bullet Sensors & Transducers Journal

    (ISSN: 2306-8515, e-ISSN 1726-5479)

0.705

2013 Global Impact Factor

205.767

2008 e-Impact Factor

25 Top Downloaded Articles

Best Selling Articles 2012

Journal Subscription 2014

Editorial Calendar

Submit an Article

Editorial Board

Current Issue

S&T journal's cover

Sensors & Transducers Journal 2011

Sensors & Transducers Journal 2010

Sensors & Transducers Journal 2009

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents

 

Best Articles 2011

 

 

 

Vol. 182, Issue 11, November 2014, pp. 33-41

 

Bullet

 

An Optimized Ultrasonic Sensors System
 

1, 2 Shaofei Wu

1 Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology
2 School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China

E-mail: wushaofei@wit.edu.cn

 

 

Received: 17 July 2014 /Accepted: 30 October 2014 /Published: 30 November 2014

Digital Sensors and Sensor Sysstems

 

Abstract: The matched spectrum and correlation characteristics are both important to realize the multichannel ultrasonic sensors working together. The spectrum matching can make full use of the bandwidth of the ultrasonic ranging system, and the good correlation characteristic can eliminate crosstalk among multichannel ultrasonic sensors triggering simultaneously. Linear frequency modulation (LFM) excitation sequences have been used as transmission signals for ultrasonic sensors. Due to the narrow bandwidth of the ultrasonic ranging system, the number of available LFM excitation sequences is limited. The chaotic frequency modulation (CFM) excitation sequences, which can generate more available excitation signals, are proposed in this paper. The nondominated sorting genetic algorithm-II is adopted to optimize both the spectrum and correlation characteristic of the CFM excitation sequences. After optimization, the CFM excitation sequences are spectrally matched to the ultrasonic ranging system as well as have best correlation characteristic. Real experiments have been implemented using an ultrasonic ranging system consisting of eight-channel SensComp 600 series electrostatic sensors excited with 2 ms CFM sequences. Experimental results show that spectra of the optimized CFM excitation sequences can match to the system and can work together without crosstalk.

 

Keywords: Ultraosnic ranging system, Crosstalk, Chaotic, Frequency modulation, Nondominated sorting genetic algorithm-II.

 

Acrobat reader logo Click <here> or title of paper to download the full pages article in pdf format

 

 

Subscribe the full-page Sensors & Transducers journal in print (paper) or pdf formats

(shipping cost by standard mail for paper version is included)

(25 % discount for IFSA Members)

 

 

 

Alternatively we accept a money transfer to our bank account. Please contact for details: sales@sensorsportal.com

 

 

Download <here> the Library Journal Recommendation Form

 

 

Read more about Ultrasonic Sensors

 

 

 

 

 


1999 - 2014 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S.L. All Rights Reserved.


Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn