bullet Sensors & Transducers Journal

    (ISSN: 2306-8515, e-ISSN 1726-5479)


   About this Journal

   Information for Authors

   Editorial Board

   Editorial Calendar

   Current Issue

   Browse Journal

S&T journal's cover

Submit Press Release

Submit White Paper

25 Top Downloaded Articles (2007-2012)


Contact Us





Vol. 208, Issue 1, January 2017, pp. 44-50




Regions Matching Algorithms Analysis to Quantify the Image Segmentation Results

Oleh BEREZSKY, Grygory MELNYK, Yuriy BATKO and Oleh PITSUN

Ternopil National Economic University, Lvivska str., 11, Ternopil, 46020, Ukraine
Tel.: +380352475051, fax: +380352475051

E-mail: ob@tneu.edu.ua, mgm@tneu.edu.ua, bum@tneu.edu.ua, o.pitsun@tneu.edu.ua


Received: 20 September 2016 /Accepted: 30 December 2016 /Published: 31 January 2017

Digital Sensors and Sensor Sysstems


Abstract: In the article the matching algorithms of region images are analyzed. The work also presents their advantages and disadvantages. The comparing images algorithm of regions is developed on the basis of the measured chords. The comparison regions algorithms are used to evaluate segmentation algorithms in the Gromov–Hausdorff metric. The algorithm of metric evaluation is developed as an example of biomedical images segmentation.


Keywords: Image, Segmentation quality, Matching, Segmentation, Gromov-Hausdorff metric.


Acrobat reader logo Click <here> or title of paper to download the full pages article in pdf format



This work is licensed under a Creative Commons 4.0 International License


 Creative Commons License





1999 - 2017 Copyright ©, International Frequency Sensor Association (IFSA) Publishing, S.L. All Rights Reserved.

Home - News - Links - Archives - Tools - Voltage-to-Frequency Converters - Standardization - Patents - Marketplace - Projects - Wish List - e-Shop - Sensor Jobs - Membership - Videos - Publishing - Site Map - Subscribe - Search

 Members Area -Sensors Portal -Training Courses - S&T Digest - For advertisers - Bookstore - Forums - Polls - Submit Press Release - Submit White Paper - Testimonies - Twitter - Facebook - LinkedIn