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Abstract: Literature proved the potential benefits of autonomous vehicles in terms of road safety, traffic 
congestion, and energy consumption. The autonomous vehicles must be supported by advanced sensors and 
technologies to build reliable awareness of the external environment. However, cars with different levels of 
automation entail different levels of human intervention during the driving tasks. In this context, the main issue is 
to determine the interaction between the human and the automated driving system which requires an exhaustive 
understanding of the driver behavior above all in critical situations. This paper presents a neural network-based 
classifier of EEG signals to identify the driver’s arm movements by his/her brain electrical activities, when he/she 
must steer to perform a right or a left turn on a curvilinear trajectory. The classifier based on a time delay neural 
network (TDNN) aims to classify the human’s EEG signals when the participant executes the action to move 
his/her arms gripping a real steering wheel while driving in a simulated environmental. The performances of the 
classifier related to the recognition of the driver’s arm movements by the brain signals demonstrated promising 
results that are worthwhile to be further explored. 
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1. Introduction 

 

In the automotive context, research and innovation 
have recently focused on the realization of self-driving 
vehicles. Autonomous Vehicles (AV) refer to car 
which can detect the environment by devices and 
sensors installed on board and to drive with a limited 
or without human intervention. According to the SAE 
International Standard 0, AVs are classified in six 
different levels of automation, from level 0 where the 
driver is the only decision maker to the forthcoming 
level 5 where the vehicle is completely managed by 
the automated driving systems (ADS). In detail, at 
level 0, the driver performs all dynamic driving tasks 
(DDTs) which consist in the tactical and operational 
functions required for the vehicle motion. Level 1 is 

applied when the ADS performs the DDTs related to 
either the longitudinal or the lateral vehicle motion 
control. At level 2, the ADS performs, simultaneously, 
both the longitudinal and the lateral vehicle control. At 
level 3, the ADS also performs the Object and Event 
Detection and Response (OEDR) to identify and to 
avoid events or obstacles on the route. At level 4, the 
ADS also completes DDT fallback 0. This function 
consists in a higher automation equipment which may 
intervene when the ADS fails in case of risk 
conditions. In the low levels of automation (Level 0 to 
Level 2), the driver is considered present and essential 
to compute part of the main DDTs. In the level 3, the 
driver may assist the ADS when a failure occurs 
during a trip, while at the level 4, the ADS performs 
overall function included the DDT fallback. Level 5 is 
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reached when the vehicle is fully autonomous without 
the human user’s intervention.  

To detect and to identify the external environment, 
the ADS must recognize in real time the road shape, 
road signs, and the different objects on the road 0. For 
this reason, the AV must be equipped with specific 
sensors such as camera, Radar or Light Detection and 
Ranging (LiDAR) 0. The recent technological 
advances in the image treatments provides object-
detection models based on multiclass problems where 
the different elements which can appear on the road 
may be recognized. In 0, a 2D object detection model 
for vehicles, pedestrian and cyclist identification is 
proposed. The authors compared both one and two 
stages deep learning techniques to process images with 
different resolutions to identify the method which 
generates the best trade-off between speed and 
accuracy for the detection system. In 0, the authors 
proposed a radar-based deep neural network (DNN) to 
recognize road segmentations when the different 
objects such as road-users, obstacles, and other 
obstructions are present on the street.  

So, the use of radar and camera fusion algorithm 
provides better performances in respect to one sensor 
application above all in severe environmental 
condition 0. The LiDAR represents the main 
expensive solution among the detection systems 
whether, due its high resolution, is also the most 
adequate, above all, for SAE level 4 and 5. The 3D 
LiDAR provides images and measurements not 
affected by sunlight and different classifier have been 
tested for the real time obstacle detection. Among 
others, support vector machine (SVM) is used in 0 to 
recognized in real time vehicles on an urban context 
while a convolutional neural network has been 
adopted to classify vehicle lane change through 
LiDAR-based environment analysis 0. 

 
 

1.1. EEG Based Driver Behavior Detection 
 
In AVs at level 5, the driver is completely absent 

in the decision framework. To reach this condition, the 
vehicle must drive in an autonomous way. A 
propaedeutic analysis of the driver behaviour must be 
carried out to define the traditional driving style and to 
identify the relationships between the automated and 
non-automated driving system in order to implement 
the control commands at the operational level. In 
literature it is demonstrated that the physical and 
neurological driver’s state affects the driving 
performances 0. The physiological state of the driver 
may be detected by different modalities based on the 
electrooculogram (EOG), the functional magnetic 
resonance imaging (fMRI), the high-frequency 
electrocardiogram (ECG) or the 
electroencephalography (EEG).  

Driver’s fatigue and distraction represent the major 
causes of accidents and crashes. In 0, the EOG, which 
detects the electrical signal generated by eye 
movements, is acquired, and processed by the fusion 
technique to identify driver’s drowsiness. The fMRI 

identifies changes in cerebral oxygenation during 
cognitive tasks and it is used to demonstrate the 
correlation between brain activation and simulated 
driving actions 0. In a similar way, in 0, the authors 
applied a functional near infrared spectroscopy 
(fNIRS) to quantify variations in cortical activity 
related to changes in workload during driver tasks. 
Several studies monitored the heart rate variability to 
extract significant features related to driver drowsiness 
0, driver workload 0 or sleepiness 0.  

The EEG monitoring refers to the acquisition of 
brain signals from the different lobes of the brain in 
order to identify the cerebral waves variations when 
the subjects perform cognitive task. The EEG signals 
represent one of the main promising and reliable 
physiological indicators to describe human state 0. 
The EEG recording is often used to evaluate driver 
attention 0, fatigue 0, mental state 0 or, in general, 
cognitive response in driving environment 0. More 
recently, the EEG signal acquisition has also been used 
to identify the human intention for movements. The 
main objective of this research field, in the context of 
the AV, is to extract the main features from the EEG 
signals while the driver performs a specific movement 
and to classify the brain activities as belonging to the 
subject’s intention to move the related part of his/her 
body.  

Traditionally, the EEG device and the 
classification algorithm are coupled to a Brain 
Computer Interface (BCI) system. The EEG based 
BCI provides the possibility for the user to command 
an external device through the brain electrical signals 
according to his/her intention. In other words, the EEG 
acquires the cerebral signals, the classifier interprets 
the human movement intentions by the brain activities 
and finally the BCI translates them into a command for 
the devices. An EEG based BCI may represent a novel 
sensor and transducer tool to identify the main 
parameters of a human movements such as speed, 
direction, and force 0. Special interest has been given 
to the classification of hands 0, fingers 0, and eyes 
movements 0. In 0, a review about detection of 
movement intention using EEG  
signals appears. 

Although the EEG based BCI may be a significant 
improvement in the realization of tools which assist 
the driver to prevent accidents, limited literature 
appears in the context of arm movements 
identification. In 0, the authors developed a classifier 
based on the support vector machine (SVM) to classify 
three classes of driver movements, left, right and 
brake. By the proposed approach, the authors obtained 
to predict the driver’s action 500ms earlier with an 
accuracy of 94,6 %. Also, in 0, SVM and 
convolutional neural networks (CNN) are applied to 
EEG signals acquired during a breaking action to 
detect pedal pushing and to discriminate between 
driver’s intent to brake in emergency condition and in 
the normal state of driving. In those experiments, the 
average accuracy reaches about 71 %. In 0, the authors 
used EEG signals and waveband specular meteor radar 
(SMR) to monitor drivers' physiological state and eye-
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movement electrical waves to identify the relationship 
between driver fatigue states and driver's grip force on 
the steering wheel while driving.  

More recently, the EEG based BCI are used in the 
closed loop to establish a communication to external 
devices and send command inputs to them. 
Furthermore, imagined movement decoding methods 
are successfully used to classify horizontal and vertical 
movements of the right arm using EEG 00. In 0, the 
authors implemented a quadratic discriminant analysis 
(QDA) method to generate a classifier tested to 
regulate the motion of brushless DC motor used in 
neuro-aid engineering application. In this case, two 
classes are identified from EEG features to move the 
motor in clockwise and anticlockwise directions. 
Similar applications based on EEG signals for motor 
imagery classification appear in literature related to 
hand prostheses 0, wheelchair 0 or quadcopter 0. A 
wide review on robot controller by motor imagery BCI 
appears in 0. 

This paper is inspired by 0 where a preliminary 
EEG based BCI is used to classify the arm movements 
of a driver who must rotate the steering wheel to 
perform a right or a left turn to execute a curve in a 
virtual driving environment. The main objective of 
this work is to increase the number of participants and 
extend the experiment results in terms of accuracy and 
reliability.  

 
 

2. Material and Methods 
 
This work focuses on a specific approach which 

aims at identifying and classifying the driver’s arm 
movements according to the data coming from the 
electroencephalography. In general, EEG systems are 
categorized as invasive and non-invasive. The first one 
included electrodes which have to be implanted inside 
the cranium while, in the second case, the electrodes 
may adhere to the scalp. In this work, the non-invasive 
solution is adopted. 

 
 

2.1. Enobio EEG Cap 
 

The experiments have been performed by using the 
Enobio Cap 8 Features. Signals were recorded at 
500Hz from six different channels, namely F7, FZ, F8, 
C4, C3, CZ, in accordance with the international  
10-20 system. The selected channels are shown  
in the Fig. 1. 

The electrodes are located on the medial premotor 
area and on primary motor cortex.  

 
 

2.1.1. Driving Test 
 

The driving simulator consisted in two different 
components. Firstly, a common chair is positioned in 
front of an LCD screen which projected the driving 
simulated environment. Besides, the user is also 

provided with a steering wheel connected to the  
pedal system to perform real movements for turning 
and breaking. 

 
 

 
 

Fig. 1. Electrodes placement in the ENOBIO cap. 
(Blue circles represent the electrodes monitored during 

the experiments). 
 
 

The set of subjects includes 3 participants who are, 
respectively, 25, 26 and 30 years old with driving 
license. Each participant performed three times the 
proposed test. The driver could rotate the steering 
wheel, accelerate or brake as if he/she were driving a 
real car. Each simulation lasted 15 minutes and, the 
user had to drive along a tour represented by the Fig. 2.  

 
 

 
 

Fig. 2. Test drive circuit in OKTAL 
Simulator environment. 

 
 

In each test, each driver run almost eight times on 
such route. OKTAL Scanner Studio is the software 
used to generate the simulation environment. The 
focus of this paper is to study the correlation between 
the arm movements of the driver while performing the 
right/left curves on the road and the related recorded 
EEG signals.  
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2.2. Preprocessing Data 
 

The elaboration data was performed in Matlab 
R2020b. A high pass filter to 0.167 Hz was applied to 
the EEG signals to remove the direct current shift. 
Three different analyses have been realized by the 
implementation of time delay neural network 
(TDNN). TDNN has been used due to its capability to 
generate a finite dynamic response to time series  
input data. 

The TDNN is typically successfully used in 
complex input-output identification but its large 
application in EEG signal analysis has been verified 
due to the non – stationary nature of the brain  
activities 0. In 0 the TTDN is applied for the 
classification of finger movements with a recognition 
rate of 93.02 %.  

The TDNN performed in this paper, whose 
structure is presented in the Fig. 3, has 10 time delays 
and 4 hidden units. 

 
 

 
 

Fig. 3. TDNN used in the paper. 
 
 

2.3. Experiments 
 

The experiment involved 3 measurement sessions 
for each participant, once in three different days. In the 
following, the data are identified by the participant ID, 
P1 or P2 or P3, and by the training sessions 
chronologically numbered as 1, 2 or 3. Three  
different analyses have been carried out on the 
monitored EEG signals. 

 
 

2.3.1. First Analysis 
 

The first test is related to the classifier generation 
by the Levenberg Marquardt algorithm based TDNN. 
The data acquired in each session for each participant 
was divided in two an equal number of samples, 
labelled as 1A, 1B, 2A, 2B, 3A, 3B. The different sets 
of data have been used to train and test six TDNNs in 
order to identify the best classifier in term  
of correlation.  

In Table 1, the different training and test datasets 
used in the applications appear.  

 
 

Table 1. Set of data used to train and test the TDNNs 
in the first analysis. 

 
TDNN Training set Test set 
NN1 1A 1B 
NN2 2A 2B 
NN3 3A 3B 
NN4 2A, 2B, 3A 3B 
NN5 1A, 1B, 2A 2B 
NN6 1A, 1B, 2A, 2B, 3A 3B 

The generated NNs listed in Table 1 have been 
realized for each participant creating 18 TDNNs  
(6 NNs for the three participants). The main objective 
of the first analysis is to evaluate if the increasing 
number of input data in the training phase may reflect 
a better recognition performance.  

 
 

2.3.2. Second Analysis 
 

In the second test, the TDNNs, obtained in the 
previous test, have been modified. In particular, the 
NN4, NN5 and NN6, for each participant, have been 
revised by modifying the cost function which 
minimizes the Mean Square Error (ܧܵܯ). In this 
second approach, a weight ݌௜ has been introduced, for 
each sample which belongs to the training set, in the 
objective function as in (1). 

 

ܧܵܯ ൌ 1ܰ ∗ ܵ෍෍݌௜௦	ሺݕ௜௦ െ ො௜௦ሻଶ,ேݕ
௜ୀଵ

ௌ
௞ୀଵ  (1) 

 

where: ܧܵܯ ൌmean square error; ܵ ൌ number of dataset s-th used in the training; ܰ ൌ number of elements in each dataset s-th used in 
the training set; ݌௜௦ ൌ weight associated to each data i-th belonging to 
the dataset s-th; ݕ௜௦ ൌ observed value of the output in the dataset s-th; ݕො௜௦ ൌ predicted value for the output in the dataset s-th. 

The new TDNNs, namely NN7, NN8 and NN9, are 
trained and tested by the same data set already 
adopted, respectively, in NN4, NN5 and NN6 for each 
participant. However, in this new approach, the 
objective functions for the training phase have been 
modified balancing the different input components as 
appear in Table 2. Note that the data coming from the 
older tests have lower weights with respect to the 
recent ones. 

 
 

Table 2. TDNNs characteristics. 
 

TDNN 
Dataset s-th in the 
objective function  

Weights	݌௜௦ Test 
set 

NN7 
2A 0.5 

3B 2B 0.5 
3A 1 

NN8 
1A 0.5 

2B 1B 0.5 
2A 1 

NN9 

1A 0.25 

3B 
1B 0.25 
2A 0.5 
2B 0.5 
3A 1 

 
 

The aim of the second analysis is related to identify 
the set of parameters which, by multiplying the 
objective components, increase the accuracy of  
the recognition.  
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2.3.3. Third Analysis 
 
The non-linear characteristics of the neural 

network function may keep the results to be sensibly 
different according to the initialization of the weights 
present in its units. The third test has been carried out 
to evaluate TDNN performance variations according 
to different initializations of the values of the weights 
related to the layers of the neural network, calibrated 
or randomized.  

Specifically, the performances have been 
evaluated comparing the TDNN recognition accuracy 
and the computational time required by the 
identification process, when the TDNN weights are 
randomly initialized by the system versus the TDNN 
weights initialized with values obtained from previous 
training sessions.  

More specifically, in the latter case, values are 
calibrated according to the values obtained as output 
of the training phase for the TDNNs specified in the 
Table 3, column “Initialization of the weights of 
TDNN layers”. The columns “Training set” and “Test 
set” list, respectively, the dataset used to train and test 
the related NN in the row.  

To explain better the approach, an example is 
presented. In the case of NN17, a standard TDNN has 
been created by a specific training on the samples 
1A,1B, 2A related to the first and second sessions of 
experiments for the same participant. Then, the 
generated NN17, where the weights are initialized 
according to this first training phase, has been trained 
again on the subset 1A, 1B, 2A, 2B and tested on the 
subset 3A.  

On the other hand, the NN16 is trained and tested 
with the same dataset of NN17 but without specific 
values of the weight parameters. 

 
 

3. Results 
 

Results are evaluated against two main indicators, 
MSE and R, which is the correlation coefficient of the 
predicted versus the actual values.  

A preliminary analysis about the values for R and 
the MSE, for the TDNNs generated for the three 
participants is displayed in Table 4. 

The results demonstrated that the R value, 
averaged over the three participants for the overall 
generated TDNNs, is close to 0.5. Also, the MSE 
values represent promising results in terms of 
reliability for the proposed approaches. 

Table 5 shows the R index of each TDNN in the 
first analysis for the second participant (P2).  

The results show a sensible good correlation 
between the EEG signals and the actual arm 
movements of the participant. In three cases, R is 
greater than 0.6.  

From Table 1, it is possible to note a growing 
number of datasets used to train the NNs, from NN1 
to NN6. However, by the results in Table 5, the 
increasing number of input data for the training phase 

does not reflect a significant improvement of the 
performances in terms of R and MSE. 

 
 

Table 3. Generation of the weights used in the TDNNs. 
 

TDNN
Initialization of the 
weights of TDNN 

layers 

Training 
set 

Test 
set 

NN10 
weights generated by 

1A, 1B, 2A, 2B 
3A 3B 

NN11 
weights generated by 

1A, 1B 
2A 2B 

NN12 random weights 1A, 1B 2A 

NN13 
weights generated by 

1A 
1A, 1B 2A 

NN14 random weights 1A, 1B, 2A 2B 

NN15 
weights generated by 

1A and 1B 
1A, 1B, 2A 2B 

NN16 random weights 
1A, 1B, 
2A, 2B 

3A 

NN17 
weights generated by 

1A, 1B, 2A 
1A, 1B, 
2A, 2B 

3A 

NN18 random weights 
1A, 1B, 

2A, 2B, 3A 
3B 

NN19 
weights generated by 

1A, 1B, 2A, 2B 
1A, 1B, 

2A, 2B, 3A 
3B 

 
 

Table 4. Mean values of the performance indices computed 
for each TDNN averaged over the three participants. 

 
TDNN R MSE 
NN1 0.6812 0.4310 
NN2 0.7001 0.4709 
NN3 0.5603 0.5797 
NN4 0.5818 0.5077 
NN5 0.5348 0.6099 
NN6 0.3836 0.6597 
NN7 0.5950 0.5102 
NN8 0.5774 0.5726 
NN9 0.5364 0.5570 

NN10 0.5811 0.5529 
NN11 0.6316 0.5285 
NN12 0.1001 1.0378 
NN13 0.3802 0.8660 
NN14 0.3917 0.7167 
NN15 0.5169 0.6356 
NN16 0.2713 0.7666 
NN17 0.2132 0.8039 
NN18 0.4379 0.6480 
NN19 0.4075 0.6453 
Mean 0.48 0.64 

 
 

Table 5. First analysis results for P2. 
 

TDNN R MSE 
P2_NN1 0.6628 0.3838 
P2_NN2 0.6610 0.4506 
P2_NN3 0.5492 0.6213 
P2_NN4 0.6435 0.4174 
P2_NN5 0.2773 0.7922 
P2_NN6 0.2907 0.7383 
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In the second analysis (Table 6), a stronger 
correlation is verified in the P2_NN7. Besides, the 
modified objective function produces better values, 
both for R and MSE, in the P2_NN8 versus the 
P2_NN5 and in the P2_NN9 versus the P2_NN6. In 
fact, respectively, the couple of NN5 and NN8 and the 
couple NN6 and NN9 are trained and tested by the 
same dataset for each participant but with different 
weight	݌௜௦ (see Table 1 and Table 2).  

In the third analysis, reported in the Table 7 related 
to the participant P2, the recognition accuracy for 
TDNNs initialized randomly or with accurate weights 
input values, appear very similar. The different 
approaches to initialize the layer parameters are not 
significant in terms of prediction. However, from the 
computation viewpoint, the TDNNs with accurate 
custom initialization appears, in general, less time 
expensive in respect to the ones with random 
initialization. 

The three analysis are performed for the other  
two participants and, in the Table 8, the results 
regarding the first analysis in the first participant (P1) 
are reported. 

 
 

Table 6. Second analysis results for P2. 
 

TDNN R MSE 
P2_NN7 0.6356 0.4363 
P2_NN8 0.4851 0.6200 
P2_NN9 0.4197 0.6080 

 
 

Table 7. Third analysis results for P2. 
 

TDNN R MSE TIME (sec) 
P2_NN10 0.6234 0.5489 47.0743 
P2_NN11 0.4943 0.5873 34.6633 
P2_NN12 0.2824 0.7039 241.2782 
P2_NN13 0.4214 0.6526 205.9559 
P2_NN14 0.1913 0.8688 451.9295 
P2_NN15 0.3794 0.7182 185.1008 
P2_NN16 0.3053 0.6668 418.4075 
P2_NN17 0.0687 0.8356 276.9772 
P2_NN18 0.3793 0.6414 245.0443 
P2_NN19 0.1547 0.7996 583.0464 

 
 

Table 8. First analysis results for P1. 
 

TDNN R MSE 
P1_NN1 0.8159 0.3657 
P1_NN2 0.8538 0.2828 
P1_NN3 0.6079 0.5130 
P1_NN4 0.6486 0.4528 
P1_NN5 0.8507 0.292 
P1_NN6 0.6588 0.4622 

 
 

For the first analysis, higher correlation is obtained 
in respect to the results reported for the P2. In this case, 
the value R is higher than 0.8 for NN1, NN2, and NN5.  

In detail, Fig. 4 shows the comparison between the 
values related to actual angle associated to the rotation 

of the steering wheel realized by the participant during 
the simulation and the predicted values generated by 
the NN2 related to the direction of the arm 
movements. The graph highlights a significant 
overlapping of the peaks (values -1 and 1) associated 
to the correct prediction of the driver’s arms 
movement on right and left.  

The results related to second analysis regarding 
participant P1 are displayed in Table 9. 

 
 

 
 

Fig. 4. Predictive and real value in P1_NN2. 
 
 

Table 9. Second analysis results for P1. 
 

TDNN R MSE 
P1_NN7 0.6408 0.4633 
P1_NN8 0.8502 0.2892 
P1_NN9 0.6442 0.4464 

 
 

In this case also, the R value is higher than 0.64 
demonstrating a good correlation among predicted and 
actual data. On the contrary, the modified objective 
function does not introduce any positive variation in 
terms of prediction accuracy. The third analysis for P1 
is reported in the Table 10. 

 
 

Table 10. Third analysis results for P1. 
 

TDNN R MSE TIME (sec) 
P1_NN10 0.6040 0.4949 100.052 
P1_NN11 0.8517 0.2864 24.882 
P1_NN12 0.4501 0.8698 114.260 
P1_NN13 0.4696 0.7928 54.245 
P1_NN14 0.8542 0.2854 196.969 
P1_NN15 0.8495 0.2912 567.360 
P1_NN16 0.5545 0.6188 442.865 
P1_NN17 0.5983 0.5841 127.593 
P1_NN18 0.6056 0.5841 209.203 
P1_NN19 0.6392 0.4781 644.334 

 
 

In this analysis, the R value is greater than 0.5 for 
80 % of tests, while the MSE is lower than 0,5 for the 
50 %. In general, anyway, we can conclude that the 
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initialization of the weights for the neural network 
layers is not substantial in terms of accuracy of 
prediction in respect to the NNs randomly initialized. 

 
 

4. Conclusions 
 
This work aims at implementing a TDNN  

based classifier of EEG signals for driver's arm 
movements recognition. 

This study is motivated by two principal purposes. 
Firstly, the driver's style recognition is crucial in the 
driving safety in order to prevent accidents and to react 
to critical situations. Secondly, the identification of the 
driver's behavior during specific driving tasks may 
support the understanding of the relationship between 
the driver and the automated driving systems (ADS), 
above all, in AVs at level 3 and 4. 

The principal contribution of this paper is related 
to the development of a classifier for driver's arm 
movements recognition using EEG signals when the 
user rotates the steering wheel in order to perform a 
turn in a driving simulated scenario. The EEG data 
acquired by a non-invasive EEG cap, whose electrodes 
are in contact with the scalp, have been processed to 
classify those movements according to three classes: 
right or left turns and central position. 

Moreover, three different methods have been 
implemented to evaluate possible improvements  
in the quality of the accuracy for the driver’s arm 
movements prediction. 

Firstly, the TDNNs generated for the recognition 
of movements have been modified by increasing the 
number of the datased used to train the NNs. In the 
second approach, the different components of the 
objective function have been differently weighted in 
order to minimize the MSE. Finally, the  
initialization of the weights associated to the layers of 
the neural network has been introduced to  
evaluate possible benefits in respect to the traditional 
random initialization. 

Results demonstrated a statistically significant 
positive correlation of the EEG signals with the actual 
participant's actions to realize a turning in a car which 
cover a curvilinear path in a simulated environment. 
On the contrary, the proposed approaches to increase 
accuracy of movement's prediction do not assume 
specific relevance in the proposed experiments. So, 
due to the complexity of the problem and the relevance 
of the first preliminary analyses, this study merits to 
be further explored increasing the number of 
participants and evaluating new techniques for the 
classifier implementation. 
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