Contents

Volume 87
Issue 1
January 2008

Editorial

Impact Factor of Sensors Journals: What Does it Really Mean?
Sergey Y. Yurish

1

Research Articles

Minimising Relative Measurement Errors for Sensors Applications
Jerzy Kolanko, Karol Wiśniewski

1

Kinetics Analysis of Respiratory Epithelium by Virtual Instrumentation
Libor Hargaš, Dušan Koniar, Miroslav Hrianka, Anna Prikopová

11

Application of DICOM Standard in LabVIEW Environment
Dušan Koniar, Libor Hargaš, Miroslav Hrianka, Pavol Špánik

19

A Modified Design of a Thermocouple Based Digital Temperature Indicator With Opto-Isolation
S. C. Bera and D. N. Kole

24

Pharmaceutical Pill Counting and Inspection Using a Capacitive Sensor
Ganesan Letchumanan, Simon Hawkins, Peter Rockett, Steve Sheard, Conrad Shail, Kenneth Shail, Peter Dobson

31

An Optoelectronic Sensor Configuration for the Determination of Age Related Indices Using Blood Volume Pulse
Jayasree V. K, Shaija P. J, Manu P. John, P. Radhakrishnan

39

An Embedded Based Digital Controller for Thermal Process
A. Lakshmi Sangeetha and A. Balaji Ganesh

46

Magneto-Optic Over-Current Detection with Null Optical Tuning
Sarbani Chakraborty and Satish Chandra Bera

52

Design and Development of a Multi-Degree of Freedom Dextrous Instrumented Robot Gripper
Sagarika Pal, Subrata Chattopadhyay and Satya Ranjan Deb

63

Design and Testing of a Low Cost PID Controller Combined with Inverse Derivative Control Action and Its Application in Voltage Control Systems of DC Generator
Subrata Chattopadhyay and Satish Chandra Bera

74

Modeling & Simulation of Dynamic Voltage Restorer (DVR) for Enhancing Voltage Sag
Amrita Rai and A. K. Nadir

85

Authors are encouraged to submit articles in MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com

Please visit journal’s webpage with preparation instructions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm

International Frequency Sensor Association (IFSA).
Application of DICOM Standard in LabVIEW Environment

Dušan KONIAR, Libor HARGAŠ, Miroslav HRIANKA, Pavol ŠPÁNIK
Department of Mechatronics and Electronics, Faculty of Electrical Engineering,
University of Žilina, Univerzitná 1, 010 26, Žilina, Slovak republic
E-mail: dusan.koniar@fel.uniza.sk

Received: 20 December 2007 /Accepted: 21 January 2008 /Published: 28 January 2008

Abstract: DICOM is the world standard for picture archiving and communication in medicine. Development system LabVIEW based on graphical programming is primary designed for virtual instrumentation, it offers many tools and operators for image processing and analysis, but it does not directly support the work with DICOM standard. The article deals with possibility of importing native DICOM files to LabVIEW and work with them. Copyright © 2008 IFSA.

Keywords: DICOM, Virtual Instrumentation, Image processing

1. Introduction

Intersection of medicine with electronics, informatics and other technical branches underlies modernization of classical diagnostic methods or development of new methods. This progress is visible mainly in radiology. Using modern technologies, new diagnostic methods were developed: nuclear magnetic resonance tomography (NMRT), computed tomography (CT) or angiography. Conventional diagnostic methods (skigraphy, skiascopy, selected methods of nuclear medicine) were digitized. Outputs of these methods are digital images and signals, which can be archived, processed and presented by methods of digital signal processing (DSP).

World trend of standardization and mutual compatibility in the sphere of digital technologies and communication influenced development of DICOM (Digital Imaging and Communication in Medicine) standard in medicine. This standard can be considered as communication protocol between various imaging modalities (CT, MRI or ultrasonography console) and simultaneously as standard for image archiving.
2. DICOM Standard

The standard (protocol) is arching over various types of imaging modalities originated in 1983. This protocol was developed in cooperation with the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) in the USA. This protocol enabled expansion of PACS (Picture Archiving and Communication System) cooperating with hospital information systems (HIS) [1].

The DICOM file consists of data elements (see Fig. 1). Each data element (e.g. Patient Name, Study Date, Imaging Modality or Image Resolution) has a unique tag containing a group number and element number. List of all data elements with their tags is in original DICOM documentation [2]. Excerpt of this list is in Fig. 2.

![Fig. 1. DICOM Data Element Structure.](image)

The tag is followed by Value Resolution (VR), which is a two-letter acronym of the tag, (PN in case of Patient Name element) and Value Length (VL), which informs about the data element size in bytes. Value Field (VF) is the information contained in the data element.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Name</th>
<th>VR</th>
<th>VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0010,0010)</td>
<td>Patient’s Name</td>
<td>PN</td>
<td>1</td>
</tr>
<tr>
<td>(0010,0020)</td>
<td>Patient ID</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0010,0021)</td>
<td>Issuer of Patient ID</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0010,0030)</td>
<td>Patient’s Birth Date</td>
<td>DA</td>
<td>1</td>
</tr>
<tr>
<td>(0010,0032)</td>
<td>Patient’s Birth Time</td>
<td>TM</td>
<td>1</td>
</tr>
<tr>
<td>(0010,0040)</td>
<td>Patient’s Sex</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0010,0050)</td>
<td>Patient’s Insurance Plan Code Sequence</td>
<td>SQ</td>
<td>1</td>
</tr>
<tr>
<td>(0010,0101)</td>
<td>Patient’s Primary Language Code Sequence</td>
<td>SQ</td>
<td>1</td>
</tr>
<tr>
<td>(0010,0102)</td>
<td>Patient’s Primary Language Code Modifier Sequence</td>
<td>SQ</td>
<td>1</td>
</tr>
<tr>
<td>(0010,1000)</td>
<td>Other Patient IDs</td>
<td>LO</td>
<td>1-n</td>
</tr>
<tr>
<td>(0010,1001)</td>
<td>Other Patient Names</td>
<td>PN</td>
<td>1-n</td>
</tr>
<tr>
<td>(0010,1005)</td>
<td>Patient’s Birth Name</td>
<td>PN</td>
<td>1</td>
</tr>
<tr>
<td>(0010,1010)</td>
<td>Patient’s Age</td>
<td>AS</td>
<td>1</td>
</tr>
<tr>
<td>(0010,1020)</td>
<td>Patient’s Size</td>
<td>DS</td>
<td>1</td>
</tr>
</tbody>
</table>

![Fig. 2. Excerpt from DICOM Data Dictionary.](image)

DICOM files can be divided into metadata and image part. Contrary to standard image files, the size of the metadata part is different in each DICOM file and contains various data elements (except the necessary data element). Software working with DICOM files reads the file element by element and
searches tags (data element value fields) needed for image reconstruction. The DICOM file can contain a single image or a set of images (Multislice) and DICOM can be native (contains raw image) or encapsulated (contains JPEG or RLE image).

3. DICOM Import Possibilities in LabVIEW

NI Vision is LabVIEW module for image processing and image analysis and contains many tools and operators, but does not support reading DICOM files. There are some ways how to import DICOM to LabVIEW:

- Using DLL library file of software working with DICOMs. LabVIEW can find and use functions from these files. Configuration and setting up of these functions is sometimes very difficult.
- Conversion of DICOM file to another standard (JPEG, BMP...) in extern application (e.g. freeware Osiris or ImageJ) and import converted image to LabVIEW.
- Using DICOM ActiveX plugins in LabVIEW. These plugins are not often for free use and their setting up is sometimes difficult. More about this method see [3].

4. Direct Reconstruction of DICOM Image Matrix in LabVIEW

In this method, we must find some necessary data elements needed for image reconstruction: resolution (rows and columns), bits allocated for 1 pixel, image depth, pixel data element (offset), image type (native, encapsulated). All these elements must be contained in the file. In addition, it is to our advantage that all data elements are sequenced ascending by their tag, which makes searching easier.

In the beginning, LabVIEW tool Open_Replace_Create File converts the DICOM file to hexadecimal string. After that, we can start searching for data element tags in this string and decompose it into substrings in this order:

0028,0010 – rows (lines) – r;
0028,0011 – columns – c;
0028,0100 – bits allocated for 1 pixel – BA;
0028,0101 – image depth;
0028,0102 – MSB (most significant bit) position in each pixel;
7FE0, 0010 – beginning of pixel data (offset).

In Fig. 3 we can see the part of block diagram (graphical LabVIEW source code) dealing with searching of tags in hex string. In the next step, we can build r * c pixel array. BA value gives the type of constant of this array (e.g. U16, U8). Before the conversion of the array to the image using ArrayToImage tool, the nativity test is carried out:

\[(r.c).\left(\frac{B_A}{8}\right) = L,\]

where L is Pixel Data (7FE0, 0010) substring size in bytes. The equation is true in case of native DICOM and false in case of compressed image in DICOM (L is smaller than the left side of the equation). The application works good for native DICOMs; if the nativity test is false, the application returns the error message in text display on the front panel (graphical interface).
After array conversion to the image, many tools and image operators from NI Vision module can be applied. In clinical practice, LuT (Lookup Table) operators are often used for contrast enhancement and better details (e.g. in radiological images of some types of soft tissues).

The application converts imported native DICOM to another standard, such as BMP, JPEG, JPEG2000, PNG or TIFF. In each conversion type, user can set up the parameters like compression ratio or quality. In classical sequential JPEG, 16-bit grayscale image must be remapped and converted to 8-bit first, because JPEG algorithm (except JPEG2000) can work with 1 or 3 (RGB) 8-bit planes. In this type of conversion (16 to 8-bit) many grayscale levels are downsampled and some details are rejected. Fig. 4 shows the front panel of the final application.

5. Conclusions

The designed application is virtual instrument which converts native DICOM files to other standards and enables to work with them in LabVIEW environment and apply tools and operators from the module for image processing and analysis. In the future, the application could also read encapsulated images, even though native files are more frequent. This application can be the first segment in virtual instrumentation integration in medicine or imaging diagnostic methods.

Acknowledgements

This work has been supported in part by grant No.1/3107/06 and No.1/0704/08 from VEGA grant agency and by the grant No.APVV-20-051 705 from APVV grant agency.
Fig. 4. Front Panel of application.

References

2008 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved.
(http://www.sensorsportal.com)
Find out the latest on:

- How unmanned systems are transforming the kill chain
- Machine-to-machine (M2M) transfer of targeting information
- New network architectures, including the DCGS Integration Backbone
- Targeting cycles in less than two minutes

...and much more!

Learn from this year’s team of experts:

Brigadier General Charles Shugg, USAF
Commander, Joint Unmanned Aircraft Systems Center of Excellence

Colonel Stephen Moulton, USAF,
Chief, Modernization & Innovation Directorate, Air Force Global
Cyberspace Integration Center

Captain Larry Egbert, USN
Program Manager, Direct & Time Sensitive Strike Weapons

Colonel Robert Carpenter, USA
Project Manager, Aerial Common Sensors, Fort Monmouth

See inside for a complete speaker roster!

Focus on Sensor to Shooter in Joint Environments!
See p. 4.
Aims and Scope

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and application specific papers, short notes, letters to Editor and sensors related books reviews as well as academic, practical and commercial information of interest to its readership. Because it is an open access, peer review international journal, papers rapidly published in Sensors & Transducers Journal will receive a very high publicity. The journal is published monthly as twelve issues per annual by International Frequency Association (IFSA). In additional, some special sponsored and conference issues published annually.

Topics Covered

Contributions are invited on all aspects of research, development and application of the science and technology of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- Sensors interfaces, buses and networks;
- Signal processing;
- Frequency (period, duty-cycle)-to-digital converters, ADC;
- Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Submission of papers

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 6-14 pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word (doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript are available from the journal's webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors must follow the instructions strictly when submitting their manuscripts.

Advertising Information

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit: http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2008.pdf
Data Acquisition and Signal Processing for Smart Sensors

‘This book provides a good basis for anyone entering or studying the field of smart sensors not only for the inexperienced but also very useful to those with some experience’

(from IEEE Instrumentation & Measurement Magazine review)

Order online:
http://www.sensorsportal.com/HTML/BOOKSTORE/DAQ_SP.htm

www.sensorsportal.com