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Abstract: A dynamic sensor management algorithm based on improved efficacy function is proposed to solve 
the multi-target and multi-sensory management problem. The tracking task precision requirements (TPR), target 
priority and sensor use cost were considered to establish the efficacy function by weighted sum the normalized 
value of the three factors. The dynamic sensor management algorithm was accomplished through control the 
diversities of the desired covariance matrix (DCM) and the filtering covariance matrix (FCM). The DCM was 
preassigned in terms of TPR and the FCM was obtained by the centralized sequential Kalman filtering algorithm. 
The simulation results prove that the proposed method could meet the requirements of desired tracking precision 
and adjust sensor selection according to target priority and cost of sensor source usage. This makes sensor 
management scheme more reasonable and effective. Copyright © 2016 IFSA Publishing, S. L. 
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1. Introduction 
 

More requirements are requested about the 
environment sensory ability of the airborne 
information platform (AIP) under the diversified 
target, complex environments and multiple tasks 
situation. Many (kinds of) sensors are disposed to this 
kind of platform, so we can give full play on sensor 
coordinated work and sensor management 
technology. Faced with multiple targets and tasks, the 
limited sensor source has a core problem which is to 
optimize the distribution and allocation. 

Document [1-2] set phased array radar as a study 
object for tracking task, the methodology for beam 
scheduling in multi-target tracking was proposed. 
Document [3-5] solved the target tracking task in 
centralized multisensory systems based on the 
method of covariance control. These methods above 
concentrated on high tracking precision, lacking of 

effective control to task tracking. Document [6-8] 
was based on the needs of tasks requirement, 
established an allocation model according to the tasks 
requirement and brought out dynamic sensor source 
allocation algorithm. Document [9-10] established a 
sensor allocation plan which was independent from 
the tracking cycle system, and was an off-line 
predictive allocation substantially. Document [11-13] 
overcame the sensor management problem during 
tactical monitoring action, taking out studies mainly 
on task distribution, sensor-source pairing and some 
other aspects. 

Concentrating on the AIP sensor and task feature, 
the tracking task precision requirements (TPR), target 
priority, sensor use cost and some other factors are 
considered comprehensively to establish an efficacy 
function. From the viewpoint of controlling 
covariance, normalized distance function and 
normalized filtering covariance are weighted to 
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assign the pairing coefficient and dynamically 
confirm the result of “target-sensor (combination)”. 
Under the multi-target tracking situation,  
simulation proves the efficiency of the sensor 
management method. 

 
 

2. Sensor Management Model 
 
Under the practical multiple tracking situation, 

the target tracking of sensor system only reflects on 
the tracking precision. Firstly, there is no need to 
maintain a high precision tracking on the low priority 
target. Secondly, due to the restriction from the 
sensory ability of sensor, it will cost differently while 
using different sensor. While improving sensory 
ability of one certain target, it surely has side effect 
on the other target tracking and task searching. 
Thirdly, using the active radar to maintain the targets 
measurement may bring vital threat to self-surviving. 

Assuming that m sensors track n targets at the 
same time, there are m'=2m–1 kinds of sensor 
combinations which certain m'–m fake sensors. 
Hence, considering the precision need for target 
tracking task, target priority and the cost of sensor 
use, we describe the allocation as follows, 
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where E is the efficient value corresponding with the 
sensor optimal allocation strategy. x is the allocation 
case of sensors, xij means distribute sensor i to target 
j, conversely xij =0 means no distributing; in the 
equation, paij is the pairing function when sensor i 
and target j, which is related with the target task 
accomplishment condition. prj is the priority function 
for target j, ci is the cost of sensor use. efij is the 
efficacy of sensor i which allocation to target j, the 
better the accomplishment condition is, the higher the 
priority is, the smaller the cost of sensor use is, the 
bigger the value of efij will be. 

Allocation restriction includes the maximum 
restriction of tracking ability (the tracking task 
allocation to each sensor can not be more than the 
limited capacity) and restriction of target cover (each 
one target should be allocation to one sensor at least). 

 
 

3. The Establishment of Efficacy Function 
 
3.1. Sensor-target Pairing Function 

 
The pairing function paij when target j allocates 

to sensor i is related to the TPR. Since the precision 

of tracking period and collimation period are 
different, the expected TPR is different as well, even 
if considering one target. We can describe the 
tracking precision need through the differences 
between practical evaluating covariance matrix 
(PECM) and desired covariance matrix (DCM). We 
can use determinant of matrix, trace of matrix, or 
matrix metrics derived from different matrix norms. 
Different result coming from different method may 
bring different effect on TPR [8-9], we choose trace 
of matrix to measure the differences between 
expecting covariance Pd and practical covariance, 
that is to say, 

 

[ ]( , )P d df f P P tr P P= = − −  (2) 

 
Since the covariance matrix is not negative, we 

assume that A, B∈Rn×n, A=AT≥0 and B=BT≥0. Define 
the difference between two matrixes is M=A – B, so, 
M=MT, distance function f(A,B) can be expressed as, 
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target-sensor (combination) pairing function 

pa(x1, x2, ...; y1, y2, ...) should obey the equations Max 
pa( )=1, and Min pa( )=0, so TPR can not be used in 
this model directly. Evaluated paij( ) with the 
weighted sum of the normalized distance function  
1–△f(P,Pd) and normalized filtering error covariance 
norm △ρ. The pairing function was defined as: 

 
[1 ( , )]ij dpa f P Pα β ρ= × − Δ + × Δ  (4) 

 
where △ρ=ǁ△Pǁ, weight coefficient α, β reflect the 
effect on pairing function from filter covariance and 
different measure method between two matrices. 
Herein, α+β=1 (α＞0, β＞0) [8]. 
 
 
3.2. Target Priority 

 
Many factors affect target priority, but we usually 

take the following factors into consideration: target 
identification (ID), information requirement (IM), 
target threat (FR), attack chance (CH), fire-control 
requirement external commands (EC), etc., so we can 
define a priority function pr(ID, IM, TR, CH, FR) 
whose value can be calculated with these five factors. 
According to the practical experience, we can figure 
out the concrete form of the function. No matter what 
the form of function is, we confirm the priority on the 
basis of the following requests: 

1) Put the locked target on the very first position; 
2) Then the target we can attack; 
3) Next the enemy target and undefined state 

follows; 
4) Finally friend and ourselves; 
5) The external commands owns the highest 

priority, assuming pr( )=1. 
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The simplest and most practical expression  
is the linear sum of the five factors multiply its  
own coefficient  

 

( , , , , )pr ID IM TR CH FR

ID IM TR CH FRχ δ γ ε η= × + × + × + × + ×
 (5) 

 

The higher the priority for the target is, the 
smaller the value of pr( ) is to meet the principle that 
the higher priority is, the bigger the value of efij, and 
the value is smaller than 1, we take reciprocal value 
for priority function, that is to say, as to the target j, 
the priority degree is 1j jpr pr= . 

 
 

3.3. Sensor use Cost  
 

Based on different practical situation, the 
definition of “sensor use cost” can be explained 
differently. As to different kinds of sensor allocated 
to AIP, when use active sensor to measure target 
constantly, it may bring threat to self-surviving. 
However, the passive sensors are in the passive state 
all the time, and will never be exposed. From this 
degree, the “use cost” of active radar is much bigger 
than passive radar and it is the same to active sensor 
(such as phased array radar), the use cost for different 
performance is not the same. Normally, the Radars 
improve their detecting precision by increasing the 
data updating rate, so improving the precision in 
certain domain of space will consume more time as 
“use cost”. The higher the detecting precision of 
sensor is, the larger the use cost is. We usually 
confirm the cost according to the sensor number, 
sensor type, sensor performance and some other 
factors in a comprehensive way. 

The bigger the sensor use cost is, the bigger the 
value of ci is. To meet the principle that the value of 
efij increases as the use cost increases and the value of 
use cost is smaller than 1, we take negative 
normalized value for sensor use cost function, that is 
to say, as to the sensor i, the sensor use cost is 
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In conclusion, we establish efficacy function as 
 

( , , )ij ij j i ij j ief pa pr c pa pr cω ξ λ= × + × +  (6) 
 

Herein, coefficient ω, ξ, λ reflect the effect on 
efficacy from pairing, priority and cost. The basic 
principle is that the priority has much greater effect 
on efficacy than what pairing coefficient does, and 
the pairing coefficient has much greater effect than 
what sensor use cost does. 

 
 

4. “Sensor – target” Allocation 
Algorithms 
 

When given DCM dP  of the target, we can 

iterate the Kalman filtering equation to figure out the 

filtering error covariance, and then find the allocation 
efficacy. When couples of sensors are allocated to 
one target, covariance matrix for each sensor to 
measure targets are different, so we import a 
centralized sensor Kalman sequential algorithms to 
solve the target measuring problem with  
sensor combination. 

 
 

4.1. Covariance Matrix Algorithms 
 

Assuming target discretizing state equation 
expressed as 

 

1( ) ( ) ( ) ( ) ( )k k k k kx t F T x t G T w t+ = +  (7) 
 

Herein, x(tk) is the state vector to time tk, w(tk) is 
the system noise vector, and its covariance matrix is 
Q(tk). F(Tk) is the transforming matrix to time tk, 
G(Tk) is the input matrix to time tk. Tk=tk+1 – tk is the 
sample interval to time tk. 

The measuring equation for sensor is as follow: 
 

( ) ( ) ( ), 1, 2,......, 'j k j k j kz t H x t v t j m= + =  (8) 
 

Herein, Zj(tk) is the measure vector of sensor j to 
timetk, vj(tk) is measure noise, and its covariance 
matrix is Rj(tk), Hj is observation matrix. 

As to arbitrarily pseudo sensor Di from the 
pseudo sensor set D, the centralized sensor Kalman 
sequential algorithms is as follow, 
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( ) ( ( )) ,iN
k k ix t x t K D= ∈  (11) 

 
Herein the sequential gain can expressed as 

 
1 1
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filtering covariance matrixes (FCM)P(tk) are 
 

1 1
1( ( )) ( ( ( )) ) ( )k n k kP t I K t H P t −= − , (14) 

 
1( ( )) ( ( ( )) ) ( )K K K

k n k K kP t I K t H P t −= − , (15) 
 

( ) ( ( )) ,iN
k k iP t P t K D= ∈  (16) 

 
Predictive value ( )kx t − and predictive error 

covariance matrix ( )kP t − are respectively 
 

1 1( ) ( ) ( )k k kx t F T x t−
− −= , (17) 
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Herein, (•)K means disposed by K sensors. 
Distance function of FCM and DCM is changed 

by Dynamic state value of filtering time. During the 
Dynamic control procedure we can treat the FCM as 
PECM, and the TPR 

Pf  is 

 

[ ]( ( ), ) ( )p k d k df t tr t= −P P P P  (19) 
 
 

4.2. Allocation Algorithms Steps 
 

Based on the analysis above, we can bring the 
steps of “sensor – target” allocation algorithms  
into conclusion: 

Step 1. Initialize the number of sensor i=1; 
Step 2. Calculate the predictive error covariance 

( )kt
−P  matrix at kt

−  according to (18); 

Step 3. Calculate the FCM ( )ktP  at kt  after the 

Di sensor measurement according to (13); 
Step 4. Measure the distance between FCM and 

DCM at kt according to (19); 

Step 5. Calculate the pairing coefficient paij( ) 
according to (4); 

Step 6. Calculate allocation ijef  according to (6); 

Step 7. Loop the steps above, and then complete 
the dynamic allocation based on (1). 

 
 

5. Simulation Analysis 
 
Considering 3 sensors track 4 targets at the same 

time, and the coordinate for each target is (x,y). 
Assuming that the simulation cycle is 1 s, and the 
simulation time is 100 s. Herein, the tracking 
precision of sensor S1 at x axis direction is relatively 
higher. The tracking precision of sensor S2 at y axis 
direction is relatively higher, the tracking precision of 
sensor S3 at both x and y axis direction are relatively 
low. Tracking capacity is the total number a sensor 
can track at the same time, the correlation coefficient 
reflects the correlate degree of noise between  
two axes. 

There were 23-1=7, seven sensor combinations 
should be considered coming from the randomly 
combination between sensors. In simulation of this 
paper, the coefficient in Formula (6) is ω=0.21, 
ξ=0.46, λ=0.33. 

The particular set of measure noise parameter  
for the sensors and their tracking capacity was listed 
in Table 1. 

The normalized sensors use cost was listed  
in Table 2. 

We take filtering covariance (FC), ID, Target 
lock-on, Weapon state, type information (TI) and 
some other factors into consideration when measure 

the target priority. We can check the current value of 
priority quantification in Table 3. The factors 
coefficient in the simulation is supposed to the same, 
the sequence of target priority can be calculated. The 
tiptop priority is target 2 and the lowest priority is 
target 4, the relationship is 2 1 3 4pr pr pr pr> > > . 

 
 

Table 1. Measuring noise analysis of each sensor (standard 
deviation: meter). 

 

Sensor

x axis 
direction 
standard 
deviation

y axis 
direction 
standard 
deviation 

Correlation 
coefficient 

Tracking
capacity

Sensor 1 9.23 20.9 -0.61 2 
Sensor 2 22.1 8.2 0.82 3 
Sensor 3 41.4 43.7 -0.94 4 

 
 

Table 2. Sensor (combination) normalized use cost. 
 

Sensor number 
Normalized use 

cost  ( ic ) 

S1 (Sensor1) -0.05 
S2 (Sensor2) -0.075 
S3 (Sensor3) -0.125 
S4 (Sensor1+ Sensor2) -0.125 
S5 (Sensor1+ Sensor3) -0.175 
S6 (Sensor2+ Sensor3) -0.2 
S7 (Sensor1+ Sensor2+ Sensor3) -0.25 

 
 

Table 3. Current quantification of target priority. 
 

 FC ID 
Target 
lock-on 

Weapon 
state 

TI 

Target 1 0.45 1 0 0 0.853 
Target 2 0.50 0 0 0 0.106 
Target 3 0.60 1 0 0 0.734 
Target 4 0.80 1 0 0 0.808 

 
 

Suppose the DCM in 1~50 s as 
Pd1=Pd2=Pd3=Pd4=diag(30, 1, 30, 1), set the DCM in 
51~100 s as  

Target 1: Pd1=diag(10, 0.3, 30, 1); 
Target 2: Pd2=diag(30, 1, 1 0, 0.3); 
Target 3: Pd3=diag(30, 1, 30, 1); 
Target 4: Pd4=diag(10, 0.3, 10, 0.3). 
The maneuvering noise covariance matrixes of 

these four targets are listed as follows: 
 

1

0.35 0

0 0.45
Q

 
=  
 

, 2

0.12 0

0 0.20
Q

 
=  
 

,
 

3

0.20 0

0 0.15
Q

 
=  
 

, 4

0.70 0

0 0.85
Q

 
=  
 

 

 
The filtering covariance for targets are given  

in Fig. 1.  
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Fig. 1. Covariance control effect. 

 
 

From simulation chart 1, we can see, due to 
improvement of the precision, the filtering covariance 
of each target can convergence to expectation degree, 
and can basically reach the requirement of adaptive 
covariance control. Since we import a target priority 
function in allocation efficacy, the source the highest 
target 2 get can perfectly reach the requirement of 
target tracking. From chart 3 we can see that,  
the tracking performance of target 2 is better  
than target 1. 

The Pairing result of ‘Target-Sensor’ is shown  
in Fig. 2. 

During 51~100 s, the tracking precision of x axis 
improves and the sensor S1 was allocated to target 1 
increasingly. However the priority of target 1 is 
relatively low, and the tracking capacity of S1 is the 
weakest, so the target 1 can not sostenu to occupy the 
source of S1, and the result of source allocation is 
changeable all the time. When the tracking precision 
of target 2 on y axis improves, sensor combination 
S6 (includs S2) was allocated to the target 
increasingly. Due to the highest priority of target 2, it 
can occupy the source of S6 in the most time to meet 
the requirement of precision on y axis. For the 
tracking precision of target 3 is constant in the latter 
50 s, the result of sensor source allocation acts 
steadily and the target gets the least sensor source. 
The expected covariance of target 4 on x axis and y 
axis were decreased, so the improvement of tracking 
precision leads sensor combination S4 (includes S1 
and S2) was allocated to the target increasingly. 

As for the influence of sensor use cost factor, the 

pairing result of ‘Target-Sensor’ without cost is 
simulated, the result was shown in Fig. 3. 

Comparing to the Fig. 2, it can be clearly seen in 
the Fig. 3 that pairing result of ‘Target-Sensor’ 
without cost of each target, the high cost sensor 
(sensor combination) were more allocated. 

From the simulation above we can see that the 
algorithm we give in this paper could dynamically 
allocate the sensor source reasonably based on 
covariance matrix, target priority, and sensor use cost.  

 
 

6. Conclusions 
 

A dynamic sensor management algorithm based 
on improved efficacy function is proposed to 
overcome the sensor management difficulties during 
face to multi-tasks on AIP. This paper brings about 
the assignment of sensor to pairing coefficient and 
auto update. Meanwhile we introduce target priority 
function and sensor use cost to the efficacy function 
and give an adaptive allocation algorithm based on 
the linear programming. Furthermore we conduct the 
algorithm simulation. The result of simulation shows 
that this algorithm combines the advantages of 
covariance adaptive control and target weight. So this 
algorithm could adaptively allocate the sensor source 
based on expectation of tracking precision and 
dynamically adjust the sensor source according to the 
target priority degree and the sensor use cost. In 
summarize, this algorithm improves the rationality 
and effectiveness for sensor source allocation.  
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Fig. 2. Pairing result of ‘Target-Sensor’. 
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Fig. 3. Pairing result of ‘Target-Sensor’ without cost. 
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