Abstract:
Fine-Grained Change Detection and Regression Analysis are essential in many applications of Artificial Intelligence. In practice, this task is often challenging owing to the lack of reliable ground truth information and complexity arising from interactions between the many underlying factors affecting a system. Therefore, developing a framework which can represent the relatedness and reliability of multiple sources of information becomes critical. In this paper, we investigate how techniques in multi-task metric learning can be applied for the regression of fine-grained change in real data. The key idea is that if we incorporate the incremental change in a metric of interest between specific instances of an individual object as one of the tasks in a multi- task metric learning framework, then interpreting that dimension will allow the user to be alerted to fine-grained change invariant to what the overall metric is generalised to be. The techniques investigated are specifically tailored for handling heterogeneous data sources, i.e. the input data for each of the tasks might contain missing values, the scale and resolution of the values is not consistent across tasks and the data contains non- independent and identically distributed (non-IID) instances. We present the results of our initial experimental implementations of this idea and discuss related research in this domain which may offer direction for further research.
Keywords:
Multi-task metric learning, Fine-grained change detection, Regression on uncertain data.
_______________________________________________________________________