bullet Sensors & Transducers Journal

    (ISSN: 2306-8515, e-ISSN 1726-5479)


2013 Global Impact Factor


2008 e-Impact Factor

25 Top Downloaded Articles

Best Selling Articles 2012

Journal Subscription

Editorial Calendar

Submit an Article

Editorial Board

Current Issue

S&T journal's cover

Sensors & Transducers Journal 2011

Sensors & Transducers Journal 2010

Sensors & Transducers Journal 2009

Sensors & Transducers Journal 2008

Sensors & Transducers Journal 2007

2000-2002 S&T e-Digest Contents

2003 S&T e-Digest Contents

2004 S&T e-Digest Contents

2005 S&T e-Digest Contents

2006 S&T e-Digest Contents


Best Articles 2011




Vol. 193, Issue 10, October 2015, pp. 23-32




Novel Smart Glove Technology as a Biomechanical Monitoring Tool


1 Tyndall National Institute, University College Cork, Cork, Ireland
2 Waterford Institute of Technology, Waterford, Ireland
3 Computing & Engineering, Magee College, Ulster University, Derry, N. Ireland
1 Tel.: +353 21 2346041, fax: +353 21 49004958

E-mail: brendan.oflynn@tyndall.ie


Received: 31 August 2015 /Accepted: 5 October 2015 /Published: 30 October 2015

Digital Sensors and Sensor Sysstems


Abstract: Developments in Virtual Reality (VR) technology and its overall market have been occurring since the 1960s when Ivan Sutherland created the world’s first tracked head-mounted display (HMD) – a goggle type head gear. In society today, consumers are expecting a more immersive experience and associated tools to bridge the cyber-physical divide. This paper presents the development of a next generation smart glove microsystem to facilitate Human Computer Interaction through the integration of sensors, processors and wireless technology. The objective of the glove is to measure the range of hand joint movements, in real time and empirically in a quantitative manner. This includes accurate measurement of flexion, extension, adduction and abduction of the metacarpophalangeal (MCP), Proximal interphalangeal (PIP) and Distal interphalangeal (DIP) joints of the fingers and thumb in degrees, together with thumb-index web space movement. This system enables full real-time monitoring of complex hand movements. Commercially available gloves are not fitted with sufficient sensors for full data capture, and require calibration for each glove wearer. Unlike these current state-of-the-art data gloves, the UU / Tyndall Inertial Measurement Unit (IMU) glove uses a combination of novel stretchable substrate material and 9 degree of freedom (DOF) inertial sensors in conjunction with complex data analytics to detect joint movement. Our novel IMU data glove requires minimal calibration and is therefore particularly suited to multiple application domains such as Human Computer interfacing, Virtual reality, the healthcare environment..


Keywords: Data glove, IMU, Virtual reality, Arthritis, Joint Stiffness, Hand Monitoring.


Acrobat reader logo Click <here> or title of paper to download the full pages article in pdf format



Subscribe the full-page Sensors & Transducers journal in print (paper) or pdf formats

(shipping cost by standard mail for paper version is included)

(25 % discount for IFSA Members)




Alternatively we accept a money transfer to our bank account. Please contact for details: sales@sensorsportal.com



Download <here> the Library Journal Recommendation Form






1999 - 2015 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S.L. All Rights Reserved.

Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn