling Configuration
2.3.2.2. Coupled Delay Differential Phase Equations
2.4. Synchronization
2.4.1. Fully Coupled Configuration
2.4.2. Feedback Coupled Configuration
2.4.3. Direct Coupled Configuration
2.4.4. Synchronization Examples
2.5. Basis for Synchronization Mode Sensing
2.5.1. Synchronization Mode Sensitivity
2.5.2. Simulation Examples
2.6. Noise Reduction in Synchronization Mode Sensing
2.7. Discussion
2.8. Conclusion
References
Chapter 3
Fingerprint Sensors: Liveness Detection and Hardware
Solutions
3.1. Introduction
3.2. Spoofing Techniques in Fingerprint Sensors
3.3. Fingerprint Sensing Technologies
3.3.1. Optical Sensors
3.3.1.1. Frustrated Total Internal Reflection (FTIR)
3.3.1.2. Multispectral Imaging
3.3.1.3. 3D Touchless Imaging
3.3.1.4. TFT (Thin Film Transistor) Optical
3.3.1.5. Electro-optical
3.3.2. Capacitive
3.3.3. Radio Frequency (RF)
3.3.4. Thermal
3.3.5. Ultrasound
3.3.6. Micro-Electro-Mechanical System (MEMS)
3.4. Proposed Hardware based Liveness Detection Methods
3.4.1. Biological Signals
3.4.1.1. Blood Flow
3.4.1.2. Pulse Rate
3.4.1.3. Electrocardiography (ECG or EKG)
3.4.1.4. Electroencephalography (EEG)
3.4.1.5. Finger Skin Odour Analysis
3.4.1.6. Temperature of Finger Tip Epidermis
3.4.2. Skin Physiology Characteristics
3.4.2.1. Pulse Oximetry
3.4.2.2. Skin Spectroscopy
3.4.3. Stimulus Response
3.4.3.1. Skin Impedance
3.4.3.2. Electrotactile
3.5. Conclusion
References
Chapter 4
Plasma Polymerized Thin Film Sensors
4.1. Introduction
4.1.1. Historical Prospective
4.1.2. Plasma State
4.2. Plasma Polymerization
4.3. Structure of Plasma Polymerized Material
4.4. Mechanism of Plasma Polymerization
4.5. Plasma Deposition Technique
4.5.1. Low Pressure Plasma Deposition
4.5.2. Atmospheric Pressure Plasma Deposition
4.6. Different Techniques to Produce Plasma Discharge
4.7. Principle of Paschen’s Law
4.8. Selection of Gases with Liquids
4.9. Surface Modification of Plasma Materials
4.9.1. Plasma Enhanced Chemical Vapor Deposition (PECVD)
4.10. Plasma Polymerized Thin Film Sensor
4.11. Characterization of Plasma Polymers
4.12. Difficulties in Plasma Polymerization Method
4.12.1. Application of Plasma Polymerized Thin Films
4.13. Conclusion
Acknowledgement
References
Chapter 5
MEMS Non-Silicon Fabrication Technologies
5.1. Introduction
5.2. Printed Circuit Board (PCB) Technology
5.2.1. Fabrication Processes for PCB Technology
5.2.1.1. Thin Film Deposition
5.2.1.2. Planarization
5.2.1.2.1. Polishing and Planarization Process
5.2.1.2.2. Compressive Molding Planarization (COMP)
5.2.1.3. Micro-vias in PCB
5.2.1.4. Other Processes
5.2.2. Applications of PCB Technology
5.3. Low Temperature Co-fired Ceramics (LTCC)
5.3.1. Fabrication Processes for LTCC Technology
5.3.1.1. Screen Printing
5.3.1.2. Micromachining
5.3.1.3. Via Punching
5.3.1.4. Lamination
5.3.1.5. Co-firing
5.3.2. Applications of LTCC Technology
5.4. Liquid Crystal Polymer (LCP) Technology
5.4.1. Fabrication Processes of LCP Technology
5.4.1.1. Spin Coating/lithography and Metallization
5.4.1.2. Etching
5.4.1.3. Drilling Holes
5.4.2. MEMS Applications of LCP Technology
5.5. Polymer Core Conductors Technology
5.5.1. Fabrication Processes of Polymer Core Conductors
Technology
5.5.2. MEMS Applications of Polymer Core Conductor Technology
5.6. Polydimethylsiloxane (PDMS) Technology
5.6.1. Fabrication Process of PDMS Technology
5.6.2. MEMS Applications of PDMS Technology
5.7. Conclusion
Acknowledgment
References
Chapter 6
MEMS Applications in Medical Industries: Review
6.1. Introduction
6.2. MEMS in Surgical Fields
6.2.1. MEMS Based Micro-Machined Cutting Tools
6.2.2. MEMS Based Eye-Surgery (Minimally Invasive Type)
6.2.3. MEMS Based Catheters
6.2.4. MEMS Based Endoscopy
6.2.5. MEMS Based Tactile Sensing
6.3. Drug Delivery Systems Based on MEMS
6.3.1. MEMS Based Micro Reservoirs
6.3.2. MEMS Based Micro Needles
6.3.3. MEMS Based Micro Pumps and Values
6.4. MEMS in Diagnostics
6.4.1. MEMS Based Optical Sensing
6.4.2. MEMS based Micro-cantilever Beam Sensor
6.5. Conclusions
References
Chapter 7
MEMS Switches for RF Applications
7.1. Introduction
7.2. Classification of RF MEMS Switches
7.2.1. Metal to Metal Contact RF MEMS Switches
7.2.2. Capacitive Coupling RF MEMS Switches
7.3. Characteristics and Performances of RF MEMS Switches
7.3.1. Actuation Voltage
7.3.2. RF Characterization (Isolation, Insertion loss and Return
Loss)
7.3.3. Switch Lifetime
7.3.4. RF Signal Power Handling
7.3.5. Temperature Sensitivity
7.3.6. Switching Speed
7.4. Conclusion
References
Chapter 8
Advances in Amperometric Acetylcholinesterase Biosensors
8.1. Introduction
8.2. AChE Source
8.3. AChE Immobilization
8.4. Electrode Modification
8.5. New Trends and Challenges
8.5.1. Miniaturization
8.5.2. High Throughput and Quantification Detection
8.5.3. Integration of Detection System
8.5.4. Real Samples Detections
8.5.5. Combined Sensor for OP and Carbamates Detection
8.6. Conclusions
Acknowledgments
References
Chapter 9
Quartz Crystal Microbalance DNA Based Biosensors for
Diagnosis and Detection: A Review
9.1. Introduction
9.2. Quartz Crystal Microbalance Biosensor
9.2.1. Background
9.2.2. Piezoelectricity
9.2.3. Relationship between Added Mass and Frequency Shift
9.3. DNA Analysis
9.3.1. Structure and Stability of DNA
9.3.2. DNA-based Biosensors
9.3.3. DNA Biosensors based on QCM Detection
9.3.4. DNA Based QCM for Clinical Diagnosis
9.4. Conclusions
Acknowledgments
References
Chapter 10
Recent Advance in Antibody or Hapten Immobilization
Protocols
of Electrochemical Immunosensor for Detection of Pesticide
Residues
10.1. Introduction
10.2. Electrochemical Immunosensors
10.3. Immobilization Protocols
10.3.1. Physical Adsorption
10.3.2. Covalent Coupling
10.3.3. Entrapment
10.3.3.1. Sol-gel Entrapment
10.3.3.2. Electrically Conducting Polymers Entrapment
10.3.4. Oriented Immobilization
10.3.5. Avidin–biotin Affinity Reaction
10.3.6. Self-assembled Monolayer (SAM)
10.3.7. Nanoparticles
10.4. New Trends and Challenges
10.4.1. Miniaturization
10.4.2. High Throughput of Detection Samples
10.4.3. Integration of Detection System
10.4.4. Real Samples Detections
10.4.5. Using Aptamer to Replace Antibody
Acknowledgements
References |
Chapter 11
Review on Interaction between Electromagnetic Field
and Biological Tissues
11.1. Introduction
11.2. Mathematical Description of EM Field
11.3. EM Field in General
11.3.1. Near Field and Far Field Region
11.3.2 Mechanism of EM Field Interaction with Biological Tissues
11.3.2.1. Thermal Effects
11.3.2.2. Non Thermal Effects
11.4. Properties of Biological Tissue
11.4.1. Biological Tissues in General
11.4.2. Types of Biological Tissues and Cell Membrane
11.4.3. Cell Membrane and Electrical Equivalent
11.5. Electrical Properties of Biological Tissues
11.6. Main Features of the Dielectric Spectrum of a Biological
Tissue
11.7. Electrical Properties of Normal and Tumour Cells
11.8. A Case Study: Normal and Tumour Cells of Liver
11.9. EM Field Applications in Biological Tissue Imaging
11.9.1. Magnetic Resonance Imaging (MRI)
11.9.2. Magnetic Induction Tomography (MIT)
11.10. Conclusion
Acknowledgment
References
Chapter 12
Application of Biotoxin Determination Using Advanced
Miniaturized Sensing Platform
12.1. Introduction
12.2. Material for Microsensing Platform
12.2.1. Metal Nanomaterials
12.2.1.1. Metal NMs for Electrochemical Sensing
12.2.1.2. Metal NMs for Colorimetric Sensing
12.2.1.3. Metal NMs for Fluorescent Sensing
12.2.2. Carbon Nanotubes
12.2.3. Quantum Dots
12.2.4. Graphene
12.3. Sensing Formats
12.3.1. Electrochemical Sensing
12.3.1.1. Voltammetric Sensing
12.3.1.2. Conductivity/Capacitance Electrochemical Sensing
12.3.1.3. Electrochemical Impedance Spectroscopy
12.3.1.4. Potentiometric Sensing
12.3.2. Optical Sensing
12.3.2.1. SPR Sensing
12.3.2.2. Surface Enhanced Raman Spectroscopy (SERS)
12.3.2.3. Fluorescent Sensing
12.3.2.4. Fluorescence Resonance Energy Transfer (FRET)
12.3.2.5. Chemiluminescence
12.3.3. Electronic Sensing
12.3.4. Piezoelectric Sensing
12.4. Application of Microsensing Platform for Biotoxin
Determination
12.4.1. Phytotoxin
12.4.1.1. Caffeine
12.4.1.2. Morphine
12.4.1.3. Terpenes
12.4.2. Animal Toxin
12.4.2.1. Apitoxin
12.4.2.2. Spider Toxin
12.4.2.3. Snake Toxin
12.4.3. Marine Toxin
12.4.3.1. Shellfish Poisoning Toxin
12.4.3.2. Fish Poisoning Toxin
12.4.4. Microbial Toxin
12.4.4.1. Mycotoxin
12.4.4.2. Bacterial Toxin
12.5. Conclusion
Acknowledgments
Reference
Chapter 13
Ultralow Detection of Bio-markers Using Gold Nanoshells
13.1. Introduction
13.1.1. Radiation Exposure
13.1.2. Gold Nanoshells as a Biosensor
13.1.3. Immunoassays
13.2. Methods and Materials
13.2.1. Gold Nanoshell Synthesis
13.2.2. Immobiliation of PEG-ProG Conjugate and Antibodies to
Nanoshell Surface
13.2.3. ELISA on GNS to Determine the Number of Anti-Rb on
Surface
13.2.4. Detection of Antigen/IgG Complex
13.2.5. Surface ELISA using GNS-Conjugate
13.3. Results and Discussion
13.3.1. Assessment of GNS-PEG-ProG-Anti-Rb Conjugation
13.3.2. Quantification on GNS to Determine the Number of Active
Antibodies on the Particle Surface Using an ELISA
13.3.3. Detection of Analyte Complex
13.3.4. Assessment of Surface ELISA
13.4. Conclusion and Future
References
Chapter 14
Anchoring Materials for Ultra-Sensitive Biosensors
Modified with Au Nanoparticles and Enzymes
14.1. Introduction
14.1.1. Principle of Biosensors
14.2. Materials and Method
14.2.1. Electrodes
14.2.2. Materials
14.2.3. Nanoparticles and Electrode Preparations
14.2.4. Detections
14.3. Results and Discussions
14.3.1. GDH Coating on GCE, Au, and Pt Electrode for NH4+
Detection
14.3.2. LDH Coating on Pt, Au, and GCE for Lactate Detection
14.3.3. Hemoglobin Coating on GCE, Pt, Au Electrode for H2O2 and
Nitrite Detection
14.3.4. Specificity of the Ultra-High Performing Electrode
Sensor
14.3.5. Stability of Biosensor Electrodes with Time
14.3.6. Reproducibility of the Biosensor Electrodes after
Repeated Uses
14.3.7. Identification of Analyte by Cyclic Voltammetry
14.4. Conclusions
Acknowledgement
References
Chapter 15
Biomimetic Systems for Classification and Authentication
of Beverages
15.1. Introduction
15.2. Electronic Nose
15.2.1. E-nose Sensors
15.2.1.1. Metal Oxide Semiconductor Sensors
15.2.1.2. Conducting Organic Polymer Sensors
15.2.1.3. Piezoelectric Crystal Sensors
15.2.1.4. Metal Oxide Semiconductor Field-effect Transistor
Sensors (MOSFET)
15.2.2. E-nose Based on SAW Sensor (zNose)
15.2.2.1. Principle of zNose and its Operation
15.3. Electronic Tongue (E-tongue)
15.3.1. Sensing Principles
15.3.2. E-tongue Based on Voltammetry
15.3.2.1. Measurement Setup
15.3.2.2. Measurement Procedure
15.4. Data Analysis Methods
15.4.1. Principal Component Analysis (PCA)
15.4.2. Linear Discriminant Analysis (LDA)
15.4.3. Artificial Neural Networks
15.4.4. Probabilistic Neural Networks
15.5. Applications of Biomimetic Systems
15.5.1. E-nose (zNose) for Nondestructive Analysis of Indian
Teas
15.5.1.1. Experimental Details
15.5.1.1.1. Tea Samples
15.5.1.1.2. Tea Sample Preparation for the zNose
15.5.1.1.3. zNose GC Parameters
15.5.1.2. Data Analysis
15.5.1.3. Results and Discussion
15.5.1.3.1. Frequency Spectral Response of Tea Samples
15.5.1.3.2. Principal Component Analysis (PCA) of Frequency
Spectra
15.5.1.4. Classification of Samples by PCA-LDA
15.5.2. Authentication of Indian Wines Using E-tongue
15.5.2.1. Material and Methods
15.5.2.1.1. Wine Samples
15.5.2.1.2. Operation of the E-tongue System
15.5.2.2. Data Analysis
15.5.2.3. Results and Discussion
15.5.2.3.1. Feature Extraction
15.5.2.3.2. PCA Analysis of Voltammetric E-tongue
15.5.2.3.3. Results of PCA on Raw Data
15.5.2.3.4. Results of PCA on Reduced Data
15.5.2.4. Classification Results of Indian Wines
15.6. Conclusions
Acknowledgements
References
Chapter 16
Magnetic Bead Based Biosensors: Design and Development
16.1. Introduction
16.2. Materials and Methods
16.2.1. Adiponectin
16.2.2. Superparamagnetic Beads
16.2.3. Magnetic Particle Assay(MPA)
16.3. Results and Discussion
16.3.1. Nitrocellulose Based Enzyme Linked Immunosorbent Assay
(ELISA)
16.3.2. Sensor System Model
16.3.3. Magnetic Field Effect Transistor
16.4. Testing and Result
16.5. Conclusion
Acknowledgement
References
Chapter 17
Human Blood Analytes Biochemical Sensors Based on
Microsphere Stimulated Raman Spectroscopy
17.1. Introduction
17.2. Structure and Optical Properties of Skin
17.2.1. Structure, Physical and Optical Properties of fibrous
Tissues
17.2.2. Structure, Physical and Optical Properties of Whole
Blood
17.3. Optical Microsphere Resonators
17.4. Raman Scattering
17.4.1. Basic Principle
17.4.2. Raman Gain
17.4.3. Principles of SERS
17.4.4. The Effect of Nanostructures Morphology on SERS
Enhancement
17.5. Theoretical Development of a Non-invasive Micron Sized
Blood Glucose Sensor
Based on Microsphere Stimulated Raman Spectroscopy
17.5.1. Governing Equations
17.5.1.1. Raman Gain
17.5.1.2. Optimal Wavelength Region
17.5.2. Results and Discussion
17.6. A Novel Optical Sensor for Troponin I Enzyme Based on
Surface-enhanced
Raman Spectroscopy in Microsphere
17.6.1. cTnI Sensor Structure
17.6.2. Electric Field Enhancement near the Silver Nanoparticle
17.6.3. cTnI Detection Based on SRS and SERS
17.7. Conclusion
Chapter 18
Simple and Robust Multipoint Data Acquisition Bus Built
on Top
of the Standard RS232 Interface
18.1. Introduction
18.2. Network Topology
18.3. Protocol Outline
18.4. Resilience Considerations
18.4.1. Hot-swap and Hot-plug Capabilities
18.4.1.1. Resolving the Extra Device Attachment
18.4.1.2. Resolving the Device Replacement
18.4.1.3. Resolving the Device Removal
18.4.2. Failure Diagnostics
18.5. Bandwidth and Timing Considerations
18.6. Application Example
18.7. Conclusion
18.8. Appendix: Practical RS232 Transceiver Circuits
18.8.1. Generating RS232 Line Voltages in a Single Power Supply
System 535
18.8.1.1. Rail Splitting
18.8.1.2. Charge Pumping
18.8.2. Transmitter Schematics
18.8.3. Receiver Schematics
18.8.4. Concluding Remarks
References
Index
|