bullet Understanding Smart Sensors, 3rd Edition

        

 Title: Understanding Smart Sensors, 3rd Edition

 Author: Randy Frank

 Publisher: Artech House

 Hardcover: 327 pages

 Pubdate: 31 January 2013

 ISBN: 1608075079

 

 

Understanding Smart Sensors book's cover

 

Buy It

Book Description

 

Now in its third edition, Understanding Smart Sensors is the most complete, up-to-date, and authoritative summary of the latest applications and developments impacting smart sensors in a single volume. This thoroughly expanded and revised edition of an Artech bestseller contains a wealth of new material, including critical coverage of sensor fusion and energy harvesting, the latest details on wireless technology, and greater emphasis on applications through the book.

Utilizing the latest in smart sensor, microelectromechanical systems (MEMS) and microelectronic research and development, you get the technical and practical information you need keep your designs and products on the cutting edge. Plus, you see how fuzzy logic and neural networks continue to impact smart sensor development.

By combining information on micromachining and microelectronics, this is the first book that links these two important aspects of smart sensor technology so you don t have to keep multiple references on hand.


Providing an extensive variety of information for both technical and non-technical professionals, this easy-to-understand, time-saving book covers current and emergent technologies, as well as their practical implementation. This comprehensive resource also includes an extensive list of smart sensor acronyms and a glossary of key terms.

 

 

About the Author

 

Randy Frank is the president of Randy Frank and Associates in Scottsdale, Arizona. A well established author and holder of three patents, Mr. Frank received his B.S. and M.S. in electrical engineering, as well as his M.B.A. in management, from Wayne State University in Detroit, Michigan. He is the former chairman and a member of the Sensors Standards Committee of the Society of Automotive Engineers and a member of the IEEE.

 

 

Table of Contents

 

Preface

 

CHAPTER 1

Smart Sensor Basics 1

1.1 Introduction 1

1.2 Mechanical-Electronic Transitions in Sensing 3

1.3 Nature of Sensors 4

1.4 Integration of Micromachining and Microelectronics 9

1.5 Application Example 11

1.6 Summary 13

References 13

Selected Bibliography 14

 

 

CHAPTER 2

Micromachining 17

2.1 Introduction 17

2.2 Bulk Micromachining 18

2.3 Wafer Bonding 20

2.3.1 Silicon-on-Silicon Bonding 20

2.3.2 Silicon-on-Glass (Anodic) Bonding 21

2.3.3 Silicon Fusion Bonding 22

2.3.4 Wafer Bonding for More Complex Structures and Adding ICs 22

2.4 Surface Micromachining 24

2.4.1 Squeeze-Film Damping 26

2.4.2 Stiction 26

2.4.3 Particulate Control 26

2.4.4 Combinations of Surface and Bulk Micromachining 27

2.5 Other Micromachining Techniques 28

2.5.1 The LIGA Process 28

2.5.2 Dry Etching Processes 29

2.5.3 Micromilling 30

2.5.4 Lasers in Micromachining 31

2.6 Combining MEMS with IC Fabrication 32

2.7 Other Micromachined Materials 34

2.7.1 Diamond as an Alternate Sensor Material 34

2.7.2 Metal Oxides and Piezoelectric Sensing 35

2.7.3 Films on Microstructures 36

2.7.4 Micromachining Metal Structures 37

2.7.5 Carbon Nanotube MEMS 38

2.8 MEMS Foundry Services and Software Tools 38

2.9 Application Example 40

2.10 Summary 42

References 42

Selected Bibliography 45

 

 

CHAPTER 3

The Nature of Semiconductor Sensor Output 47

3.1 Introduction 47

3.2 Sensor Output Characteristics 47

3.2.1 Wheatstone Bridge 48

3.2.2 Piezoresistivity in Silicon 49

3.2.3 Semiconductor Sensor Definitions 51

3.2.4 Static Versus Dynamic Operation 53

3.3 Other Sensing Technologies 53

3.3.1 Capacitive Sensing 53

3.3.2 Piezoelectric Sensing 54

3.3.3 The Hall-Effect 55

3.3.4 Chemical Sensors 56

3.3.5 Improving Sensor Characteristics 56

3.4 Digital Output Sensors 57

3.4.1 Incremental Optical Encoders 57

3.4.2 Digital Techniques 59

3.5 Noise/Interference Aspects 59

3.6 Low Power, Low Voltage Sensors 60

3.6.1 Impedance 61

3.7 Analysis of Sensitivity Improvement 61

3.7.1 Thin Diaphragm 61

3.7.2 Increase Diaphragm Area 61

3.7.3 Improve Topology 61

3.8 Application Example 62

3.9 Summary 64

References 64

 

CHAPTER 4

Getting Sensor Information Into the Microcontroller 67

4.1 Introduction 67

4.2 Amplification and Signal Conditioning 68

4.2.1 Instrumentation Amplifiers 69

4.2.2 Sleep-Mode Circuitry for Reducing Power 70

4.2.3 Rail to Rail Operational Amplifiers 71

4.2.4 Switched-Capacitor Amplifier 72

4.2.5 Barometer Application Circuit 73

4.2.6 4- to 20-mA Signal Transmitter 73

4.2.7 Schmitt Trigger 74

4.3 Separate Versus Integrated Signal Conditioning 75

4.3.1 Integrated Signal Conditioning 75

4.3.2 External Signal Conditioning 76

4.4 Digital Conversion 76

4.4.1 A/D Converters 77

4.4.2 Performance of A/D Converters 79

4.4.3 Implications of A/D Accuracy and Errors 80

4.5 On-Line Tool for Evaluating a Sensor Interface Design 81

4.6 Application Example 81

4.7 Summary 81

References 83

Selected Bibliography 84

 

CHAPTER 5

Using MCUs/DSPs to Increase Sensor IQ 85

5.1 Introduction 85

5.1.1 Other IC Technologies 85

5.1.2 Logic Requirements 86

5.2 MCU Control 86

5.3 MCUs for Sensor Interface 87

5.3.1 Peripherals 87

5.3.2 Memory 88

5.3.3 Input/Output 89

5.3.4 On-Board A/D Conversion 90

5.3.5 Power Saving Capability 90

5.3.6 Local Voltage or Current Regulation 92

5.4 DSP Control 92

5.4.1 Digital Signal Controllers 93

5.4.2 Field Programmable Gate Arrays 93

5.4.3 Algorithms Versus Look-Up Tables 93

5.5 Techniques and Systems Considerations 95

5.5.1 Linearization 95

5.5.2 PWM Control 96

5.5.3 Autozero and Autorange 96

5.5.4 Diagnostics 98

5.5.5 Reducing EMC/RFI 98

5.5.6 Indirect (Computed not Sensed) Versus Direct Sensing 98

5.6 Software, Tools, and Support 99

5.6.1 Design-in Support 99

5.7 Sensor Integration 100

5.8 Application Example 101

5.9 Summary 102

References 103

 

CHAPTER 6

Communications for Smart Sensors 107

6.1 Introduction 107

6.2 Background and Definitions 107

6.2.1 Definitions 108

6.2.2 Background 108

6.3 Sources (Organizations) and Standards 109

6.4 Automotive Protocols 112

6.4.1 CAN Protocol 113

6.4.2 LIN Protocol 115

6.4.3 Media Oriented Systems Transport 115

6.4.4 FlexRay 116

6.4.5 Other Automotive Protocol Aspects 116

6.5 Industrial Networks 117

6.5.1 Example Industrial Protocols 117

6.6 Protocols in Other Applications 117

6.7 Protocols in Silicon 118

6.7.1 MCU with Integrated CAN 118

6.7.2 LIN Implementation 120

6.7.3 Ethernet Controller 120

6.8 Transitioning Between Protocols 120

6.9 Application Example 121

6.10 Summary 123

References 123

Additional References 124

 

CHAPTER 7

Control Techniques 125

7.1 Introduction 125

7.1.1 Programmable Logic Controllers 125

7.1.2 Open- Versus Closed-Loop Systems 126

7.1.3 PID Control 126

7.2 State Machines 128

7.3 Fuzzy Logic 129

7.4 Neural Networks 132

7.5 Combined Fuzzy Logic and Neural Networks 134

7.6 Adaptive Control 134

7.6.1 Observers for Sensing 135

7.7 Other Control Areas 137

7.7.1 RISC Versus CISC 138

7.8 Impact of Artifi cial Intelligence 139

7.9 Application Example 141

7.10 Summary 142

References 143

 

CHAPTER 8

Wireless Sensing 147

8.1 Introduction 147

8.1.1 The RF Spectrum 148

8.1.2 Spread Spectrum 149

8.2 Wireless Data and Communications 150

8.3 Wireless Sensing Networks 151

8.3.1 ZigBee 152

8.3.2 ZigBee-Like Wireless 152

8.3.3 ANT+ 152

8.3.4 6LoWPAN 153

8.3.5 Near Field Communication (NFC) 153

8.3.6 Z-Wave 153

8.3.7 Dust Networks 154

8.3.8 Other RF Wireless Solutions 154

8.3.9 Optical Signal Transmission 154

8.4 Industrial Wireless Sensing Networks 154

8.5 RF Sensing 155

8.5.1 Surface Acoustic Wave Devices 155

8.5.2 Radar 156

8.5.3 Light Detection and Ranging (LIDAR) 157

8.5.4 Global Positioning System 158

8.5.5 Remote Emissions Sensing 159

8.5.6 Remote Keyless Entry 159

8.5.7 Intelligent Transportation System 160

8.5.8 RF-ID 162

8.5.9 Other Remote Sensing 163

8.6 Telemetry 163

8.7 RF MEMS 166

8.8 Application Example 167

8.9 Summary 168

References 169

Selected Bibliography 171

CHAPTER 9

MEMS Beyond Sensors 173

9.1 Introduction 173

9.2 MEMS Actuators 174

9.2.1 Microvalves 174

9.2.2 Micromotors 176

9.2.3 Micropumps 177

9.2.4 Microdynamometer 179

9.2.5 Microsteam Engine 180

9.2.6 Actuators in Other Semiconductor Materials 180

9.3 Other Micromachined Structures 181

9.3.1 Cooling Channels 182

9.3.2 Microoptics 183

9.3.3 Microgripper 183

9.3.4 Microprobes 185

9.3.5 Micromirrors 186

9.3.6 Heating Elements 187

9.3.7 Thermionic Emitters 187

9.3.8 Field Emission Devices 188

9.3.9 Unfoldable Microelements 188

9.3.10 Micronozzles 190

9.3.11 Interconnects for Stacked Wafers 191

9.3.12 Nanoguitar 191

9.4 Application Example 192

9.5 Summary 194

References 194

 

CHAPTER 10

Packaging, Testing, and Reliability Implications of Smarter Sensors 197

10.1 Introduction 197

10.2 Semiconductor Packaging Applied to Sensors 197

10.2.1 Increased Pin Count 200

10.3 Hybrid Packaging 201

10.3.1 Ceramic Packaging and Ceramic Substrates 201

10.3.2 Multichip Modules 201

10.3.3 Dual-Chip Packaging 202

10.3.4 BGA Packaging 202

10.4 Common Packaging for Sensors 203

10.4.1 Plastic Packaging 204

10.4.2 Surface-Mount Packaging 204

10.4.3 Flip-Chip 205

10.4.4 Wafer-Level Packaging 206

10.4.5 3-D Packaging 207

10.5 Reliability Implications 209

10.5.1 The Physics of Failure 211

10.5.2 Wafer-Level Sensor Reliability 212

10.6 Testing Smarter Sensors 214

10.7 Application Example 214

10.8 Summary 215

References 216

 

CHAPTER 11

Mechatronics and Sensing Systems 219

11.1 Introduction 219

11.1.1 Integration and Mechatronics 219

11.2 Smart-Power ICs 220

11.3 Embedded Sensing 222

11.3.1 Temperature Sensing 222

11.3.2 Current Sensing in Power ICs 225

11.3.3 Diagnostics 225

11.3.4 MEMS Relays 228

11.4 Other System Aspects 228

11.4.1 Batteries 229

11.4.2 Field Emission Displays 230

11.4.3 System Voltage Transients, Electrostatic Discharge, and Electromagnetic Interference 230

11.5 Application Example 232

11.6 Summary 233

References 233

 

CHAPTER 12

Standards for Smart Sensing 235

12.1 Introduction 235

12.2 Setting the Standards for Smart Sensors and Systems 235

12.3 IEEE 1451.1 237

12.3.1 Network-Capable Application Processor 237

12.3.2 Network Communication Models 240

12.4 IEEE 1451.2 241

12.4.1 STIM 241

12.4 2 Transducer Electronic Data Sheet 243

12.4.3 TII 245

12.4.4 Calibration/Correction Engine 245

12.4.5 Sourcing Power to STIMs 247

12.4.6 Representing Physical Units in the TEDS 248

12.5 IEEE 1451.3 249

12.6 IEEE 1451.4 250

12.7 IEEE 1451.5 250

12.8 IEEE P1451.6 252

12.9 IEEE 1451.7 252

12.10 Extending the System to the Network 252

12.11 Application Example 252

12.12 Summary 254

References 255

Selected Bibliography 256

 

CHAPTER 13

More Standards Impacting Sensors 257

13.1 Introduction 257

13.2 Sensor Plug and Play 257

13.3 Universal Serial Bus 259

13.4 Development Tools Establish De Facto Standards 260

13.5 Alternate Standards 261

13.5.1 Airplane Networks 261

13.5.2 Automotive Safety Network 262

13.5.3 Another Automotive Safety Network 263

13.5.4 Automotive Sensor Protocol 264

13.6 Consumer/Cell Phone Apps 267

13.7 Application Example 268

13.8 Summary 269

References 269

 

CHAPTER 14

Sensor Fusion 271

14.1 Introduction 271

14.2 Sensor and Other Fusion Background 271

14.3 Automotive Applications 273

14.3.1 Ranging and Vision 274

14.3.2 Sensor Fusion for Virtual Sensors 275

14.3.3 Autonomous Driving 276

14.4 Industrial (Robotic) Applications 277

14.5 Consumer Applications 278

14.5.1 Fusion Software in the Sensor 278

14.5.2 Separate Fusion Software 279

14.5.3 Flexible Fusion Software 279

14.5.4 Agnostic Sensor Fusion 279

14.5.5 Simulation and Testing 280

14.6 Application Example 281

14.7 Summary 282

References 282

Selected Bibliography 284

 

CHAPTER 15

Energy Harvesting for Wireless Sensor Nodes 285

15.1 Introduction 285

15.2 Applications Drive Technology Implementation and Development 285

15.2.1 Structural Health Monitoring 285

15.2.2 Building Automations Systems 286

15.2.3 Industrial Applications 286

15.2.4 Automotive 286

15.2.5 Aircraft 286

15.2.6 Portable Consumer 287

15.2.7 Remote Distributed Applications 287

15.3 Complete System Consideration 287

15.4 EH Technologies 288

15.4.1 Thermoelectric EH 288

15.4.2 Piezoelectric EH 291

15.4.3 Photovoltaic EH 293

15.4.4 Electromagnetic EH 294

15.4.5 RF EH 294

15.4.6 Electromechanical EH 294

15.4.7 Multiple Energy Sources 295

15.4.8 Future Concepts 296

15.5 Energy Storage 297

15.5.1 Batteries 297

15.5.2 Ultracapacitors 298

15.6 Energy Budget 298

15.6.1 Power Management ICs 298

15.6.2 MCUs 299

15.6.3 Wireless Transmission 300

15.6.4 Sensor Power Consumption 301

15.7 Development Systems 302

15.8 Application Example 304

15.9 Summary 304

References 306

Selected Bibliography 308

 

CHAPTER 16

The Next Phase of Sensing Systems 309

16.1 Introduction 309

16.2 Future Sensor Plus Semiconductor Capabilities 310

16.2.1 Monolithic Versus Package-Level Integration 311

16.3 Future System Requirements 313

16.3.1 Sensing in Automobiles 313

16.3.2 Sensing in Smart Phones 315

16.3.3 Health Care Sensors 316

16.4 Software, Sensing, and the System 316

16.4.1 Sensor Apps 317

16.4.2 Cloud Sensing 319

16.5 Trusted Sensing 320

16.6 Alternate Views of Smart Sensing 321

16.7 The Smart Loop 322

16.8 Application Example 323

16.9 Summary 324

Acknowledgment 325

References 325

Selected Bibliography 327

 

Appendix A

List of Web Sites for Additional Smart Sensor and MEMS Information 329

Selected Bibliography 333

Smart Sensor Acronym Decoder and Glossary 335

About the Author 353

Index 355

 

Digital Sensors and Sensor Sysstems

 

 

Handbook of Laboratory Measurements

 

 

Sensors Web Portal's logo

 

 

 

 

 

 

Status of the MEMS Industry Report 2017

 

 

Gyroscope and IMUs Report 2017

 

 

Uncooled Infrared Imaging Report 2017

 

 

MEMS for Cell Phones Report 2017

Search for Other Books
about Smart Sensors

Book search

 

 

 

Visit our Online Bookstore and IFSA Publishing Bookstore for more titles

 

 

 

 

Back

   


1999 - 2016 Copyright ©, International Frequency Sensor Association (IFSA). All Rights Reserved.