SENSORS 3/09 TRANSDUCERS

Sensors & Transducers

Volume 102, Issue 3 March 2009

www.sensorsportal.com

ISSN 1726-5479

Editor-in-Chief: professor Sergey Y. Yurish, phone: +34 696067716, fax: +34 93 4011989, e-mail: editor@sensorsportal.com

Editors for Western Europe

Meijer, Gerard C.M., Delft University of Technology, The Netherlands Ferrari, Vittorio, Universitá di Brescia, Italy

Editor South America

Costa-Felix, Rodrigo, Inmetro, Brazil

Editor for Eastern Europe

Sachenko, Anatoly, Ternopil State Economic University, Ukraine

Editors for North America

Datskos, Panos G., Oak Ridge National Laboratory, USA Fabien, J. Josse, Marquette University, USA Katz, Evgeny, Clarkson University, USA

Editor for Asia

Ohyama, Shinji, Tokyo Institute of Technology, Japan

Editor for Asia-Pacific

Mukhopadhyay, Subhas, Massey University, New Zealand

Editorial Advisory Board

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia

Ahmad, Mohd Noor, Nothern University of Engineering, Malaysia

Annamalai, Karthigeyan, National Institute of Advanced Industrial Science and Technology, Japan

Arcega, Francisco, University of Zaragoza, Spain

Arguel, Philippe, CNRS, France

Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea

Arndt, Michael, Robert Bosch GmbH, Germany Ascoli, Giorgio, George Mason University, USA

Atalay, Selcuk, Inonu University, Turkey Atghiaee, Ahmad, University of Tehran, Iran

Augutis, Vygantas, Kaunas University of Technology, Lithuania

Avachit, Patil Lalchand, North Maharashtra University, India

Ayesh, Aladdin, De Montfort University, UK

Bahreyni, Behraad, University of Manitoba, Canada

Baoxian, Ye, Zhengzhou University, China Barford, Lee, Agilent Laboratories, USA

Barlingay, Ravindra, RF Arrays Systems, India

Basu, Sukumar, Jadavpur University, India

Beck, Stephen, University of Sheffield, UK

Ben Bouzid, Sihem, Institut National de Recherche Scientifique, Tunisia

Benachaiba, Chellali, Universitaire de Bechar, Algeria

Binnie, T. David, Napier University, UK

Bischoff, Gerlinde, Inst. Analytical Chemistry, Germany

Bodas, Dhananjay, IMTEK, Germany

Borges Carval, Nuno, Universidade de Aveiro, Portugal

Bousbia-Salah, Mounir, University of Annaba, Algeria

Bouvet, Marcel, CNRS - UPMC, France

Brudzewski, Kazimierz, Warsaw University of Technology, Poland

Cai, Chenxin, Nanjing Normal University, China

Cai, Qingyun, Hunan University, China

Campanella, Luigi, University La Sapienza, Italy

Carvalho, Vitor, Minho University, Portugal

Cecelja, Franjo, Brunel University, London, UK

Cerda Belmonte, Judith, Imperial College London, UK

Chakrabarty, Chandan Kumar, Universiti Tenaga Nasional, Malaysia

Chakravorty, Dipankar, Association for the Cultivation of Science, India

Changhai, Ru, Harbin Engineering University, China

Chaudhari, Gajanan, Shri Shivaji Science College, India

Chen, Jiming, Zhejiang University, China

Chen, Rongshun, National Tsing Hua University, Taiwan

Cheng, Kuo-Sheng, National Cheng Kung University, Taiwan

Chiang, Jeffrey (Cheng-Ta), Industrial Technol. Research Institute, Taiwan

Chiriac, Horia, National Institute of Research and Development, Romania

Chowdhuri, Arijit, University of Delhi, India

Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan

Corres, Jesus, Universidad Publica de Navarra, Spain

Cortes, Camilo A., Universidad Nacional de Colombia, Colombia

Courtois, Christian, Universite de Valenciennes, France

Cusano, Andrea, University of Sannio, Italy

D'Amico, Arnaldo, Università di Tor Vergata, Italy

De Stefano, Luca, Institute for Microelectronics and Microsystem, Italy

Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India

Dickert, Franz L., Vienna University, Austria Dieguez, Angel, University of Barcelona, Spain

Dimitropoulos, Panos, University of Thessaly, Greece

Ding Jian, Ning, Jiangsu University, China

Djordjevich, Alexandar, City University of Hong Kong, Hong Kong

Donato, Nicola, University of Messina, Italy

Donato, Patricio, Universidad de Mar del Plata, Argentina

Dong, Feng, Tianjin University, China

Drljaca, Predrag, Instersema Sensoric SA, Switzerland

Dubey, Venketesh, Bournemouth University, UK

Enderle, Stefan, University of Ulm and KTB Mechatronics GmbH,

Erdem, Gursan K. Arzum, Ege University, Turkey

Erkmen, Aydan M., Middle East Technical University, Turkey

Estelle, Patrice, Insa Rennes, France

Estrada, Horacio, University of North Carolina, USA

Faiz, Adil, INSA Lyon, France

Fericean, Sorin, Balluff GmbH, Germany

Fernandes, Joana M., University of Porto, Portugal

Francioso, Luca, CNR-IMM Institute for Microelectronics and Microsystems, Italy

Francis, Laurent, University Catholique de Louvain, Belgium

Fu, Weiling, South-Western Hospital, Chongqing, China

Gaura, Elena, Coventry University, UK

Geng, Yanfeng, China University of Petroleum, China

Gole, James, Georgia Institute of Technology, USA

Gong, Hao, National University of Singapore, Singapore

Gonzalez de la Rosa, Juan Jose, University of Cadiz, Spain

Granel, Annette, Goteborg University, Sweden Graff, Mason, The University of Texas at Arlington, USA

Guan, Shan, Eastman Kodak, USA Guillet, Bruno, University of Caen, France

Guo, Zhen, New Jersey Institute of Technology, USA

Gupta, Narendra Kumar, Napier University, UK

Hadjiloucas, Sillas, The University of Reading, UK

Hashsham, Syed, Michigan State University, USA

Hernandez, Alvaro, University of Alcala, Spain

Hernandez, Wilmar, Universidad Politecnica de Madrid, Spain

Homentcovschi, Dorel, SUNY Binghamton, USA

Horstman, Tom, U.S. Automation Group, LLC, USA

Hsiai, Tzung (John), University of Southern California, USA

Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan

Huang, Star, National Tsing Hua University, Taiwan Huang, Wei, PSG Design Center, USA

Hui, David, University of New Orleans, USA

Jaffrezic-Renault, Nicole, Ecole Centrale de Lyon, France

Jaime Calvo-Galleg, Jaime, Universidad de Salamanca, Spain

James, Daniel, Griffith University, Australia

Janting, Jakob, DELTA Danish Electronics, Denmark Jiang, Liudi, University of Southampton, UK

Jiang, Wei, University of Virginia, USA

Jiao, Zheng, Shanghai University, China John, Joachim, IMEC, Belgium

Kalach, Andrew, Voronezh Institute of Ministry of Interior, Russia

Kang, Moonho, Sunmoon University, Korea South

Kaniusas, Eugenijus, Vienna University of Technology, Austria

Katake, Anup, Texas A&M University, USA

Kausel, Wilfried, University of Music, Vienna, Austria

Kavasoglu, Nese, Mugla University, Turkey

Ke, Cathy, Tyndall National Institute, Ireland

Khan, Asif, Aligarh Muslim University, Aligarh, India

Kim, Min Young, Kyungpook National University, Korea South Sandacci, Serghei, Sensor Technology Ltd., UK

Ko, Sang Choon, Electronics and Telecommunications Research Institute, Korea South

Kockar, Hakan, Balikesir University, Turkey

Kotulska, Malgorzata, Wroclaw University of Technology, Poland

Kratz, Henrik, Uppsala University, Sweden Kumar, Arun, University of South Florida, USA

Kumar, Subodh, National Physical Laboratory, India

Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan

Lacnjevac, Caslav, University of Belgrade, Serbia

Lay-Ekuakille, Aime, University of Lecce, Italy

Lee, Jang Myung, Pusan National University, Korea South

Lee, Jun Su, Amkor Technology, Inc. South Korea

Lei, Hua, National Starch and Chemical Company, USA

Li, Genxi, Nanjing University, China

Li, Hui, Shanghai Jiaotong University, China

Li, Xian-Fang, Central South University, China

Liang, Yuanchang, University of Washington, USA

Liawruangrath, Saisunee, Chiang Mai University, Thailand

Liew, Kim Meow, City University of Hong Kong, Hong Kong

Lin, Hermann, National Kaohsiung University, Taiwan

Lin, Paul, Cleveland State University, USA

Linderholm, Pontus, EPFL - Microsystems Laboratory, Switzerland

Liu, Aihua, University of Oklahoma, USA

Liu Changgeng, Louisiana State University, USA

Liu, Cheng-Hsien, National Tsing Hua University, Taiwan

Liu, Songqin, Southeast University, China

Lodeiro, Carlos, Universidade NOVA de Lisboa, Portugal

Lorenzo, Maria Encarnacio, Universidad Autonoma de Madrid, Spain

Lukaszewicz, Jerzy Pawel, Nicholas Copernicus University, Poland

Ma, Zhanfang, Northeast Normal University, China

Majstorovic, Vidosav, University of Belgrade, Serbia

Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico

Matay, Ladislav, Slovak Academy of Sciences, Slovakia

Mathur, Prafull, National Physical Laboratory, India

Maurya, D.K., Institute of Materials Research and Engineering, Singapore

Mekid, Samir, University of Manchester, UK

Melnyk, Ivan, Photon Control Inc., Canada

Mendes, Paulo, University of Minho, Portugal Mennell, Julie, Northumbria University, UK

Mi, Bin, Boston Scientific Corporation, USA

Minas, Graca, University of Minho, Portugal

Moghavvemi, Mahmoud, University of Malaya, Malaysia

Mohammadi, Mohammad-Reza, University of Cambridge, UK

Molina Flores, Esteban, Benemérita Universidad Autónoma de Puebla, Mexico

Moradi, Majid, University of Kerman, Iran

Morello, Rosario, DIMET, University "Mediterranea" of Reggio Calabria,

Mounir, Ben Ali, University of Sousse, Tunisia

Mulla, Imtiaz Sirajuddin, National Chemical Laboratory, Pune, India

Neelamegam, Periasamy, Sastra Deemed University, India

Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria

Oberhammer, Joachim, Royal Institute of Technology, Sweden

Ould Lahoucine, Cherif, University of Guelma, Algeria

Pamidighanta, Sayanu, Bharat Electronics Limited (BEL), India

Pan, Jisheng, Institute of Materials Research & Engineering, Singapore

Park, Joon-Shik, Korea Electronics Technology Institute, Korea South

Penza, Michele, ENEA C.R., Italy

Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal

Petsev, Dimiter, University of New Mexico, USA

Pogacnik, Lea, University of Ljubljana, Slovenia Post, Michael, National Research Council, Canada

Prance, Robert, University of Sussex, UK Prasad, Ambika, Gulbarga University, India

Prateepasen, Asa, Kingmoungut's University of Technology, Thailand

Pullini, Daniele, Centro Ricerche FIAT, Italy

Pumera, Martin, National Institute for Materials Science, Japan

Radhakrishnan, S. National Chemical Laboratory, Pune, India

Rajanna, K., Indian Institute of Science, India

Ramadan, Qasem, Institute of Microelectronics, Singapore Rao, Basuthkar, Tata Inst. of Fundamental Research, India Raoof, Kosai, Joseph Fourier University of Grenoble, France

Reig, Candid, University of Valencia, Spain

Restivo, Maria Teresa, University of Porto, Portugal

Robert, Michel, University Henri Poincare, France

Rezazadeh, Ghader, Urmia University, Iran

Royo, Santiago, Universitat Politecnica de Catalunya, Spain

Rodriguez, Angel, Universidad Politecnica de Cataluna, Spain

Rothberg, Steve, Loughborough University, UK

Sadana, Ajit, University of Mississippi, USA

Sadeghian Marnani, Hamed, TU Delft, The Netherlands

Sapozhnikova, Ksenia, D.I.Mendeleyev Institute for Metrology, Russia

Saxena, Vibha, Bhbha Atomic Research Centre, Mumbai, India

Schneider, John K., Ultra-Scan Corporation, USA

Seif, Selemani, Alabama A & M University, USA

Seifter, Achim, Los Alamos National Laboratory, USA Sengupta, Deepak, Advance Bio-Photonics, India

Shankar, B. Baliga, General Monitors Transnational, USA

Shearwood, Christopher, Nanyang Technological University, Singapore

Shin, Kyuho, Samsung Advanced Institute of Technology, Korea Shmaliy, Yuriy, Kharkiv National University of Radio Electronics, Ukraine

Silva Girao, Pedro, Technical University of Lisbon, Portugal

Singh, V. R., National Physical Laboratory, India

Slomovitz, Daniel, UTE, Uruguay

Smith, Martin, Open University, UK

Soleymanpour, Ahmad, Damghan Basic Science University, Iran

Somani, Prakash R., Centre for Materials for Electronics Technol., India

Srinivas, Talabattula, Indian Institute of Science, Bangalore, India

Srivastava, Arvind K., Northwestern University, USA

Stefan-van Staden, Raluca-Ioana, University of Pretoria, South Africa

Sumriddetchka, Sarun, National Electronics and Computer Technology Center, Thailand

Sun, Chengliang, Polytechnic University, Hong-Kong

Sun, Dongming, Jilin University, China

Sun, Junhua, Beijing University of Aeronautics and Astronautics, China

Sun, Zhiqiang, Central South University, China

Suri, C. Raman, Institute of Microbial Technology, India

Sysoev, Victor, Saratov State Technical University, Russia

Szewczyk, Roman, Industrial Research Institute for Automation and Measurement, Poland

Tan, Ooi Kiang, Nanyang Technological University, Singapore,

Tang, Dianping, Southwest University, China

Tang, Jaw-Luen, National Chung Cheng University, Taiwan

Teker, Kasif, Frostburg State University, USA

Thumbavanam Pad, Kartik, Carnegie Mellon University, USA

Tian, Gui Yun, University of Newcastle, UK

Tsiantos, Vassilios, Technological Educational Institute of Kaval, Greece

Tsigara, Anna, National Hellenic Research Foundation, Greece

Twomey, Karen, University College Cork, Ireland

Valente, Antonio, University, Vila Real, - U.T.A.D., Portugal

Vaseashta, Ashok, Marshall University, USA

Vazquez, Carmen, Carlos III University in Madrid, Spain

Vieira, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal

Vigna, Benedetto, STMicroelectronics, Italy

Vrba, Radimir, Brno University of Technology, Czech Republic

Wandelt, Barbara, Technical University of Lodz, Poland

Wang, Jiangping, Xi'an Shiyou University, China

Wang, Kedong, Beihang University, China Wang, Liang, Advanced Micro Devices, USA

Wang, Mi, University of Leeds, UK

Wang, Shinn-Fwu, Ching Yun University, Taiwan

Wang, Wei-Chih, University of Washington, USA

Wang, Wensheng, University of Pennsylvania, USA

Watson, Steven, Center for NanoSpace Technologies Inc., USA Weiping, Yan, Dalian University of Technology, China

Wells, Stephen, Southern Company Services, USA

Wolkenberg, Andrzej, Institute of Electron Technology, Poland

Woods, R. Clive, Louisiana State University, USA Wu, DerHo, National Pingtung University of Science and Technology, Taiwan

Wu, Zhaoyang, Hunan University, China

Xiu Tao, Ge, Chuzhou University, China

Xu, Lisheng, The Chinese University of Hong Kong, Hong Kong

Xu, Tao, University of California, Irvine, USA

Yang, Dongfang, National Research Council, Canada

Yang, Wuqiang, The University of Manchester, UK

Ymeti, Aurel, University of Twente, Netherland Yong Zhao, Northeastern University, China

Yu, Haihu, Wuhan University of Technology, China

Yuan, Yong, Massey University, New Zealand

Yufera Garcia, Alberto, Seville University, Spain

Zagnoni, Michele, University of Southampton, UK Zeni, Luigi, Second University of Naples, Italy

Zhong, Haoxiang, Henan Normal University, China

Zhang, Minglong, Shanghai University, China Zhang, Qintao, University of California at Berkeley, USA

Zhang, Weiping, Shanghai Jiao Tong University, China

Zhang, Wenming, Shanghai Jiao Tong University, China

Zhou, Zhi-Gang, Tsinghua University, China

Zorzano, Luis, Universidad de La Rioja, Spain Zourob, Mohammed, University of Cambridge, UK

Contents

Volume 102 Issue 3 March 2009

www.sensorsportal.com

ISSN 1726-5479

Research Articles	
Smart Sensor Systems: Book Review	I
Design of a Smart and High Precision Industrial Temperature Measurement and Monitoring System Using K-type Thermocouple and SPI-compatible Temperature Sensor Utpal Sarma, Digbijoy Chakraborty, P. K. Boruah	1
IEEE 1451.0-2007 Compatible Smart Sensor Readout with Error Compensation Using FPGA J. Kamala and B. Umamaheswari	10
Predicting the Deflections of Micromachined Electrostatic Actuators Using Artificial Neural Network (ANN) Hing Wah Lee, Mohd. Ismahadi Syono and Ishak Hj. Abd. Azid	22
Conception and Development of a Portable Electronic Nose System for Classification of Raw Milk Using Principal Component Analysis Approach Hing Wah Lee, Mohd. Ismahadi Syono and Ishak Hj. Abd. Azid	33
Viscosity Measurement Using Microcontroller to Study the Thermal Degradation of Edible Oil Neelameagam Periyasamy, Rubalya Valantina Sathianathan and Murugananthan Krishnamoorthy	45
Problems of Terminology in the Field of Measuring Instruments with Elements of Artificial Intelligence Roald Taymanov, Ksenia Sapozhnikova	51
Microcontroller Based Closed Loop PMDC Motor Position Control System Subrata Chattopadhyay, Utpal Chakraborty, Arindam Bhakta and Sagarika Pal	62
Discrete Time Sliding Mode Control Using Fast Output Sampling Feedback for Piezoelectric Actuated Structures L. R. Karl Marx, M. Umapathy, A. Girija, D. Ezhilarasi	71
A Particle Swarm Optimization of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents Abdelhafid Hasni, Belkacem Draoui, Thierry Boulard, Rachid Taibi and Brahim Dennai	84
Experimental and Computational Study of Two-phase (Air–Palm Oil) Flow through Pipe and Control Valve in Series Arivazhagan M., Pugalenthi, Krishna Karthik K., Rani Hemamalini, Sundaram S	94
The Effect on Pressure Drop across Control Valve for Two Phase Flow (Air-Water) Arivazhagan M, Krishna Karthik K, Sundaram S	105
RBIC-Lite – a Family of Signal Conditioning ICs of ZMD Krauss Gudrun, Krauss Mathias	115

Authors are encouraged to submit article in MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com Please visit journal's webpage with preparation instructions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm

Sensors & Transducers

ISSN 1726-5479 © 2009 by IFSA http://www.sensorsportal.com

A Particle Swarm Optimization of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents

¹Abdelhafid HASNI, ¹Belkacem DRAOUI, ²Thierry BOULARD, ¹Rachid TAIBI and ¹Brahim DENNAI

Institut de Génie Mécanique, Centre Universitaire de Béchar
B. P. 417, 08000 Béchar, Algérie
Tel.: 213 49 81 55 81/91, fax: 213 49 81 52 44
INRA-URIH 400, route des Chappes, BP 167, 06903 Sophia Antipolis, France
Tel.: (0)492386663, Fax: (0)493653318
E-.mail: hasni haf@yahoo.fr, boulard@sophia.inra.fr

Received: 15 December 2008 /Accepted: 24 March 2009 /Published: 31 March 2009

Abstract: Although natural ventilation plays an important role in the affecting greenhouse climate, as defined by temperature, humidity and CO_2 concentration, particularly in Mediterranean countries, little information and data are presently available on full-scale greenhouse ventilation mechanisms. In this paper, we present a new method for selecting the parameters based on a particle swarm optimization (PSO) algorithm which optimize the choice of parameters by minimizing a cost function. The simulator was based on a published model with some minor modifications as we were interested in the parameter of ventilation. The function is defined by a reduced model that could be used to simulate and predict the greenhouse environment, as well as the tuning methods to compute their parameters. This study focuses on the dynamic behavior of the inside air temperature and humidity during ventilation. Our approach is validated by comparison with some experimental results. Various experimental techniques were used to make full-scale measurements of the air exchange rate in a 400 m² plastic greenhouse. The model which we propose based on natural ventilation parameters optimized by a particle swarm optimization was compared with the measurements results. *Copyright* © 2009 IFSA.

Keywords: Optimization, Particle swarm optimization, Greenhouses, Temperature, Humidity, Hydric model, Climate models, Cooling fog system, Metaheuristics

1. Introduction

Greenhouse ventilation is a key function in the control of greenhouse parameters such as air temperature and air humidity, and influences strongly the growth and development of the crops. In spite of this importance, especially in warm regions, the available knowledge on greenhouse ventilation is scarce. The air exchanged between inside and outside is still predicted with a large uncertainty ascribed to the difficulties of performing accurate measurements. Among the few works published in the literature, some are related to wind tunnel experiments on small-scale greenhouse with both roof and side openings. Other reported measurements on full-scale multispan greenhouses equipped with roof ventilators used the tracer gas techniques [1, 2, 7]. Particle swarm optimization (PSO), first introduced by Kennedy and Eberhart [3, 4], is one of the modernheuristic algorithms. The PSO technique can generate a high-quality solution within shorter calculation time and stable convergence characteristics than other stochastic methods [5]. Much research is still in progress for proving the potential of the PSO in solving complex optimization problems.

2. Problem Formulation

Our objective is to optimize a reduced greenhouse model in which the controlled variables are, indoor temperature $(T_i, {}^{\circ}C)$ and water vapour pressure (P_i, Pa) and the actuators are, the fog system (φ_l, Pa) power of the evaporative cooling fog system, Wm⁻²), the vent opening $(s, Vents opening surface m^2)$, the soil heat flux $(Q_s, Vents)$ and the air heating $(Q_a, Vents)$. Heat and water vapour balances have been first formulated in order to obtain the main equation of the whole model. Then particular equations have been added to complete the model.

3. Block Diagram and Open Loop Results

The block diagram of the greenhouse is shown in (Fig. 1) together with the four actuators s, Q_a , Q_s and φ_l ; five input variables have also been considered, T_e (external temperature, °C), P_e (external vapour pressure, Pa), R_g (outside global radiation, Wm-2), V (wind speed, ms-1) and PT_i (saturated vapour pressure at temperature T_i , Pa) these are mainly considered as disturbances in the control loop. Some simulations have been carried out to study the dynamic behavior of the controlled variables T_i and P_i . In these tests, we have also considered the initial conditions for indoor temperature $T_{i(n)}$ and water vapour pressure $P_{i(n)}$ (Fig. 1) [2].

4. Mathematical Model of the Indoor Water Vapour Pressure

In this case a water vapour balance inside the greenhouse is carried out, and the result is [1, 2]:

$$P_{i(n+1)} = P_{i(n)} \exp(-\zeta \Delta t) + \left(1 - \exp(-\zeta \Delta t)\right) \left(\frac{r S B \gamma \tau'}{\xi} \frac{\chi}{\xi} \frac{\gamma S B}{\xi} \frac{\gamma S}{\xi}\right) \begin{pmatrix} R_g \\ P_e \\ PT_i \\ \varphi_l \end{pmatrix}, \tag{1}$$

where

$$\zeta = \frac{\left(\left(Al\sqrt{C} \ sV\right) + \left(Al\sqrt{C} \ s_0V\right) + d_0 + \left(\frac{B\gamma S}{\rho C_p}\right)\right)}{v},$$
(2)

$$\xi = \left(\rho C_p A l \sqrt{C} \ s V\right) + \left(\rho C_p A l \sqrt{C} \ s_0 V\right) + \left(\rho C_p d_0\right) + B \gamma S, \tag{3}$$

and

$$\chi = \xi - B\gamma S \,, \tag{4}$$

Fig. 1. Block diagram of the controlled green house.

In these equations Δt is the discretisation time step (s), r the ratio A/B (Pa m² W¹), with A parameter of the model of transpiration (.), B a parameter of the transpiration model (Wm² hPa¹), S the exchange surface between two constituents of the greenhouse (m²), γ the psychrometric constant (hPa K¹), τ' the greenhouse cover transmissivity (.), Al and C parameters of the natural ventilation model (.), s_0 the leakage surface (m²), d_0 the wind independent leakage rate (m³ s¹), ρ the air density (kg m³) and C_p the thermal capacity of the greenhouse air (kg¹K¹). All fluxes are expressed per m² greenhouse soil area.

5. Mathematical Model of the Indoor Temperature

In this case an energy balance inside the greenhouse is performed from which the temperature is obtained as:

$$T_{i(n+1)} = \frac{h}{v} T_{m(n+1)} + \left(\frac{v-h}{v} \frac{\alpha}{v} \frac{1}{v} \frac{K_l}{v} - K_l \right) \begin{pmatrix} T_e \\ R_g \\ Q_a \\ P_e \\ P_i \end{pmatrix}, \tag{5}$$

where

$$T_{m(n+1)} = T_{m(n)} \exp\left(-\frac{\Delta t}{\tau}\right) + \left(1 - \exp\left(-\frac{\Delta t}{\tau}\right)\right) \times \wp \times \begin{pmatrix} T_{e} \\ R_{g} \\ Q_{s} \\ Q_{a} \\ P_{e} \\ P_{i} \end{pmatrix}, \tag{6}$$

and

$$\wp = \left(1 \frac{\alpha h + \beta v}{h(K + K_s)} \frac{v}{h(K + K_s)} \frac{1}{(K + K_s)} \frac{K_l}{(K + K_s)} \frac{-K_l}{(K + K_l)}\right),\tag{7}$$

In these expressions, h is the air/soil convective exchange coefficient (W m² K⁻¹), v the greenhouse volume (m²), α the absorption of global radiation by the aerial compartment of the greenhouse (.), β the absorption of global radiation by the thermal mass compartment of the greenhouse (.), the two parameters α and β are fractions of the outside incident global radiation (R_g) collectively absorbed by the structure and crop in the former case, and by the soil (thermal mass) in the latter, K_l the latent heat transfer coefficient driven by ventilation (W m² hPa⁻¹), τ the time constant or characteristic time (s), K the overall heat loss coefficient through the greenhouse cover (W m⁻² K⁻¹) and K_s the sensible heat transfer coefficient driven by ventilation (W m⁻² K⁻¹). Q_s the soil heat flux (W m⁻²) and Q_a the air heat input (W m⁻²) [1, 2].

6. Ventilation

Ventilation may be either forced (mechanically, as by fans) or natural (caused by thermal buoyancy and/or wind pressures) Mechanical ventilation is typically designed to provide a maximum air exchange rate suitable for the local climate. Wind-driven ventilation is linearly proportional to wind speed and can be vigorous. Ventilation by thermal buoyancy depends on air temperature difference and the elevation difference between inlets and outlets but is not likely to be vigorous in practical applications. However, it can be adequate for greenhouse ventilation if properly designed and controlled. A significantly greater understanding of the subtleties of natural ventilation has developed over the past decade. New greenhouse designs allow for adequate side and roof ventilation. The extreme is the open roof greenhouse, which is most useful in gutter-connected greenhouses that cover large areas and are without sufficient sidewall area to provide adequate inlet area. The critical factor in designing natural ventilation is properly sized inlets and outlets. As a first rule, total inlet area should

be equivalent to total outlet area. For example, upwind and downwind sidewall vents should be approximately the same area. Or, for thermal buoyancy ventilation, sidewall vents should have approximately the same combined area as the roof (ridge) vent. The ventilation rate G_{ν} is a linear function of wind speed V, the vent opening s, as well as leakages both dependant (s_0) and independent of the wind speed (d_0) . Thus, we have:

$$G_{v} = \frac{(s+s_{0})Al\sqrt{C}V}{2} + d_{0}, \tag{8}$$

The four remaining parameters of the temperature and pressure balance equations to be optimized are: $Al\sqrt{C}$, s_0 , d_0 , β . The values identified for these parameters using the classical algorithm during a one week sequence are $Al\sqrt{C} = 0.2$, $s_0 = 0$, $d_0 = 0$, $\beta = 0$ [6].

With the Simulated annealing Algorithm, once we have chosen the parameters to be optimized, one must define also their numerical limits. Thus, we have defined the search space for the different parameters as shown in Table 1 [1, 2].

Table 1. Search space of the parameters to be identified.

7. Particle Swarm Optimization

PSO is one of the optimization techniques and a kind of evolutionary computation technique. The method has been found to be robust in solving problems featuring nonlinearity and non-differentiability, multiple optima, and high dimensionality through adaptation, which is derived from the social-psychological theory. The features of the method are as follows:

- 1. The method is developed from research on swarm such as fish schooling and bird flocking.
- 2. It is based on a simple concept. Therefore, the computation time is short and requires few memories [8, 10, 11].
- 3. It was originally developed for nonlinear optimization problems with continuous variables. It is easily expanded to treat a problem with discrete variables. According to the research results for birds flocking are finding food by flocking.

PSO is basically developed through simulation of bird flocking in two-dimension space. The position of each agent is represented by XY axis position and also the velocity is expressed by v_x (the velocity of X axis) and v_y (the velocity of Y axis). Modification of the agent position is realized by the position and velocity information. Bird flocking optimizes a certain objective function. Each agent knows its best value so far (pbest) and its XY position. This information is analogy of personal experiences of each agent. Moreover, each agent knows the best value so farin the group (gbest) among pbest. This information is analogy of knowledge of how the other agents around them have performed. Namely, each agent tries to modify its position using the following information [8, 12, 13, 15]:

- The current positions (x, y),
- The current velocities (v_x, v_y) ,

- The distance between the current position and pbest
- The distance between the current position and gbest.

This modification can be represented by the concept of velocity. Velocity of each agent can be modified by the following equation:

$$v_i^{k+1} = wv_i^k + c_1 rand_1 \times \left(pbest_i - s_i^k\right) + c_2 rand_2 \times \left(gbest_i - s_i^k\right), \tag{9}$$

where

 v_i^k velocity of agent i at iteration k; w weighting function; c_i weighting factor; rand random number between 0 and 1; s_i^k current position of agent i at iteration k; pbest_i pbest of agent I; gbest gbest of the group. The following weighting function is usually utilized in (9).

$$w = -\frac{w_{\text{max}} - w_{\text{min}}}{iter_{\text{max}}} \times iter , \qquad (10)$$

where w_{max} initial weight; w_{min} final weight; $iter_{\text{max}}$ maximum iteration number; iter current iteration number.

Using Eqs. (9) and (10) a certain velocity, which gradually gets close to pbest and gbest can be calculated. The current position can be modified by the following equation:

$$s_i^{k+1} = s_i^k + v_i^{k+1}, (11)$$

Eq. (9) consists of three terms: the first one depends on the particle's previous speed, the second term depends on the distance between the particle's best previous and current position. The last term shows the effect of the swarm's best experience on the velocity of each individual in the group. This effect is considered through the distance between swarm's best experience (the position of the best particle in the swarm) and the i^{th} particle's current position. Eq. (11) simulates the flying of the particle toward a new position. The role of the inertia weight w is considered very important in PSO convergence behavior [9, 15]. The inertia weight is employed to control the impact of the previous history of velocities on the current velocity. In this way, the parameter wp regulates the trade-off between the global and local exploration abilities of the swarm. A large inertia weight facilitates global exploration (searching new areas), while a small one tends to facilitate local exploration, i.e. finetuning the current search area. A suitable value for the inertia weight w usually provides balance between global and local exploration abilities and consequently a reduction on the number of iterations required to locate the optimum solution.

8. Results and Conclusions

The inside air temperature and humidity simulation models were identified using the described approaches for a greenhouse between 14 and 22 May 1991 located near Avignon in south-east France. The greenhouse had a tomato-crop area of 416 m², in a double roof plastic house. Several actuators and sensors were installed and connected to an acquisition and control system based on a personal computer and a data acquisition and control card using a sampling interval of 1 hour. Only few seconds are required to identify the parameters of the reduced model with a personal computer.

Since the PSO algorithm depends only on the objective function to guide the search, it must be defined before the PSO algorithm is initialized. With experimental to (5), a Mean Quadratic Errors (MQE) is chosen as the objective function in this study defined by [14]:

$$MQE = \frac{1}{N} \sum_{j=1}^{N} \left[T_i(j) - T_{i \exp}(j) \right]^2,$$
 (12)

where N is the number of data; T_i the indoor temperature calculates $T_{i \exp}$ the indoor temperature experimental The contribution of this paper is to apply the proposed PSO algorithm to minimize the MQE value.

There are two general conditions to terminate the PSO algorithm: (a) the objective function of the global best is less than a pre-specified value or (b) the number of iterations achieves the maximum allowable number *Nitr*. In this study, the second criterion is adopted to terminate the search process.

In the present simulations, the packet software of Matlab is programmed to implement the above PSO algorithm, the related values assigned to the variables of the PSO algorithm are given by sampling number N = 192, lower and upper bounds are $lb = [0\ 0\ 0\ 0]$ and $lb = [0,3\ 1\ 1\ 0,3]$, the number of the population particles = 2000, the velocity decline parameter w = 0, the strength parameter for the local attractors and the global attractor c1=2, c2=2, and number of iterations $N_{iter} = 1000$ in the current search.

As shown in Fig. 3, the average of the differences between the experimental data of the temperature and with the air temperature values given by the model identified by the classical algorithm was 4.7 °C, with a maximum difference of 10.0832. And comparing the experimental data of the temperature and with the air temperature values given by the model identified by the PSO, the average of differences was 2.02°C, with a maximum difference of 8.4985 as shown in Fig. 4.

The selection of models is done comparing the errors between the experimental data and the model identified by a classical algorithm and the errors between the experimental, and the calculus with the model identified by the PSO, calculating the Mean Relative Error (MRE), the Mean Absolute Error (MAE), the Standard Error (SE) and the Mean Quadratic Errors (MQE). The four-error measures are given by the following relations:

$$MAE = \frac{1}{N} \sum_{j=1}^{N} |T_i(j) - T_{i \exp}(j)|,$$
 (13)

$$MRE = \frac{1}{N} \sum_{j=1}^{N} \frac{\left| T_i(j) - T_{i \exp}(j) \right|}{T_i(j)} \times 100,$$
 (14)

$$MQE = \frac{1}{N-1} \sum_{j=1}^{N} \left[T_i(j) - T_{i\exp}(j) \right]^2,$$
 (15)

The best results obtained by the Genetic Algorithm are given in Table 2. Fig. 2 compares the results given by the PSO and Classical Algorithms with the experimental values. Good agreement can be seen between the experimental results and the simulation obtained from the Genetic Algorithm, both in terms of dynamics and intensity of the signal. In order to estimate the validity of our algorithm, we have calculated the errors between the experimental and simulated results. We can see (Table 3) that, with respect to the classical algorithm, the PSO Algorithm improves very significantly the precision of

the simplified greenhouse model. Identification of the physical parameters of a simplified model describing the interactions between crop and climate in a horticultural greenhouse can be seriously improved in terms of calculation time and accuracy of the results, by using a PSO algorithm instead of the classical Marquardt Algorithm.

In this paper, we have successfully applied the PSO algorithm to identified parameters of Natural Ventilation in a Greenhouse with Continuous Roof Vents. In the model of greenhouses estimation of PSO-based algorithm, a set of ventilation parameters is refereed to as a particle, then the velocity and position updating formulas are performed on the particles to force them toward better positions. At the same time, the pre-specified objective function MQE can be minimized. To demonstrate the estimation performance, several examining conditions are considered, including different sizes of noises and different random sets of initial populations. The simulation results obtained from the PSO and classical methods are compared. They clearly reveal the effectiveness of the proposed PSO algorithm in estimating parameters of Natural Ventilation in a Greenhouse with Continuous Roof Vents.

Fig. 2. Temperature inside greenhouse: experimental temperature inside—(continuous line); Model identified by classic algorithm —(dot line); Model identified by PSO —(dash line).

Fig. 3. Difference of temperature between the experimental, and the calculus with the model identified by a classical algorithm.

Fig. 4. Difference of temperature between the experimental and the calculus with the model identified by the PSO.

Table 2. Best parameter values identified by the Genetic Algorithm.

	$Al\sqrt{C}$	<i>S</i> ₀	d_0	β
Min	0	0	0	0

Table 3. Statistical accuracy measures.

The errors	MQE	MAE	MRE	SE
Model identified by classical algorithm	0.3771	4.7015	0.0014	0.3790
Model identified by PSO algorithm	0.2481	2.7622	5.9928e-004	0.2494

References

- [1]. Boulard, T. and Draoui, B., Natural ventilation of greenhouse with continuous roof vents: Measurements and data analysis, *Journal of Agricultural Engineering Research*, 61, 1995, pp. 27-36.
- [2]. Hasni, A., Draoui, B., Bounaama, F., Tamali, M., and Boulard, T., Evolutionary algorithms in the optimization of natural ventilation parameters in a greenhouse with continuous roof vents, In: J. J. Pérez-Parra, J. I. Montero and B. J. Bailey (Eds), *International Symposium on Greenhouse Cooling*, Almeria (ESP), April 24-27, 2006. ISHS *Acta Horticulturae*, 719, 2006, pp. 49-55.
- [3]. Kennedy J, Eberhart R., Particle swarm optimization, in *Proc. of IEEE Int. Conf. on Neural Networks*, Perth, Australia, Vol. IV, 1995, pp. 1942–8.
- [4]. Eberhart R. C., Shi Y., Comparison between genetic algorithms and particle swarm optimization, in *Proc. IEEE Int. Conf. on Evol. Comput.*, Anchorage, AK, May 1998, p. 611–6.
- [5]. Angeline P. J., Using selection to improve particle swarm optimization, in *Proc. of IEEE Int. Conf. Evol. Comput.*, Anchorage, AK, May 1998, pp. 84–89.
- [6]. Draoui, B., Caractérisation et analyse du comportement thermohydrique d'une serre horticole (Identification in-situ des paramètres d'un modèle dynamique). Thèse de doctorat de l'université de Nicesophia antipolis, France, 1994.

- [7]. T. Boulard, Greenhouse Natural Ventilation Modelling: A Survey Of The Different Approaches, In J. J. Pérez-Parra, J. I. Montero and B. J. Bailey (Eds), *International Symposium on Greenhouse Cooling, Almeria (ESP)*, April 24-27, 2006, ISHS Acta Horticulturae, 719, pp. 29-40.
- [8]. EL-Zonkoly, A. M., Optimal tuning of power systems stabilizers and AVR gains using particle swarm optimization, *International Journal of Expert Systems with Applications*, Vol. 31, 939, 2006, pp. 551–557.
- [9]. Y. Shi, R. Eberhart, Parameter selection in particle swarm optimization, in *Proceedings of 7th Annual Conference on Evolutionary Program*, March 1998, pp. 591–600.
- [10]. Chau K. W., Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River, *Journal of Hydrology*, 329, 2006, pp. 363–7.
- [11].Geethanjali M, Mary Raja Slochanal S, Bhavani R., PSO trained ANN-based differential protection scheme for power transformers, *Neurocomputing*, 2007, in press (corrected proof).
- [12].Liao C. J., Tseng C. T., Luarn P., A discrete version of particle swarm optimization for flowshop scheduling problems, *Computer & Operations Research*, 34, 2007, pp. 3099–111.
- [13]. Tasgetiren M. F., Liang Y.-C., Sevkli M., Gencyilmaz G., A particle swarm optimization algorithm for makespan and total flowtime minimization in permutation flowshop sequencing problem, *European Journal of Operational Research*, 177, 2007, pp. 1930–47.
- [14]. Yih-Lon Lin and al, A particle swarm optimization approach to nonlinear rational filter modeling, *Expert Systems with Applications*, 2007, in press (corrected proof).
- [15].Long Liu and al., Culture conditions optimization of hyaluronic acid production by Streptococcus zooepidemicus based on radial basis function neural network and quantum-behaved particle swarm optimization algorithm, *Enzyme and Microbial Technology*, 44, 2009, pp. 24–32.

2009 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved. (http://www.sensorsportal.com)

Order online: www.sensorsportal.com/HTML/BOOKSTORE/Smart_Sensors_and_MEMS.htm

Sensors & Transducers Journal

Guide for Contributors

Aims and Scope

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and application specific papers, short notes, letters to Editor and sensors related books reviews as well as academic, practical and commercial information of interest to its readership. Because it is an open access, peer review international journal, papers rapidly published in Sensors & Transducers Journal will receive a very high publicity. The journal is published monthly as twelve issues per annual by International Frequency Association (IFSA). In additional, some special sponsored and conference issues published annually.

Topics Covered

Contributions are invited on all aspects of research, development and application of the science and technology of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:

- Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- · Sensors interfaces, buses and networks;
- Signal processing;
- Frequency (period, duty-cycle)-to-digital converters, ADC;
- · Technologies and materials;
- Nanosensors:
- · Microsystems;
- Applications.

Submission of papers

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 6-14 pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word (doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript are available from the journal's webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors must follow the instructions strictly when submitting their manuscripts.

Advertising Information

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit: http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2008.pdf

'Written by an internationallyrecognized team of experts,
this book reviews recent developments in the field of
smart sensors systems, providing complete coverage
of all important systems aspects. It takes a multidisciplinary approach to the understanding, design and use of
smart semsor systems, their
building blocks and methods
of signal processing.'

Order online:

http://www.sensorsportal.com/HTML/BOOKSTORE/Smart_Sensor_Systems.htm

www.sensorsportal.com